Spaces:
Sleeping
Sleeping
File size: 60,772 Bytes
b6d071a db13580 b6d071a e8edbd7 e22f096 e8edbd7 b6d071a 8d3fe38 b6d071a db13580 e8edbd7 fb3a3b8 c537c46 fb3a3b8 c537c46 fb3a3b8 c537c46 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a fb3a3b8 b6d071a fb3a3b8 b6d071a fb3a3b8 b6d071a db13580 e8edbd7 db13580 b6d071a e8edbd7 b6d071a db13580 b6d071a fb3a3b8 b6d071a fb3a3b8 b6d071a fb3a3b8 b6d071a db13580 e8edbd7 db13580 b6d071a e8edbd7 b6d071a fb3a3b8 b6d071a fb3a3b8 c537c46 fb3a3b8 c537c46 fb3a3b8 c537c46 fb3a3b8 c537c46 b6d071a c537c46 b6d071a c537c46 b6d071a c537c46 b6d071a db13580 b6d071a d56b6a9 b6d071a d56b6a9 b6d071a d56b6a9 b6d071a db13580 b6d071a db13580 b6d071a db13580 b6d071a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 |
import gzip
import json
import pandas as pd
import numpy as np
from typing import List, Dict, Optional, Tuple
import logging
from datetime import datetime
import re
import gradio as gr
import random
from geopy.distance import geodesic
from collections import defaultdict
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
try:
from llama_cpp import Llama
LLAMA_CPP_AVAILABLE = True
logger.info("llama-cpp-python successfully imported")
except ImportError as e:
logger.warning(f"llama-cpp-python not available due to import error: {e}")
LLAMA_CPP_AVAILABLE = False
except Exception as e:
logger.warning(f"llama-cpp-python failed to load: {e}")
LLAMA_CPP_AVAILABLE = False
from lightweight_rag import LightweightRAGEnhancer
# Ultra-lightweight LLM for optimal HF Spaces performance
try:
from ultra_lightweight_llm import UltraLightweightLLM
ULTRA_LIGHTWEIGHT_LLM_AVAILABLE = True
logger.info("Ultra-lightweight LLM available for optimal performance")
except ImportError as e:
logger.warning(f"Ultra-lightweight LLM not available: {e}")
ULTRA_LIGHTWEIGHT_LLM_AVAILABLE = False
class CompleteYerevanVenueAI:
"""
Complete Bilingual (Armenian/English) AI Assistant for Yerevan Venue Recommendations
With enhanced templates, location parsing, filtering, distance calculation and metadata usage
"""
def __init__(self, venues_json_path: str, venues_csv_path: str):
self.venues_json_path = venues_json_path
self.venues_csv_path = venues_csv_path
# Core data
self.venues_data = []
self.venues_structured = None
self.five_star_reviews = {}
# Conversational LLM
self.conversational_llm = None
self.conversation_history = []
self.max_conversation_history = 10
# Enhanced location and category knowledge
self.yerevan_streets = self._initialize_enhanced_street_knowledge()
self.venue_categories = self._initialize_category_knowledge()
self.conversation_templates = self._initialize_enhanced_conversation_templates()
# Initialize lightweight RAG enhancer with comprehensive geo data
self.rag_enhancer = LightweightRAGEnhancer()
# Merge RAG geo data with existing street coordinates
self.street_coordinates = self._merge_geo_data()
logger.info("Initialized Complete YerevanVenueAI with RAG enhancement and comprehensive geo data")
def _initialize_street_coordinates(self) -> Dict[str, Tuple[float, float]]:
"""Initialize street coordinates for distance calculation"""
return {
# Major streets with approximate center coordinates (lat, lng)
"Mashtots Avenue": (40.1845, 44.5117),
"Abovyan Street": (40.1776, 44.5146),
"Saryan Street": (40.1851, 44.5086),
"Tumanyan Street": (40.1822, 44.5149),
"Amiryan Street": (40.1798, 44.5139),
"Pushkin Street": (40.1774, 44.5154),
"Khorenatsi Street": (40.1751, 44.5181),
"Teryan Street": (40.1828, 44.5163),
"Paronyan Street": (40.1812, 44.5134),
"Northern Avenue": (40.1792, 44.5146),
"Sayat Nova Avenue": (40.1834, 44.5098),
"Baghramyan Avenue": (40.1951, 44.5089),
"Vazgen Sargsyan Street": (40.1823, 44.5201),
"Tigran Mets Avenue": (40.1743, 44.5289),
"Nalbandyan Street": (40.1800, 44.5182),
# Districts (approximate centers)
"Kentron": (40.1792, 44.5146),
"Arabkir": (40.2089, 44.4856),
"Avan": (40.2156, 44.5489),
"Davtashen": (40.2267, 44.4567),
"Erebuni": (40.1345, 44.5234),
# Landmarks
"Republic Square": (40.1761, 44.5126),
"Opera House": (40.1836, 44.5098),
"Cascade": (40.1876, 44.5086),
"Swan Lake": (40.1837, 44.5135),
"Blue Mosque": (40.1733, 44.5151)
}
def _initialize_enhanced_street_knowledge(self) -> Dict[str, Dict]:
"""Enhanced Yerevan geography knowledge with Armenian names"""
return {
"streets": {
"Mashtots Avenue": ["մաշտոցի", "մաշտոց", "mashtots", "mesrop mashtots"],
"Abovyan Street": ["աբովյանի", "աբովյան", "abovyan"],
"Saryan Street": ["սարյանի", "սարյան", "saryan", "martiros saryan"],
"Tumanyan Street": ["թումանյանի", "թումանյան", "tumanyan", "hovhannes tumanyan"],
"Amiryan Street": ["ամիրյանի", "ամիրյան", "amiryan"],
"Pushkin Street": ["պուշկինի", "պուշկին", "pushkin"],
"Khorenatsi Street": ["խորենացի", "խորենաց", "khorenatsi"],
"Teryan Street": ["տերյանի", "տերյան", "teryan"],
"Paronyan Street": ["պարոնյանի", "պարոնյան", "paronyan"],
"Northern Avenue": ["հյուսիսային", "northern", "northern avenue"],
"Sayat Nova Avenue": ["սայաթ նովա", "sayat nova"],
"Baghramyan Avenue": ["բաղրամյանի", "բաղրամյան", "baghramyan"],
"Vazgen Sargsyan Street": ["վազգեն սարգսյանի", "vazgen sargsyan"],
"Tigran Mets Avenue": ["տիգրան մեծի", "tigran mets"],
"Nalbandyan Street": ["նալբանդյանի", "նալբանդյան", "nalbandyan"]
},
"districts": {
"Kentron": ["կենտրոն", "կենտրում", "center", "downtown", "central"],
"Arabkir": ["արաբկիր", "arabkir"],
"Avan": ["ավան", "avan"],
"Davtashen": ["դավթաշեն", "davtashen"],
"Erebuni": ["էրեբունի", "erebuni"],
"Kanaker-Zeytun": ["կանակեր", "զեյթուն", "kanaker", "zeytun"],
"Malatia-Sebastia": ["մալաթիա", "սեբաստիա", "malatia", "sebastia"],
"Nor Nork": ["նոր նորք", "nor nork"],
"Shengavit": ["շենգավիթ", "shengavit"],
"Ajapnyak": ["աջափնյակ", "ajapnyak"]
},
"landmarks": {
"Republic Square": ["հանրապետության հրապարակ", "հանրապետության", "republic square", "republic"],
"Opera House": ["օպերա", "օպերայի տուն", "opera", "opera house"],
"Cascade": ["կասկադ", "cascade"],
"Northern Avenue": ["հյուսիսային պողոտա", "northern avenue"],
"Swan Lake": ["կարապի լիճ", "swan lake"],
"Vernissage Market": ["վերնիսաժ", "vernissage"],
"Blue Mosque": ["կապույտ մզկիթ", "blue mosque"],
"Mother Armenia": ["մայր հայաստան", "mother armenia"],
"Matenadaran": ["մատենադարան", "matenadaran"],
"Cascade Complex": ["կասկադային համալիր", "cascade complex"]
}
}
def _initialize_category_knowledge(self) -> Dict[str, Dict]:
"""Enhanced category knowledge with Armenian terms and JSON metadata"""
return {
"nightlife": {
"types": ["pub", "bar", "club", "hookah", "night_club"],
"json_types": ["bar", "night_club"],
"armenian_terms": ["բար", "պաբ", "փաբ", "փաբեր", "ակումբ", "հուկա", "գիշերային", "ժամանց"],
"keywords": ["drink", "beer", "cocktail", "party", "night", "dance", "draft", "tap", "alcohol", "whiskey", "vodka", "pub", "bar", "nightclub"],
"armenian_keywords": ["խմիչք", "գարեջուր", "կոկտեյլ", "պարտի", "գիշեր", "պար", "ալկոհոլ"],
"metadata_fields": ["serves_beer", "serves_spirits", "serves_cocktails", "serves_wine", "has_bar", "has_happy_hour", "good_for_dancing", "serves_happy_hour_drinks", "serves_late_night_food"]
},
"dining": {
"types": ["restaurant", "cafe", "fast_food", "bakery"],
"json_types": ["restaurant", "cafe"],
"armenian_terms": ["ռեստորան", "սրճարան", "արագ սնունդ", "հացագործություն"],
"keywords": ["food", "eat", "meal", "coffee", "breakfast", "lunch", "dinner", "cuisine", "dining", "restaurant", "cafe"],
"armenian_keywords": ["ուտելիք", "ուտել", "ճաշ", "սուրճ", "նախաճաշ", "ճաշ", "ընթրիք"],
"metadata_fields": ["serves_breakfast", "serves_brunch", "serves_lunch", "serves_dinner", "serves_coffee", "serves_dessert", "serves_vegetarian_food", "menu_for_children", "good_for_children", "good_for_groups"]
},
"culture": {
"types": ["cultural", "gallery", "theatre", "museum"],
"json_types": [],
"armenian_terms": ["մշակութային", "պատկերասրահ", "թատրոն", "թանգարան"],
"keywords": ["art", "culture", "museum", "gallery", "theater", "exhibition"],
"armenian_keywords": ["արվեստ", "մշակույթ", "թանգարան", "ցուցահանդես"],
"metadata_fields": []
},
"entertainment": {
"types": ["karaoke", "gaming", "music", "cinema"],
"json_types": [],
"armenian_terms": ["կարաոկե", "խաղ", "երաժշտություն", "կինո"],
"keywords": ["music", "karaoke", "game", "entertainment", "fun", "live music"],
"armenian_keywords": ["երաժշտություն", "կարաոկե", "խաղ", "ժամանց", "զվարճանք"],
"metadata_fields": ["live_music", "good_for_watching_sports", "good_for_business_meetings", "good_for_date_night"]
}
}
def _initialize_enhanced_conversation_templates(self) -> Dict[str, Dict]:
"""Enhanced conversation templates for various scenarios"""
return {
"armenian": {
"greetings": [
"Բարև ձեզ! Ես ձեր անձնական ուղեցույցն եմ Երևանի լավագույն վայրերի համար:",
"Ողջույն! Ուրախ եմ օգնել ձեզ հայտնաբերել Երևանի հիանալի վայրերը:",
"Բարի գալուստ! Ես կօգնեմ ձեզ գտնել կատարյալ վայր Երևանում:"
],
"recommendation_intros": [
"Ձեր հարցման համար ես գտա այս հիանալի վայրերը:",
"Ահա ինչ կարող եմ առաջարկել ձեզ:",
"Այս վայրերը կարող են ձեզ հետաքրքրել:"
],
"location_contexts": {
"street": "Դուք փնտրում եք {location} փողոցում:",
"district": "Դուք փնտրում եք {location} թաղամասում:",
"landmark": "Դուք փնտրում եք {location} մոտակայքում:"
},
"category_matches": {
"nightlife": "Այս վայրերը հիանալի են գիշերային ժամանցի համար:",
"dining": "Այս ճաշարանները կամ սրճարանները ձեզ կհավանեն:",
"culture": "Այս մշակութային վայրերը հետաքրքիր են:",
"entertainment": "Այս ժամանցային վայրերը զվարճալի են:"
},
"endings": [
"Հուսով եմ, որ կգտնեք կատարյալ տարբերակ!",
"Բարի ժամանց!",
"Եթե հարցեր ունեք, ես այստեղ եմ:"
]
},
"english": {
"greetings": [
"Hello! I'm your personal guide to the best places in Yerevan:",
"Welcome! I'm excited to help you discover amazing venues in Yerevan:",
"Hi there! Let me help you find the perfect spot in Yerevan:"
],
"recommendation_intros": [
"For your query, I found these fantastic venues:",
"Here's what I can recommend for you:",
"These places might interest you:"
],
"location_contexts": {
"street": "You're looking on {location}:",
"district": "You're exploring the {location} district:",
"landmark": "You're searching near {location}:"
},
"category_matches": {
"nightlife": "These venues are perfect for nightlife:",
"dining": "These restaurants and cafes will delight you:",
"culture": "These cultural venues are fascinating:",
"entertainment": "These entertainment spots are fun:"
},
"endings": [
"I hope you find the perfect match!",
"Enjoy your visit!",
"Feel free to ask if you need more recommendations!"
]
}
}
def initialize(self):
"""Initialize the complete venue AI system"""
logger.info("Loading venue data...")
self._load_venue_data()
logger.info("Processing 5-star reviews...")
self._process_five_star_reviews()
logger.info("Initializing conversational LLM...")
self._initialize_conversational_llm()
logger.info("Complete YerevanVenueAI initialization finished!")
def _load_venue_data(self):
"""Load venue data from JSON and CSV files"""
with open(self.venues_json_path, 'r', encoding='utf-8') as f:
self.venues_data = json.load(f)
self.venues_structured = pd.read_csv(self.venues_csv_path)
logger.info(f"Loaded {len(self.venues_data)} venues from JSON")
logger.info(f"Loaded {len(self.venues_structured)} venues from CSV")
def _process_five_star_reviews(self):
"""Extract and process 5-star reviews for each venue"""
for venue in self.venues_data:
venue_name = venue.get('name', '')
reviews = venue.get('reviews', [])
# Filter 5-star reviews
five_star = [review for review in reviews if review.get('rating') == 5]
if five_star:
# Separate reviews by language
english_reviews = []
armenian_reviews = []
for review in five_star:
text = review.get('text', '').strip()
language = review.get('language', 'en')
original_language = review.get('original_language', 'en')
if text and len(text) > 20: # Only meaningful reviews
if language == 'hy' or original_language == 'hy':
armenian_reviews.append(text)
else:
english_reviews.append(text)
# Store both language versions
if english_reviews or armenian_reviews:
self.five_star_reviews[venue_name] = {
'english': english_reviews[:3], # Top 3 English reviews
'armenian': armenian_reviews[:3] # Top 3 Armenian reviews
}
logger.info(f"Processed 5-star reviews for {len(self.five_star_reviews)} venues")
def _get_reviews_by_language(self, venue_name: str, language: str) -> List[str]:
"""Get reviews in the specified language"""
if venue_name not in self.five_star_reviews:
return []
reviews_data = self.five_star_reviews[venue_name]
if language == "armenian" and reviews_data.get('armenian'):
return reviews_data['armenian']
elif reviews_data.get('english'):
return reviews_data['english']
else:
# Fallback to any available reviews
return reviews_data.get('armenian', []) + reviews_data.get('english', [])
def _detect_language(self, text: str) -> str:
"""Enhanced language detection"""
armenian_chars = re.findall(r'[Ա-Ֆա-ֆ]', text)
armenian_ratio = len(armenian_chars) / len(text) if text else 0
armenian_keywords = ['բար', 'ռեստորան', 'սրճարան', 'ակումբ', 'հուկա', 'ուզում', 'գտնել', 'որտեղ', 'կարող', 'լավ', 'հետաքրքիր']
armenian_keyword_count = sum(1 for keyword in armenian_keywords if keyword in text.lower())
if armenian_ratio > 0.15 or armenian_keyword_count > 0:
return "armenian"
return "english"
def _extract_enhanced_location_context(self, query: str) -> Dict[str, List[str]]:
"""Enhanced location extraction with comprehensive Armenian support"""
query_lower = query.lower()
context = {
"streets": [],
"districts": [],
"landmarks": []
}
# Enhanced street detection
for street_eng, variations in self.yerevan_streets["streets"].items():
for variation in variations:
if variation.lower() in query_lower:
context["streets"].append(street_eng)
break
# Enhanced district detection
for district_eng, variations in self.yerevan_streets["districts"].items():
for variation in variations:
if variation.lower() in query_lower:
context["districts"].append(district_eng)
break
# Enhanced landmark detection
for landmark_eng, variations in self.yerevan_streets["landmarks"].items():
for variation in variations:
if variation.lower() in query_lower:
context["landmarks"].append(landmark_eng)
break
return context
def _get_user_location_from_query(self, query: str) -> Optional[Tuple[float, float]]:
"""Extract user location coordinates from street/landmark names in query"""
location_context = self._extract_enhanced_location_context(query)
# Check streets first
for street in location_context["streets"]:
if street in self.street_coordinates:
return self.street_coordinates[street]
# Check districts
for district in location_context["districts"]:
if district in self.street_coordinates:
return self.street_coordinates[district]
# Check landmarks
for landmark in location_context["landmarks"]:
if landmark in self.street_coordinates:
return self.street_coordinates[landmark]
return None
def _calculate_distance(self, user_location: Tuple[float, float], venue: Dict) -> Optional[float]:
"""Calculate distance between user location and venue"""
try:
venue_lat = venue.get('latitude')
venue_lng = venue.get('longitude')
if venue_lat is not None and venue_lng is not None:
distance = geodesic(user_location, (venue_lat, venue_lng)).kilometers
return distance
except Exception as e:
logger.debug(f"Distance calculation error: {e}")
return None
def _smart_venue_search(self, query: str, top_k: int = 20) -> List[Dict]:
"""Enhanced search using RAG system with comprehensive geo data and smart scoring"""
query_lower = query.lower()
results = []
# Use RAG enhancer for query analysis
enhanced_query = self.rag_enhancer.enhance_query(query)
query_words = set(query_lower.split())
expanded_terms = set(enhanced_query["expanded_terms"])
# Detect category from query
language = self._detect_language(query)
detected_category = self._detect_category(query, language)
# Get enhanced location context from RAG
geo_context = enhanced_query["geo_context"]
location_context = self._extract_enhanced_location_context(query)
for venue in self.venues_data:
venue_name = venue.get('name', '')
venue_address = venue.get('address', '').lower()
# Get structured venue info
structured_info = self.venues_structured[
self.venues_structured['venue_name'] == venue_name
]
if structured_info.empty:
continue
venue_category = structured_info.iloc[0]['category']
venue_summary = str(structured_info.iloc[0]['venue_summary']).lower()
# Prepare venue data for RAG scoring
venue_for_rag = {
'name': venue_name,
'category': venue_category,
'summary': venue_summary,
'latitude': venue.get('latitude'),
'longitude': venue.get('longitude'),
'rating': venue.get('rating', 0)
}
# Get RAG enhanced score
rag_score, rag_explanation = self.rag_enhancer.calculate_enhanced_score(venue_for_rag, enhanced_query)
# Start with RAG score as base
score = rag_score
# JSON metadata scoring
venue_types = venue.get('types', [])
# PRIORITY: Exact street/location matching (very high score)
exact_location_match = False
if location_context["streets"]:
for street in location_context["streets"]:
street_variations = self.yerevan_streets["streets"][street]
for variation in street_variations:
if variation.lower() in venue_address:
score += 100 # Very high score for exact street match
exact_location_match = True
break
if exact_location_match:
break
if location_context["districts"]:
for district in location_context["districts"]:
district_variations = self.yerevan_streets["districts"][district]
for variation in district_variations:
if variation.lower() in venue_address:
score += 80 # High score for district match
exact_location_match = True
break
if exact_location_match:
break
if location_context["landmarks"]:
for landmark in location_context["landmarks"]:
landmark_variations = self.yerevan_streets["landmarks"][landmark]
for variation in landmark_variations:
if variation.lower() in venue_address:
score += 90 # Very high score for landmark match
exact_location_match = True
break
if exact_location_match:
break
# Category matching (high priority)
if detected_category:
category_info = self.venue_categories[detected_category]
# Check CSV category
if venue_category in category_info["types"]:
score += 15 # High score for category match
# Check JSON types
for json_type in category_info["json_types"]:
if json_type in venue_types:
score += 20 # Even higher for JSON type match
# Check metadata fields for specific features
for metadata_field in category_info["metadata_fields"]:
if venue.get(metadata_field) is True:
score += 10 # Good score for feature match
# Extra points for specific matches
for keyword in category_info["keywords"]:
if keyword in venue_summary or keyword in venue_name.lower():
score += 5
# Additional scoring with expanded terms from RAG
additional_score = 0
# Enhanced keyword matching with expanded terms
for term in expanded_terms:
# Check in venue name
if term in venue_name.lower():
additional_score += 3
# Check in venue summary
if term in venue_summary:
additional_score += 2
# Check in venue address
if term in venue_address:
additional_score += 1
score += additional_score
# Venue name matching
venue_name_lower = venue_name.lower()
for word in query_words:
if word in venue_name_lower:
score += 8
# Summary matching (use the rich summary data with higher scoring)
for word in query_words:
if word in venue_summary:
score += 5 # Increased score for summary matches
# Additional bonus for detailed summary matches
summary_bonus_keywords = ['draft', 'tap', 'craft', 'brewery', 'beer']
for keyword in summary_bonus_keywords:
if keyword in query_lower and keyword in venue_summary:
score += 15 # High bonus for specific beer-related terms in summary
# Address matching
if venue.get('address'):
address_lower = venue['address'].lower()
for word in query_words:
if word in address_lower:
score += 2
# 5-star review matching
if venue_name in self.five_star_reviews:
reviews = self._get_reviews_by_language(venue_name, "english")
if reviews:
review_text = " ".join(reviews).lower()
for word in query_words:
if word in review_text:
score += 4
# JSON types matching
for venue_type in venue_types:
if venue_type in query_lower:
score += 12
if score > 0:
venue_copy = venue.copy()
venue_copy['similarity_score'] = score
venue_copy['category'] = venue_category
venue_copy['summary'] = structured_info.iloc[0]['venue_summary']
venue_copy['exact_location_match'] = exact_location_match
venue_copy['rag_score'] = rag_score
venue_copy['rag_explanation'] = rag_explanation
results.append(venue_copy)
# Sort by exact location match first, then by score
results.sort(key=lambda x: (x.get('exact_location_match', False), x['similarity_score']), reverse=True)
return results[:top_k]
def _filter_venues(self, venues: List[Dict], min_rating: float, price_range: str,
max_distance: float, location_context: Dict) -> List[Dict]:
"""Filter venues based on criteria with distance calculation"""
filtered = []
# Get user location if specified in query
user_location = self._get_user_location_from_query_context(location_context)
for venue in venues:
# Rating filter
rating = venue.get('rating')
if rating is None:
rating = 0.0
try:
rating = float(rating)
except (ValueError, TypeError):
rating = 0.0
if rating < min_rating:
continue
# Price range filter
venue_price = str(venue.get('price_level', 'all')).lower()
if price_range != 'all' and venue_price != 'all' and venue_price != price_range:
continue
# Distance filter
if user_location:
venue_location = self._get_venue_coordinates(venue)
if venue_location:
distance = self._calculate_distance(user_location, venue)
if distance is not None and distance <= max_distance:
venue['calculated_distance'] = distance
filtered.append(venue)
else:
# If venue has no coordinates but has exact location match (street-based search),
# include it anyway since it was found via street matching
if venue.get('exact_location_match', False):
venue['calculated_distance'] = None # Mark as no distance data
filtered.append(venue)
# Otherwise exclude venues without coordinates when location is specified
else:
# If no location in query, add all venues that pass other filters
filtered.append(venue)
return filtered
def _get_user_location_from_query_context(self, location_context: Dict) -> Optional[Tuple[float, float]]:
"""Get user location from extracted query context"""
# Prioritize streets, then landmarks, then districts
for loc_type in ["streets", "landmarks", "districts"]:
if location_context.get(loc_type):
# Use the first identified location of the highest priority type
location_name = location_context[loc_type][0]
return self.street_coordinates.get(location_name)
return None
def _get_venue_coordinates(self, venue: Dict) -> Optional[Tuple[float, float]]:
"""Get coordinates for a venue"""
lat = venue.get('latitude')
lng = venue.get('longitude')
if lat is not None and lng is not None:
try:
return (float(lat), float(lng))
except (ValueError, TypeError):
return None
return None
def _calculate_distance(self, user_location: Tuple[float, float], venue: Dict) -> Optional[float]:
"""Calculate distance in km between user and venue"""
venue_location = self._get_venue_coordinates(venue)
if user_location and venue_location:
return geodesic(user_location, venue_location).kilometers
return None
def _create_enhanced_response(self, venues: List[Dict], language: str, user_query: str, location_context: Dict) -> str:
"""Create an enhanced, user-friendly response with location and category context"""
if not venues:
if language == 'armenian':
return "Ցավոք, ձեր հարցմանը համապատասխանող վենու չի գտնվել: Փորձեք փոխել որոնման պարամետրերը:"
return "Sorry, no venues found matching your criteria. Try adjusting your search parameters."
response_parts = []
# Get intro based on language
intro = self.conversation_templates[language]["recommendation_intros"]
response_parts.append(random.choice(intro))
# Add location context
if location_context["streets"]:
loc_str = self.conversation_templates[language]["location_contexts"]["street"].format(location=location_context["streets"][0])
response_parts.append(f"\n📍 {loc_str}")
elif location_context["landmarks"]:
loc_str = self.conversation_templates[language]["location_contexts"]["landmark"].format(location=location_context["landmarks"][0])
response_parts.append(f"\n📍 {loc_str}")
elif location_context["districts"]:
loc_str = self.conversation_templates[language]["location_contexts"]["district"].format(location=location_context["districts"][0])
response_parts.append(f"\n📍 {loc_str}")
# Add category context
detected_category = self._detect_category(user_query, language)
if detected_category:
category_str = self.conversation_templates[language]["category_matches"].get(detected_category)
if category_str:
response_parts.append(f"🏷️ {category_str}")
for i, venue in enumerate(venues[:5]):
response_parts.append(f"\n{i+1}. {self._format_enhanced_venue_info(venue, language)}")
# Add ending
response_parts.append("\n" + random.choice(self.conversation_templates[language]["endings"]))
return "\n".join(response_parts)
def get_search_explanation(self, query: str, venues: List[Dict]) -> str:
"""Get detailed explanation of search results using RAG system"""
if not venues:
return "No venues found matching your criteria."
# Prepare top venues with RAG explanations
top_venues = []
for venue in venues[:3]:
if 'rag_explanation' in venue:
top_venues.append((venue, venue.get('similarity_score', 0), venue['rag_explanation']))
if top_venues:
return self.rag_enhancer.get_search_explanation(query, top_venues)
else:
return f"Found {len(venues)} venues matching '{query}'"
def _detect_category(self, query: str, language: str) -> Optional[str]:
"""Detect venue category from query, respecting the detected language."""
query_lower = query.lower()
for category, info in self.venue_categories.items():
if language == "armenian":
search_terms = info.get("armenian_terms", []) + info.get("armenian_keywords", [])
else:
search_terms = info.get("keywords", [])
for term in search_terms:
if term.lower() in query_lower:
return category
# If no language-specific match, do a general search
for category, info in self.venue_categories.items():
all_terms = info.get("keywords", []) + info.get("armenian_terms", [])
for term in all_terms:
if term.lower() in query_lower:
return category
return None
def _format_enhanced_venue_info(self, venue: Dict, language: str = "english") -> str:
"""Enhanced venue information formatting with CSV summary, 5-star reviews and metadata"""
if language == "armenian":
info_parts = [f"**{venue['name']}**"]
if venue.get('address'):
info_parts.append(f"📍 {venue['address']}")
# Safe rating display
rating = venue.get('rating')
if rating is not None and rating > 0:
info_parts.append(f"⭐ {rating}")
# Add distance
if venue.get('calculated_distance'):
distance = venue['calculated_distance']
info_parts.append(f"🚗 {distance:.1f} կմ")
# Add category
if venue.get('category'):
category = venue['category']
category_map = {
"pub": "պաբ", "bar": "բար", "restaurant": "ռեստորան",
"cafe": "սրճարան", "club": "ակումբ", "hookah": "հուկա բար"
}
armenian_category = category_map.get(category, category)
info_parts.append(f"🏷️ {armenian_category}")
# Add metadata features (skip common ones for pubs/bars)
features = []
venue_category = venue.get('category', '').lower()
# Only show beer for non-pub/bar venues
if venue.get('serves_beer') and venue_category not in ['pub', 'bar']:
features.append("գարեջուր")
if venue.get('serves_cocktails'): features.append("կոկտեյլ")
if venue.get('live_music'): features.append("կենդանի երաժշտություն")
if venue.get('outdoor_seating'): features.append("բացօթյա նստարան")
if venue.get('good_for_date_night'): features.append("ռոմանտիկ")
if venue.get('good_for_groups'): features.append("խմբերի համար")
if features:
info_parts.append(f"✨ {', '.join(features)}")
# Add comprehensive venue summary from CSV
if venue.get('summary'):
summary = venue['summary']
# Truncate summary for readability but keep much more detail
if len(summary) > 500:
summary = summary[:500] + "..."
info_parts.append(f"📋 {summary}")
# Add 5-star review
venue_name = venue.get('name', '')
if venue_name in self.five_star_reviews:
reviews = self._get_reviews_by_language(venue_name, language)
if reviews:
info_parts.append(f"💬 5⭐ \"{reviews[0][:300]}...\"")
else:
info_parts = [f"**{venue['name']}** - {venue.get('rating', 'N/A')}⭐"]
if venue.get('address'):
info_parts.append(f"📍 {venue['address']}")
# Add distance
if venue.get('calculated_distance'):
distance = venue['calculated_distance']
info_parts.append(f"🚗 {distance:.1f} km away")
# Add category
if venue.get('category'):
info_parts.append(f"🏷️ {venue['category']}")
# Add metadata features (skip common ones for pubs/bars)
features = []
venue_category = venue.get('category', '').lower()
# Only show beer for non-pub/bar venues
if venue.get('serves_beer') and venue_category not in ['pub', 'bar']:
features.append("serves beer")
if venue.get('serves_cocktails'): features.append("cocktails")
if venue.get('live_music'): features.append("live music")
if venue.get('outdoor_seating'): features.append("outdoor seating")
if venue.get('good_for_date_night'): features.append("romantic")
if venue.get('good_for_groups'): features.append("good for groups")
if features:
info_parts.append(f"✨ {', '.join(features)}")
# Add comprehensive venue summary from CSV
if venue.get('summary'):
summary = venue['summary']
# Truncate summary for readability but keep much more detail
if len(summary) > 500:
summary = summary[:500] + "..."
info_parts.append(f"📋 {summary}")
# Add 5-star review
venue_name = venue.get('name', '')
if venue_name in self.five_star_reviews:
reviews = self._get_reviews_by_language(venue_name, language)
if reviews:
info_parts.append(f"💬 5⭐ \"{reviews[0][:300]}...\"")
return "\n".join(info_parts)
def get_enhanced_recommendations(self, user_query: str, min_rating: float = 3.0,
price_range: str = "all", max_distance: float = 10.0) -> Dict:
"""
Enhanced recommendation system with conversational capabilities
Handles both venue queries and casual conversation
"""
# Detect language
language = self._detect_language(user_query)
# Check if this is a venue-related query or casual conversation
is_venue_query = self._is_venue_related_query(user_query)
is_greeting_or_casual = self._detect_greeting_or_casual(user_query)
# Handle conversational queries
if not is_venue_query or is_greeting_or_casual:
conversational_response = self._generate_conversational_response(user_query, language)
# Add to conversation history
self._add_to_conversation_history(user_query, conversational_response)
# Return conversational response format
return {
"language": language,
"query": user_query,
"response_type": "conversational",
"conversational_response": conversational_response,
"venue_suggestions": [],
"total_found": 0,
"is_venue_query": False,
"location_context": {}
}
# Handle venue queries with the existing logic
location_context = self._extract_enhanced_location_context(user_query)
# Perform venue search (full search for comprehensive results)
venues = self._smart_venue_search(user_query, top_k=100)
# Filter venues
filtered_venues = self._filter_venues(venues, min_rating, price_range, max_distance, location_context)
# Create response
response_text = self._create_enhanced_response(filtered_venues, language, user_query, location_context)
# Add venue recommendations to conversation history
self._add_to_conversation_history(user_query, f"Found {len(filtered_venues)} venues. {response_text[:100]}...")
return {
"language": language,
"query": user_query,
"response_type": "venue_recommendation",
"recommended_venues": filtered_venues[:10],
"response_text": response_text,
"total_found": len(filtered_venues),
"location_context": location_context,
"is_venue_query": True
}
def _initialize_conversational_llm(self):
"""Initialize ultra-lightweight conversational system"""
if ULTRA_LIGHTWEIGHT_LLM_AVAILABLE:
try:
logger.info("Initializing ultra-lightweight conversational system...")
self.conversational_llm = UltraLightweightLLM()
logger.info("Successfully initialized ultra-lightweight conversational system")
return
except Exception as e:
logger.warning(f"Failed to initialize ultra-lightweight LLM: {e}")
logger.info("Using template-based responses for optimal performance")
self.conversational_llm = None
def _add_to_conversation_history(self, user_message: str, ai_response: str):
"""Add a user message and AI response to the conversation history"""
self.conversation_history.append({"user": user_message, "ai": ai_response})
# Keep history to a reasonable size
if len(self.conversation_history) > self.max_conversation_history:
self.conversation_history.pop(0)
def _get_conversation_context(self) -> str:
"""Get the recent conversation history as a formatted string"""
context = ""
for turn in self.conversation_history:
context += f"User: {turn['user']}\nAI: {turn['ai']}\n"
return context
def _is_venue_related_query(self, query: str) -> bool:
"""Determine if a query is related to finding venues"""
query_lower = query.lower()
# Keywords that indicate a venue search
venue_keywords = [
'find', 'where', 'recommend', 'any', 'good', 'best', 'search',
'restaurant', 'bar', 'pub', 'cafe', 'club', 'hookah',
'ռեստորան', 'բար', 'պաբ', 'փաբ', 'սրճարան', 'ակումբ', 'հուկա',
'գտնել', 'որտեղ', 'խորհուրդ', 'կա', 'լավ'
]
# Location keywords
location_keywords = [
'street', 'avenue', 'square', 'near', 'on', 'at',
'փողոց', 'պողոտա', 'հրապարակ', 'մոտ'
]
# Check for venue keywords
if any(keyword in query_lower for keyword in venue_keywords):
return True
# Check for location keywords
if any(keyword in query_lower for keyword in location_keywords):
return True
# Check against the known streets and landmarks
for street_info in self.yerevan_streets.values():
for variations in street_info.values():
if any(variation.lower() in query_lower for variation in variations):
return True
return False
def _generate_conversational_response(self, query: str, language: str) -> str:
"""Generate a conversational response using the LLM or templates"""
if not self.conversational_llm:
return self._generate_template_response(query, language)
try:
# Check if this is the new lightweight model
if hasattr(self.conversational_llm, 'generate_response'):
# Use the lightweight model's generate_response method
return self.conversational_llm.generate_response("", query, max_length=100)
else:
# Legacy llama-cpp model
context = self._get_conversation_context()
if language == 'armenian':
prompt = f"""You are a helpful assistant for Yerevan, Armenia. Be brief and friendly.
User: {query}
Assistant:"""
else:
prompt = f"""You are a helpful assistant for Yerevan, Armenia. Be brief and friendly.
User: {query}
Assistant:"""
response = self.conversational_llm(
prompt,
max_tokens=50,
stop=["User:", "Assistant:", "\n"],
temperature=0.7,
echo=False,
)
generated_text = response['choices'][0]['text'].strip()
return generated_text if generated_text else self._generate_template_response(query, language)
except Exception as e:
logger.error(f"Error generating conversational response: {e}")
return self._generate_template_response(query, language)
def _generate_template_response(self, query: str, language: str) -> str:
"""Generate template-based responses when LLM is not available"""
query_lower = query.lower()
# Greeting responses
if any(word in query_lower for word in ['hi', 'hello', 'hey', 'բարև', 'ողջույն']):
if language == "armenian":
return "Բարև ձեզ! Ես Երևանի վենուների ուղեցույցն եմ: Ինչ եք փնտրում?"
return "Hello! I'm your Yerevan venue guide. What are you looking for?"
# How are you responses
if any(phrase in query_lower for phrase in ['how are you', 'ինչպես ես', 'ոնց ես']):
if language == "armenian":
return "Շնորհակալություն հարցնելու համար! Ես պատրաստ եմ օգնել ձեզ գտնել լավագույն վայրերը Երևանում:"
return "Thanks for asking! I'm ready to help you find the best venues in Yerevan!"
# What can you do responses
if any(phrase in query_lower for phrase in ['what can you', 'ինչ կարող ես', 'քո մասին']):
if language == "armenian":
return "Ես կարող եմ օգնել ձեզ գտնել ռեստորաններ, բարեր, սրճարաններ և այլ վայրեր Երևանում: Ինչ եք փնտրում?"
return "I can help you find restaurants, bars, cafes and other venues in Yerevan! What are you looking for?"
# Thanks responses
if any(word in query_lower for word in ['thanks', 'thank you', 'շնորհակալություն']):
if language == "armenian":
return "Խնդրեմ! Ուրախ եմ, որ կարողացա օգնել:"
return "You're welcome! Happy to help!"
# Default responses
if language == "armenian":
return "Ես կարող եմ օգնել ձեզ գտնել վայրեր Երևանում: Ինչ եք փնտրում?"
return "I can help you find venues in Yerevan! What are you looking for?"
def _detect_greeting_or_casual(self, query: str) -> bool:
"""Detect if the query is a greeting or casual conversation"""
casual_patterns = [
# English
r'\b(hi|hello|hey|good morning|good evening|how are you|what\'s up|thanks|thank you)\b',
r'\b(who are you|what can you do|help|about you)\b',
# Armenian
r'\b(բարև|ողջույն|բարի լույս|բարի երեկո|ինչպես ես|ինչ կա|շնորհակալություն)\b',
r'\b(ով ես|ինչ կարող ես|օգնություն|քո մասին)\b'
]
query_lower = query.lower()
for pattern in casual_patterns:
if re.search(pattern, query_lower):
return True
return False
def _merge_geo_data(self) -> Dict[str, Tuple[float, float]]:
"""Merge existing street coordinates with comprehensive RAG geo data"""
# Start with existing coordinates
merged_coords = {
# Major streets with approximate center coordinates (lat, lng)
"Mashtots Avenue": (40.1845, 44.5117),
"Abovyan Street": (40.1776, 44.5146),
"Saryan Street": (40.1851, 44.5086),
"Tumanyan Street": (40.1822, 44.5149),
"Amiryan Street": (40.1798, 44.5139),
"Pushkin Street": (40.1774, 44.5154),
"Khorenatsi Street": (40.1751, 44.5181),
"Teryan Street": (40.1828, 44.5163),
"Paronyan Street": (40.1812, 44.5134),
"Northern Avenue": (40.1792, 44.5146),
"Sayat Nova Avenue": (40.1834, 44.5098),
"Baghramyan Avenue": (40.1951, 44.5089),
"Vazgen Sargsyan Street": (40.1823, 44.5201),
"Tigran Mets Avenue": (40.1743, 44.5289),
"Nalbandyan Street": (40.1800, 44.5182),
# Districts (approximate centers)
"Kentron": (40.1792, 44.5146),
"Arabkir": (40.2089, 44.4856),
"Avan": (40.2156, 44.5489),
"Davtashen": (40.2267, 44.4567),
"Erebuni": (40.1345, 44.5234),
# Landmarks
"Republic Square": (40.1761, 44.5126),
"Opera House": (40.1836, 44.5098),
"Cascade": (40.1876, 44.5086),
"Swan Lake": (40.1837, 44.5135),
"Blue Mosque": (40.1733, 44.5151)
}
# Add comprehensive geo data from RAG enhancer
for landmark, data in self.rag_enhancer.geo_landmarks.items():
merged_coords[landmark] = data["coords"]
# Also add primary aliases for better matching
for alias in data["aliases"][:2]: # Add first 2 aliases
if alias not in merged_coords:
merged_coords[alias] = data["coords"]
logger.info(f"Merged geo data: {len(merged_coords)} locations available")
return merged_coords
# Global AI instance
ai_instance = None
def initialize_ai():
"""Initialize the global AI instance"""
global ai_instance
if ai_instance is None:
try:
# Initialize with the data paths
venues_json = "yerevan_pubs_bars_20250623_193205.json"
venues_csv = "yerevan_venues_structured.csv"
# Check if files exist
import os
if not os.path.exists(venues_json):
raise FileNotFoundError(f"Venue JSON file not found: {venues_json}")
if not os.path.exists(venues_csv):
raise FileNotFoundError(f"Venue CSV file not found: {venues_csv}")
logger.info("Creating CompleteYerevanVenueAI instance...")
ai_instance = CompleteYerevanVenueAI(venues_json, venues_csv)
logger.info("Initializing venue data...")
ai_instance.initialize()
logger.info("Global AI instance initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize AI instance: {e}")
ai_instance = None
raise e
return ai_instance
def get_recommendations(query, min_rating, price_range, max_distance):
"""Gradio interface function with conversational support"""
global ai_instance
if not query.strip():
return "Please enter a question or venue request."
# Ensure AI instance is initialized
if ai_instance is None:
try:
initialize_ai()
except Exception as e:
logger.error(f"Failed to initialize AI: {e}")
return f"Sorry, I'm having trouble starting up. Error: {str(e)}"
# Double check AI instance exists
if ai_instance is None:
return "Sorry, the AI system is not available right now. Please try again later."
try:
# Get recommendations (handles both conversational and venue queries)
result = ai_instance.get_enhanced_recommendations(
user_query=query,
min_rating=min_rating,
price_range=price_range,
max_distance=max_distance
)
# Handle conversational responses
if result.get("response_type") == "conversational":
return result["conversational_response"]
# Handle venue recommendations
elif result.get("response_type") == "venue_recommendation":
return result["response_text"]
# Fallback
else:
return "I can help you find venues in Yerevan or have a casual conversation. What would you like to know?"
except Exception as e:
logger.error(f"Error in get_recommendations: {e}")
return f"Sorry, I encountered an error: {str(e)}"
def create_gradio_interface():
"""Create enhanced Gradio interface with conversational capabilities"""
with gr.Blocks(
title=" Yerevan Venue AI Assistant",
theme=gr.themes.Soft(),
css="""
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
}
.gr-button-primary {
background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
border: none;
}
"""
) as interface:
gr.Markdown("""
# Yerevan Venue AI Assistant
### Your Conversational Guide to Yerevan's Best Venues
I can help you with:
- 🍽️ **Restaurant & Bar Recommendations** - Find the perfect dining spot
- 🗺️ **Location-Based Search** - Venues near specific streets or landmarks
- 💬 **Casual Conversation** - Ask me anything or just say hello!
- **Bilingual Support** - Chat in Armenian or English
**Examples:**
- "Hello! How are you?"
- "Find me a good pub on Pushkin Street"
- "բարեր Մաշտոցի մոտ" (bars near Mashtots)
- "What can you help me with?"
""")
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(
label="💬 Ask me anything or request venue recommendations",
placeholder="Try: 'Hello!' or 'Find me a restaurant near Opera House' or 'բարեր Պուշկին փողոցում'",
lines=2
)
with gr.Row():
min_rating = gr.Slider(
minimum=0, maximum=5, value=3.0, step=0.1,
label="⭐ Minimum Rating (for venue searches)"
)
max_distance = gr.Slider(
minimum=0.5, maximum=20, value=5.0, step=0.5,
label="📍 Max Distance (km, for venue searches)"
)
price_range = gr.Radio(
choices=["all", "budget", "mid", "expensive"],
value="all",
label="💰 Price Range (for venue searches)"
)
search_btn = gr.Button("🔍 Chat / Search", variant="primary", size="lg")
with gr.Column(scale=2):
gr.Markdown("""
### 💡 Tips:
- **Start a conversation**: "Hi", "Hello", "How are you?"
- **Ask about me**: "What can you do?", "Who are you?"
- **Get venue help**: "Find restaurants", "Bars near Opera"
- **Use Armenian**: "բարև", "ռեստորան", "բար"
- **Be specific**: Include location, cuisine type, or atmosphere
### 🗺️ Known Locations:
Pushkin Street, Mashtots Avenue, Saryan Street, Republic Square, Opera House, Cascade, Northern Avenue, Nalbandyan Street
""")
output = gr.Textbox(
label="🤖 AI Response",
lines=15,
max_lines=20,
show_copy_button=True
)
# Examples for quick testing
gr.Examples(
examples=[
["Hello! How are you today?"],
["What can you help me with?"],
["Find me a good pub with draft beer"],
["Restaurants near Opera House"],
["բարև ձեզ, ինչպես եք?"],
["բարեր Պուշկին փողոցում"],
["pubs on Nalbandyan street"],
["Thanks for your help!"]
],
inputs=[query_input],
label="💬 Try these examples:"
)
def handle_submit(query, min_rating, price_range, max_distance):
return get_recommendations(query, min_rating, price_range, max_distance)
search_btn.click(
fn=handle_submit,
inputs=[query_input, min_rating, price_range, max_distance],
outputs=output
)
query_input.submit(
fn=handle_submit,
inputs=[query_input, min_rating, price_range, max_distance],
outputs=output
)
return interface
if __name__ == "__main__":
print("Launching Yerevan Venue AI Assistant with Conversational Capabilities...")
# Initialize the AI system
initialize_ai()
# Create and launch Gradio interface
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7861,
share=True,
show_error=True
)
|