Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- lightweight_conversational_llm.py +75 -0
- requirements.txt +4 -1
- venue_ai_complete.py +59 -53
lightweight_conversational_llm.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 3 |
+
import logging
|
| 4 |
+
|
| 5 |
+
class LightweightConversationalLLM:
|
| 6 |
+
def __init__(self, model_name="HuggingFaceTB/SmolLM-1.7B-Instruct"):
|
| 7 |
+
self.model_name = model_name
|
| 8 |
+
self.model = None
|
| 9 |
+
self.tokenizer = None
|
| 10 |
+
self.setup_model()
|
| 11 |
+
|
| 12 |
+
def setup_model(self):
|
| 13 |
+
try:
|
| 14 |
+
# Configure 4-bit quantization for memory efficiency
|
| 15 |
+
quantization_config = BitsAndBytesConfig(
|
| 16 |
+
load_in_4bit=True,
|
| 17 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 18 |
+
bnb_4bit_use_double_quant=True,
|
| 19 |
+
bnb_4bit_quant_type="nf4"
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Load model with quantization
|
| 23 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
self.model_name,
|
| 25 |
+
quantization_config=quantization_config,
|
| 26 |
+
device_map="auto",
|
| 27 |
+
torch_dtype=torch.bfloat16,
|
| 28 |
+
trust_remote_code=True
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 32 |
+
if self.tokenizer.pad_token is None:
|
| 33 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 34 |
+
|
| 35 |
+
logging.info(f"Successfully loaded {self.model_name}")
|
| 36 |
+
|
| 37 |
+
except Exception as e:
|
| 38 |
+
logging.warning(f"Failed to load {self.model_name}: {e}")
|
| 39 |
+
self.model = None
|
| 40 |
+
self.tokenizer = None
|
| 41 |
+
|
| 42 |
+
def generate_response(self, venue_context, user_query, max_length=200):
|
| 43 |
+
if not self.model or not self.tokenizer:
|
| 44 |
+
return "I can help you find venues, but conversational features are currently unavailable."
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
# Create a focused prompt for venue recommendations
|
| 48 |
+
prompt = f"""You are a helpful Yerevan venue assistant. Based on the venue information provided, give a brief, friendly response.
|
| 49 |
+
|
| 50 |
+
Venue Context: {venue_context[:500]}...
|
| 51 |
+
|
| 52 |
+
User: {user_query}
|
| 53 |
+
Assistant:"""
|
| 54 |
+
|
| 55 |
+
inputs = self.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 56 |
+
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
outputs = self.model.generate(
|
| 59 |
+
inputs,
|
| 60 |
+
max_new_tokens=max_length,
|
| 61 |
+
temperature=0.7,
|
| 62 |
+
do_sample=True,
|
| 63 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 64 |
+
no_repeat_ngram_size=3
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 68 |
+
# Extract only the assistant's response
|
| 69 |
+
assistant_response = response.split("Assistant:")[-1].strip()
|
| 70 |
+
|
| 71 |
+
return assistant_response[:max_length] if len(assistant_response) > max_length else assistant_response
|
| 72 |
+
|
| 73 |
+
except Exception as e:
|
| 74 |
+
logging.error(f"Error generating response: {e}")
|
| 75 |
+
return "I found the venues you requested, but had trouble generating a conversational response."
|
requirements.txt
CHANGED
|
@@ -5,4 +5,7 @@ geopy>=2.3.0
|
|
| 5 |
scikit-learn>=1.3.0
|
| 6 |
regex>=2023.6.3
|
| 7 |
huggingface_hub>=0.20.0
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
scikit-learn>=1.3.0
|
| 6 |
regex>=2023.6.3
|
| 7 |
huggingface_hub>=0.20.0
|
| 8 |
+
transformers>=4.35.0
|
| 9 |
+
torch>=2.0.0
|
| 10 |
+
accelerate>=0.20.0
|
| 11 |
+
bitsandbytes>=0.41.0
|
venue_ai_complete.py
CHANGED
|
@@ -30,6 +30,15 @@ except Exception as e:
|
|
| 30 |
# Import the lightweight RAG enhancer
|
| 31 |
from lightweight_rag import LightweightRAGEnhancer
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
class CompleteYerevanVenueAI:
|
| 34 |
"""
|
| 35 |
Complete Bilingual (Armenian/English) AI Assistant for Yerevan Venue Recommendations
|
|
@@ -882,55 +891,47 @@ class CompleteYerevanVenueAI:
|
|
| 882 |
}
|
| 883 |
|
| 884 |
def _initialize_conversational_llm(self):
|
| 885 |
-
"""Initialize
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 889 |
|
| 890 |
-
|
| 891 |
-
|
| 892 |
try:
|
| 893 |
from huggingface_hub import hf_hub_download
|
| 894 |
logger.info("Downloading TinyLlama model from Hugging Face Hub...")
|
| 895 |
|
| 896 |
-
# Download smaller, CPU-optimized model
|
| 897 |
model_path = hf_hub_download(
|
| 898 |
repo_id="TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 899 |
filename="tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
| 900 |
cache_dir="./model_cache"
|
| 901 |
)
|
| 902 |
|
| 903 |
-
|
| 904 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 905 |
|
| 906 |
except Exception as e:
|
| 907 |
-
logger.
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
for model_path in model_paths:
|
| 913 |
-
try:
|
| 914 |
-
logger.info(f"Attempting to load conversational model: {model_path}")
|
| 915 |
-
self.conversational_llm = Llama(
|
| 916 |
-
model_path=model_path,
|
| 917 |
-
n_ctx=1024, # Smaller context window for CPU
|
| 918 |
-
n_threads=2, # Limit CPU threads
|
| 919 |
-
n_gpu_layers=0, # CPU only
|
| 920 |
-
verbose=False,
|
| 921 |
-
use_mmap=True, # Memory mapping for efficiency
|
| 922 |
-
use_mlock=False # Don't lock memory
|
| 923 |
-
)
|
| 924 |
-
logger.info(f"Successfully loaded TinyLlama model: {model_path}")
|
| 925 |
-
return # Exit after successful load
|
| 926 |
-
except Exception as e:
|
| 927 |
-
logger.warning(f"Failed to load model {model_path}: {e}")
|
| 928 |
-
|
| 929 |
-
logger.error("Could not load any conversational model. Using template responses.")
|
| 930 |
-
|
| 931 |
-
except Exception as e:
|
| 932 |
-
logger.error(f"Error initializing conversational LLM: {e}")
|
| 933 |
-
self.conversational_llm = None
|
| 934 |
|
| 935 |
def _add_to_conversation_history(self, user_message: str, ai_response: str):
|
| 936 |
"""Add a user message and AI response to the conversation history"""
|
|
@@ -986,28 +987,33 @@ class CompleteYerevanVenueAI:
|
|
| 986 |
return self._generate_template_response(query, language)
|
| 987 |
|
| 988 |
try:
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 994 |
User: {query}
|
| 995 |
Assistant:"""
|
| 996 |
-
|
| 997 |
-
|
| 998 |
User: {query}
|
| 999 |
Assistant:"""
|
| 1000 |
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
|
| 1008 |
-
|
| 1009 |
-
|
| 1010 |
-
|
| 1011 |
|
| 1012 |
except Exception as e:
|
| 1013 |
logger.error(f"Error generating conversational response: {e}")
|
|
|
|
| 30 |
# Import the lightweight RAG enhancer
|
| 31 |
from lightweight_rag import LightweightRAGEnhancer
|
| 32 |
|
| 33 |
+
# Import lightweight conversational LLM
|
| 34 |
+
try:
|
| 35 |
+
from lightweight_conversational_llm import LightweightConversationalLLM
|
| 36 |
+
LIGHTWEIGHT_LLM_AVAILABLE = True
|
| 37 |
+
logger.info("Lightweight conversational LLM available")
|
| 38 |
+
except ImportError as e:
|
| 39 |
+
logger.warning(f"Lightweight conversational LLM not available: {e}")
|
| 40 |
+
LIGHTWEIGHT_LLM_AVAILABLE = False
|
| 41 |
+
|
| 42 |
class CompleteYerevanVenueAI:
|
| 43 |
"""
|
| 44 |
Complete Bilingual (Armenian/English) AI Assistant for Yerevan Venue Recommendations
|
|
|
|
| 891 |
}
|
| 892 |
|
| 893 |
def _initialize_conversational_llm(self):
|
| 894 |
+
"""Initialize conversational LLM with lightweight model preferred"""
|
| 895 |
+
# Try lightweight transformers-based model first (no compilation needed)
|
| 896 |
+
if LIGHTWEIGHT_LLM_AVAILABLE:
|
| 897 |
+
try:
|
| 898 |
+
logger.info("Initializing lightweight conversational LLM...")
|
| 899 |
+
self.conversational_llm = LightweightConversationalLLM()
|
| 900 |
+
logger.info("Successfully initialized lightweight conversational LLM")
|
| 901 |
+
return
|
| 902 |
+
except Exception as e:
|
| 903 |
+
logger.warning(f"Failed to initialize lightweight LLM: {e}")
|
| 904 |
|
| 905 |
+
# Legacy llama-cpp fallback (if available)
|
| 906 |
+
if LLAMA_CPP_AVAILABLE:
|
| 907 |
try:
|
| 908 |
from huggingface_hub import hf_hub_download
|
| 909 |
logger.info("Downloading TinyLlama model from Hugging Face Hub...")
|
| 910 |
|
|
|
|
| 911 |
model_path = hf_hub_download(
|
| 912 |
repo_id="TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 913 |
filename="tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
| 914 |
cache_dir="./model_cache"
|
| 915 |
)
|
| 916 |
|
| 917 |
+
from llama_cpp import Llama
|
| 918 |
+
self.conversational_llm = Llama(
|
| 919 |
+
model_path=model_path,
|
| 920 |
+
n_ctx=1024,
|
| 921 |
+
n_threads=2,
|
| 922 |
+
n_gpu_layers=0,
|
| 923 |
+
verbose=False,
|
| 924 |
+
use_mmap=True,
|
| 925 |
+
use_mlock=False
|
| 926 |
+
)
|
| 927 |
+
logger.info("Successfully loaded legacy TinyLlama model")
|
| 928 |
+
return
|
| 929 |
|
| 930 |
except Exception as e:
|
| 931 |
+
logger.warning(f"Failed to initialize legacy conversational LLM: {e}")
|
| 932 |
+
|
| 933 |
+
logger.info("No conversational LLM available, using template-based responses")
|
| 934 |
+
self.conversational_llm = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 935 |
|
| 936 |
def _add_to_conversation_history(self, user_message: str, ai_response: str):
|
| 937 |
"""Add a user message and AI response to the conversation history"""
|
|
|
|
| 987 |
return self._generate_template_response(query, language)
|
| 988 |
|
| 989 |
try:
|
| 990 |
+
# Check if this is the new lightweight model
|
| 991 |
+
if hasattr(self.conversational_llm, 'generate_response'):
|
| 992 |
+
# Use the lightweight model's generate_response method
|
| 993 |
+
return self.conversational_llm.generate_response("", query, max_length=100)
|
| 994 |
+
else:
|
| 995 |
+
# Legacy llama-cpp model
|
| 996 |
+
context = self._get_conversation_context()
|
| 997 |
+
|
| 998 |
+
if language == 'armenian':
|
| 999 |
+
prompt = f"""You are a helpful assistant for Yerevan, Armenia. Be brief and friendly.
|
| 1000 |
User: {query}
|
| 1001 |
Assistant:"""
|
| 1002 |
+
else:
|
| 1003 |
+
prompt = f"""You are a helpful assistant for Yerevan, Armenia. Be brief and friendly.
|
| 1004 |
User: {query}
|
| 1005 |
Assistant:"""
|
| 1006 |
|
| 1007 |
+
response = self.conversational_llm(
|
| 1008 |
+
prompt,
|
| 1009 |
+
max_tokens=50,
|
| 1010 |
+
stop=["User:", "Assistant:", "\n"],
|
| 1011 |
+
temperature=0.7,
|
| 1012 |
+
echo=False,
|
| 1013 |
+
)
|
| 1014 |
+
|
| 1015 |
+
generated_text = response['choices'][0]['text'].strip()
|
| 1016 |
+
return generated_text if generated_text else self._generate_template_response(query, language)
|
| 1017 |
|
| 1018 |
except Exception as e:
|
| 1019 |
logger.error(f"Error generating conversational response: {e}")
|