Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- .gitattributes +1 -0
- README.md +79 -5
- app.py +54 -0
- requirements.txt +9 -0
- venue_ai_complete.py +1253 -0
- yerevan_pubs_bars_20250623_193205.json +3 -0
- yerevan_venues_structured.csv +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
yerevan_pubs_bars_20250623_193205.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,86 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.34.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Yerevan Venue AI Assistant
|
| 3 |
+
emoji: 🍽️
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.34.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# 🇦🇲 Yerevan Venue AI Assistant
|
| 14 |
+
|
| 15 |
+
A bilingual (Armenian & English) conversational AI assistant that helps you discover the best venues in Yerevan, Armenia. This system combines comprehensive venue data with conversational AI capabilities to provide personalized recommendations and engage in casual conversation.
|
| 16 |
+
|
| 17 |
+
## 🌟 Features
|
| 18 |
+
|
| 19 |
+
### 🍽️ Venue Recommendations
|
| 20 |
+
- **958 Venues**: Comprehensive database of restaurants, bars, pubs, cafes, and clubs
|
| 21 |
+
- **5-Star Reviews**: Integrated reviews from 727 venues with 5-star ratings
|
| 22 |
+
- **Smart Filtering**: Filter by rating, price range, and distance
|
| 23 |
+
- **Location-Aware**: Search by specific streets, landmarks, and districts
|
| 24 |
+
|
| 25 |
+
### 🗺️ Street-Aware Location Recognition
|
| 26 |
+
- **Major Streets**: Pushkin Street, Mashtots Avenue, Saryan Street, Nalbandyan Street
|
| 27 |
+
- **Landmarks**: Opera House, Republic Square, Cascade, Northern Avenue
|
| 28 |
+
- **Distance Calculation**: Accurate distance measurements from user location
|
| 29 |
+
- **Bilingual Location Support**: Recognize locations in both Armenian and English
|
| 30 |
+
|
| 31 |
+
### 💬 Conversational AI
|
| 32 |
+
- **Natural Conversations**: Engage in casual chat and small talk
|
| 33 |
+
- **Bilingual Support**: Communicate in Armenian (Հայերեն) or English
|
| 34 |
+
- **Template-Based Responses**: Fast, contextual responses
|
| 35 |
+
- **Smart Query Detection**: Automatically detects venue requests vs casual conversation
|
| 36 |
+
|
| 37 |
+
### 🇦🇲 Armenian Language Support
|
| 38 |
+
- **Native Armenian**: Full support for Armenian text input and output
|
| 39 |
+
- **Cultural Context**: Understanding of Armenian venue culture and preferences
|
| 40 |
+
- **Bilingual Categories**: Recognize venue types in both languages (փաբ, ռեստորան, բար, etc.)
|
| 41 |
+
|
| 42 |
+
## 🚀 How to Use
|
| 43 |
+
|
| 44 |
+
### Venue Recommendations
|
| 45 |
+
```
|
| 46 |
+
"Find me a good pub on Pushkin Street"
|
| 47 |
+
"Restaurants near Opera House with rating above 4"
|
| 48 |
+
"բարեր Մաշտոցի պողոտայում" (bars on Mashtots Avenue)
|
| 49 |
+
"փաբեր Նալբանդյան փողոցում" (pubs on Nalbandyan Street)
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
### Casual Conversation
|
| 53 |
+
```
|
| 54 |
+
"Hello! How are you?"
|
| 55 |
+
"What can you help me with?"
|
| 56 |
+
"բարև ձեզ, ինչպես եք?" (Hello, how are you?)
|
| 57 |
+
"Thanks for your help!"
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
### Location-Based Queries
|
| 61 |
+
```
|
| 62 |
+
"Any good restaurants near Cascade?"
|
| 63 |
+
"Bars on Saryan Street"
|
| 64 |
+
"սրճարաններ Հանրապետության հրապարակի մոտ" (cafes near Republic Square)
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## 🎯 Advanced Features
|
| 68 |
+
|
| 69 |
+
### Smart Filtering Options
|
| 70 |
+
- **Minimum Rating**: 0-5 stars (default: 3.0)
|
| 71 |
+
- **Price Range**: Budget, Mid-range, Expensive, or All
|
| 72 |
+
- **Maximum Distance**: 0.5-20 km from specified location
|
| 73 |
+
|
| 74 |
+
### Conversation History
|
| 75 |
+
- Maintains context across multiple interactions
|
| 76 |
+
- Remembers previous questions and preferences
|
| 77 |
+
- Provides personalized follow-up recommendations
|
| 78 |
+
|
| 79 |
+
### Multilingual Query Processing
|
| 80 |
+
- Automatically detects input language
|
| 81 |
+
- Provides responses in the same language as the query
|
| 82 |
+
- Supports mixed-language conversations
|
| 83 |
+
|
| 84 |
+
---
|
| 85 |
+
|
| 86 |
+
*Built with ❤️ for the Yerevan community. Combining traditional Armenian hospitality with modern AI technology.*
|
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Yerevan Venue AI Assistant - Hugging Face Spaces Deployment
|
| 4 |
+
Main application entry point
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
import logging
|
| 10 |
+
from venue_ai_complete import CompleteYerevanVenueAI, create_gradio_interface, initialize_ai
|
| 11 |
+
|
| 12 |
+
# Set up logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
def main():
|
| 17 |
+
"""Main application entry point for Hugging Face Spaces"""
|
| 18 |
+
|
| 19 |
+
print("🚀 Starting Yerevan Venue AI Assistant...")
|
| 20 |
+
print("📍 Bilingual support: Armenian & English")
|
| 21 |
+
print("🗺️ Street-aware location recognition")
|
| 22 |
+
print("⭐ 5-star review integration")
|
| 23 |
+
print("🔧 Advanced filtering options")
|
| 24 |
+
print("🎯 Smart venue recommendations")
|
| 25 |
+
print("💬 Conversational AI capabilities")
|
| 26 |
+
print("-" * 50)
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
# Initialize the AI system
|
| 30 |
+
logger.info("Initializing AI system...")
|
| 31 |
+
initialize_ai()
|
| 32 |
+
logger.info("AI system initialized successfully!")
|
| 33 |
+
|
| 34 |
+
# Create and launch Gradio interface
|
| 35 |
+
logger.info("Creating Gradio interface...")
|
| 36 |
+
interface = create_gradio_interface()
|
| 37 |
+
|
| 38 |
+
# Launch with Hugging Face Spaces configuration
|
| 39 |
+
logger.info("Launching application...")
|
| 40 |
+
interface.launch(
|
| 41 |
+
server_name="0.0.0.0",
|
| 42 |
+
server_port=7860,
|
| 43 |
+
share=False, # HF Spaces handles sharing
|
| 44 |
+
show_error=True,
|
| 45 |
+
quiet=False
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
except Exception as e:
|
| 49 |
+
logger.error(f"Failed to start application: {e}")
|
| 50 |
+
print(f"❌ Error: {e}")
|
| 51 |
+
sys.exit(1)
|
| 52 |
+
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
pandas>=2.0.0
|
| 3 |
+
numpy>=1.24.0
|
| 4 |
+
geopy>=2.3.0
|
| 5 |
+
scikit-learn>=1.3.0
|
| 6 |
+
regex>=2023.6.3
|
| 7 |
+
--index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
|
| 8 |
+
llama-cpp-python==0.2.90
|
| 9 |
+
huggingface_hub>=0.20.0
|
venue_ai_complete.py
ADDED
|
@@ -0,0 +1,1253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gzip
|
| 2 |
+
import json
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import List, Dict, Optional, Tuple
|
| 6 |
+
import logging
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
import re
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import random
|
| 11 |
+
from geopy.distance import geodesic
|
| 12 |
+
|
| 13 |
+
# Add conversational LLM support
|
| 14 |
+
try:
|
| 15 |
+
from llama_cpp import Llama
|
| 16 |
+
LLAMA_CPP_AVAILABLE = True
|
| 17 |
+
except ImportError:
|
| 18 |
+
LLAMA_CPP_AVAILABLE = False
|
| 19 |
+
logging.basicConfig(level=logging.INFO)
|
| 20 |
+
logger = logging.getLogger(__name__)
|
| 21 |
+
|
| 22 |
+
class CompleteYerevanVenueAI:
|
| 23 |
+
"""
|
| 24 |
+
Complete Bilingual (Armenian/English) AI Assistant for Yerevan Venue Recommendations
|
| 25 |
+
With enhanced templates, location parsing, filtering, distance calculation and metadata usage
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, venues_json_path: str, venues_csv_path: str):
|
| 29 |
+
self.venues_json_path = venues_json_path
|
| 30 |
+
self.venues_csv_path = venues_csv_path
|
| 31 |
+
|
| 32 |
+
# Core data
|
| 33 |
+
self.venues_data = []
|
| 34 |
+
self.venues_structured = None
|
| 35 |
+
self.five_star_reviews = {}
|
| 36 |
+
|
| 37 |
+
# Conversational LLM
|
| 38 |
+
self.conversational_llm = None
|
| 39 |
+
self.conversation_history = []
|
| 40 |
+
self.max_conversation_history = 10
|
| 41 |
+
|
| 42 |
+
# Enhanced location and category knowledge
|
| 43 |
+
self.yerevan_streets = self._initialize_enhanced_street_knowledge()
|
| 44 |
+
self.venue_categories = self._initialize_category_knowledge()
|
| 45 |
+
self.conversation_templates = self._initialize_enhanced_conversation_templates()
|
| 46 |
+
|
| 47 |
+
# Street coordinates for distance calculation
|
| 48 |
+
self.street_coordinates = self._initialize_street_coordinates()
|
| 49 |
+
|
| 50 |
+
logger.info("Initialized Complete YerevanVenueAI with distance calculation and conversational capabilities")
|
| 51 |
+
|
| 52 |
+
def _initialize_street_coordinates(self) -> Dict[str, Tuple[float, float]]:
|
| 53 |
+
"""Initialize street coordinates for distance calculation"""
|
| 54 |
+
return {
|
| 55 |
+
# Major streets with approximate center coordinates (lat, lng)
|
| 56 |
+
"Mashtots Avenue": (40.1845, 44.5117),
|
| 57 |
+
"Abovyan Street": (40.1776, 44.5146),
|
| 58 |
+
"Saryan Street": (40.1851, 44.5086),
|
| 59 |
+
"Tumanyan Street": (40.1822, 44.5149),
|
| 60 |
+
"Amiryan Street": (40.1798, 44.5139),
|
| 61 |
+
"Pushkin Street": (40.1774, 44.5154),
|
| 62 |
+
"Khorenatsi Street": (40.1751, 44.5181),
|
| 63 |
+
"Teryan Street": (40.1828, 44.5163),
|
| 64 |
+
"Paronyan Street": (40.1812, 44.5134),
|
| 65 |
+
"Northern Avenue": (40.1792, 44.5146),
|
| 66 |
+
"Sayat Nova Avenue": (40.1834, 44.5098),
|
| 67 |
+
"Baghramyan Avenue": (40.1951, 44.5089),
|
| 68 |
+
"Vazgen Sargsyan Street": (40.1823, 44.5201),
|
| 69 |
+
"Tigran Mets Avenue": (40.1743, 44.5289),
|
| 70 |
+
"Nalbandyan Street": (40.1800, 44.5182),
|
| 71 |
+
# Districts (approximate centers)
|
| 72 |
+
"Kentron": (40.1792, 44.5146),
|
| 73 |
+
"Arabkir": (40.2089, 44.4856),
|
| 74 |
+
"Avan": (40.2156, 44.5489),
|
| 75 |
+
"Davtashen": (40.2267, 44.4567),
|
| 76 |
+
"Erebuni": (40.1345, 44.5234),
|
| 77 |
+
# Landmarks
|
| 78 |
+
"Republic Square": (40.1761, 44.5126),
|
| 79 |
+
"Opera House": (40.1836, 44.5098),
|
| 80 |
+
"Cascade": (40.1876, 44.5086),
|
| 81 |
+
"Swan Lake": (40.1837, 44.5135),
|
| 82 |
+
"Blue Mosque": (40.1733, 44.5151)
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
def _initialize_enhanced_street_knowledge(self) -> Dict[str, Dict]:
|
| 86 |
+
"""Enhanced Yerevan geography knowledge with Armenian names"""
|
| 87 |
+
return {
|
| 88 |
+
"streets": {
|
| 89 |
+
"Mashtots Avenue": ["մաշտոցի", "մաշտոց", "mashtots", "mesrop mashtots"],
|
| 90 |
+
"Abovyan Street": ["աբովյանի", "աբովյան", "abovyan"],
|
| 91 |
+
"Saryan Street": ["սարյանի", "սարյան", "saryan", "martiros saryan"],
|
| 92 |
+
"Tumanyan Street": ["թումանյանի", "թումանյան", "tumanyan", "hovhannes tumanyan"],
|
| 93 |
+
"Amiryan Street": ["ամիրյանի", "ամիրյան", "amiryan"],
|
| 94 |
+
"Pushkin Street": ["պուշկինի", "պուշկին", "pushkin"],
|
| 95 |
+
"Khorenatsi Street": ["խորենացի", "խորենաց", "khorenatsi"],
|
| 96 |
+
"Teryan Street": ["տերյանի", "տերյան", "teryan"],
|
| 97 |
+
"Paronyan Street": ["պարոնյանի", "պարոնյան", "paronyan"],
|
| 98 |
+
"Northern Avenue": ["հյուսիսային", "northern", "northern avenue"],
|
| 99 |
+
"Sayat Nova Avenue": ["սայաթ նովա", "sayat nova"],
|
| 100 |
+
"Baghramyan Avenue": ["բաղրամյանի", "բաղրամյան", "baghramyan"],
|
| 101 |
+
"Vazgen Sargsyan Street": ["վազգեն սարգսյանի", "vazgen sargsyan"],
|
| 102 |
+
"Tigran Mets Avenue": ["տիգրան մեծի", "tigran mets"],
|
| 103 |
+
"Nalbandyan Street": ["նալբանդյանի", "նալբանդյան", "nalbandyan"]
|
| 104 |
+
},
|
| 105 |
+
"districts": {
|
| 106 |
+
"Kentron": ["կենտրոն", "կենտրում", "center", "downtown", "central"],
|
| 107 |
+
"Arabkir": ["արաբկիր", "arabkir"],
|
| 108 |
+
"Avan": ["ավան", "avan"],
|
| 109 |
+
"Davtashen": ["դավթաշեն", "davtashen"],
|
| 110 |
+
"Erebuni": ["էրեբունի", "erebuni"],
|
| 111 |
+
"Kanaker-Zeytun": ["կանակեր", "զեյթուն", "kanaker", "zeytun"],
|
| 112 |
+
"Malatia-Sebastia": ["մալաթիա", "սեբաստիա", "malatia", "sebastia"],
|
| 113 |
+
"Nor Nork": ["նոր նորք", "nor nork"],
|
| 114 |
+
"Shengavit": ["շենգավիթ", "shengavit"],
|
| 115 |
+
"Ajapnyak": ["աջափնյակ", "ajapnyak"]
|
| 116 |
+
},
|
| 117 |
+
"landmarks": {
|
| 118 |
+
"Republic Square": ["հանրապետության հրապարակ", "հանրապետության", "republic square", "republic"],
|
| 119 |
+
"Opera House": ["օպերա", "օպերայի տուն", "opera", "opera house"],
|
| 120 |
+
"Cascade": ["կասկադ", "cascade"],
|
| 121 |
+
"Northern Avenue": ["հյուսիսային պողոտա", "northern avenue"],
|
| 122 |
+
"Swan Lake": ["կարապի լիճ", "swan lake"],
|
| 123 |
+
"Vernissage Market": ["վերնիսաժ", "vernissage"],
|
| 124 |
+
"Blue Mosque": ["կապույտ մզկիթ", "blue mosque"],
|
| 125 |
+
"Mother Armenia": ["մայր հայաստան", "mother armenia"],
|
| 126 |
+
"Matenadaran": ["մատենադարան", "matenadaran"],
|
| 127 |
+
"Cascade Complex": ["կասկադային համալիր", "cascade complex"]
|
| 128 |
+
}
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
def _initialize_category_knowledge(self) -> Dict[str, Dict]:
|
| 132 |
+
"""Enhanced category knowledge with Armenian terms and JSON metadata"""
|
| 133 |
+
return {
|
| 134 |
+
"nightlife": {
|
| 135 |
+
"types": ["pub", "bar", "club", "hookah", "night_club"],
|
| 136 |
+
"json_types": ["bar", "night_club"],
|
| 137 |
+
"armenian_terms": ["բար", "պաբ", "փաբ", "փաբեր", "ակումբ", "հուկա", "գիշերային", "ժամանց"],
|
| 138 |
+
"keywords": ["drink", "beer", "cocktail", "party", "night", "dance", "draft", "tap", "alcohol", "whiskey", "vodka", "pub", "bar", "nightclub"],
|
| 139 |
+
"armenian_keywords": ["խմիչք", "գարեջուր", "կոկտեյլ", "պարտի", "գիշեր", "պար", "ալկոհոլ"],
|
| 140 |
+
"metadata_fields": ["serves_beer", "serves_spirits", "serves_cocktails", "serves_wine", "has_bar", "has_happy_hour", "good_for_dancing", "serves_happy_hour_drinks", "serves_late_night_food"]
|
| 141 |
+
},
|
| 142 |
+
"dining": {
|
| 143 |
+
"types": ["restaurant", "cafe", "fast_food", "bakery"],
|
| 144 |
+
"json_types": ["restaurant", "cafe"],
|
| 145 |
+
"armenian_terms": ["ռեստորան", "սրճարան", "արագ սնունդ", "հացագործություն"],
|
| 146 |
+
"keywords": ["food", "eat", "meal", "coffee", "breakfast", "lunch", "dinner", "cuisine", "dining", "restaurant", "cafe"],
|
| 147 |
+
"armenian_keywords": ["ուտելիք", "ուտել", "ճաշ", "սուրճ", "նախաճաշ", "ճաշ", "ընթրիք"],
|
| 148 |
+
"metadata_fields": ["serves_breakfast", "serves_brunch", "serves_lunch", "serves_dinner", "serves_coffee", "serves_dessert", "serves_vegetarian_food", "menu_for_children", "good_for_children", "good_for_groups"]
|
| 149 |
+
},
|
| 150 |
+
"culture": {
|
| 151 |
+
"types": ["cultural", "gallery", "theatre", "museum"],
|
| 152 |
+
"json_types": [],
|
| 153 |
+
"armenian_terms": ["մշակութային", "պատկերասրահ", "թատրոն", "թանգարան"],
|
| 154 |
+
"keywords": ["art", "culture", "museum", "gallery", "theater", "exhibition"],
|
| 155 |
+
"armenian_keywords": ["արվեստ", "մշակույթ", "թանգարան", "ցուցահանդես"],
|
| 156 |
+
"metadata_fields": []
|
| 157 |
+
},
|
| 158 |
+
"entertainment": {
|
| 159 |
+
"types": ["karaoke", "gaming", "music", "cinema"],
|
| 160 |
+
"json_types": [],
|
| 161 |
+
"armenian_terms": ["կարաոկե", "խաղ", "երաժշտություն", "կինո"],
|
| 162 |
+
"keywords": ["music", "karaoke", "game", "entertainment", "fun", "live music"],
|
| 163 |
+
"armenian_keywords": ["երաժշտություն", "կարաոկե", "խաղ", "ժամանց", "զվարճանք"],
|
| 164 |
+
"metadata_fields": ["live_music", "good_for_watching_sports", "good_for_business_meetings", "good_for_date_night"]
|
| 165 |
+
}
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
def _initialize_enhanced_conversation_templates(self) -> Dict[str, Dict]:
|
| 169 |
+
"""Enhanced conversation templates for various scenarios"""
|
| 170 |
+
return {
|
| 171 |
+
"armenian": {
|
| 172 |
+
"greetings": [
|
| 173 |
+
"Բարև ձեզ! Ես ձեր անձնական ուղեցույցն եմ Երևանի լավագույն վայրերի համար:",
|
| 174 |
+
"Ողջույն! Ուրախ եմ օգնել ձեզ հայտնաբերել Երևանի հիանալի վայրերը:",
|
| 175 |
+
"Բարի գալուստ! Ես կօգնեմ ��եզ գտնել կատարյալ վայր Երևանում:"
|
| 176 |
+
],
|
| 177 |
+
"recommendation_intros": [
|
| 178 |
+
"Ձեր հարցման համար ես գտա այս հիանալի վայրերը:",
|
| 179 |
+
"Ահա ինչ կարող եմ առաջարկել ձեզ:",
|
| 180 |
+
"Այս վայրերը կարող են ձեզ հետաքրքրել:"
|
| 181 |
+
],
|
| 182 |
+
"location_contexts": {
|
| 183 |
+
"street": "Դուք փնտրում եք {location} փողոցում:",
|
| 184 |
+
"district": "Դուք փնտրում եք {location} թաղամասում:",
|
| 185 |
+
"landmark": "Դուք փնտրում եք {location} մոտակայքում:"
|
| 186 |
+
},
|
| 187 |
+
"category_matches": {
|
| 188 |
+
"nightlife": "Այս վայրերը հիանալի են գիշերային ժամանցի համար:",
|
| 189 |
+
"dining": "Այս ճաշարանները կամ սրճարանները ձեզ կհավանեն:",
|
| 190 |
+
"culture": "Այս մշակութային վայրերը հետաքրքիր են:",
|
| 191 |
+
"entertainment": "Այս ժամանցային վայրերը զվարճալի են:"
|
| 192 |
+
},
|
| 193 |
+
"endings": [
|
| 194 |
+
"Հուսով եմ, որ կգտնեք կատարյալ տարբերակ!",
|
| 195 |
+
"Բարի ժամանց!",
|
| 196 |
+
"Եթե հարցեր ունեք, ես այստեղ եմ:"
|
| 197 |
+
]
|
| 198 |
+
},
|
| 199 |
+
"english": {
|
| 200 |
+
"greetings": [
|
| 201 |
+
"Hello! I'm your personal guide to the best places in Yerevan:",
|
| 202 |
+
"Welcome! I'm excited to help you discover amazing venues in Yerevan:",
|
| 203 |
+
"Hi there! Let me help you find the perfect spot in Yerevan:"
|
| 204 |
+
],
|
| 205 |
+
"recommendation_intros": [
|
| 206 |
+
"For your query, I found these fantastic venues:",
|
| 207 |
+
"Here's what I can recommend for you:",
|
| 208 |
+
"These places might interest you:"
|
| 209 |
+
],
|
| 210 |
+
"location_contexts": {
|
| 211 |
+
"street": "You're looking on {location}:",
|
| 212 |
+
"district": "You're exploring the {location} district:",
|
| 213 |
+
"landmark": "You're searching near {location}:"
|
| 214 |
+
},
|
| 215 |
+
"category_matches": {
|
| 216 |
+
"nightlife": "These venues are perfect for nightlife:",
|
| 217 |
+
"dining": "These restaurants and cafes will delight you:",
|
| 218 |
+
"culture": "These cultural venues are fascinating:",
|
| 219 |
+
"entertainment": "These entertainment spots are fun:"
|
| 220 |
+
},
|
| 221 |
+
"endings": [
|
| 222 |
+
"I hope you find the perfect match!",
|
| 223 |
+
"Enjoy your visit!",
|
| 224 |
+
"Feel free to ask if you need more recommendations!"
|
| 225 |
+
]
|
| 226 |
+
}
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
def initialize(self):
|
| 230 |
+
"""Initialize the complete venue AI system"""
|
| 231 |
+
logger.info("Loading venue data...")
|
| 232 |
+
self._load_venue_data()
|
| 233 |
+
|
| 234 |
+
logger.info("Processing 5-star reviews...")
|
| 235 |
+
self._process_five_star_reviews()
|
| 236 |
+
|
| 237 |
+
logger.info("Initializing conversational LLM...")
|
| 238 |
+
self._initialize_conversational_llm()
|
| 239 |
+
|
| 240 |
+
logger.info("Complete YerevanVenueAI initialization finished!")
|
| 241 |
+
|
| 242 |
+
def _load_venue_data(self):
|
| 243 |
+
"""Load venue data from JSON and CSV files"""
|
| 244 |
+
with open(self.venues_json_path, 'r', encoding='utf-8') as f:
|
| 245 |
+
self.venues_data = json.load(f)
|
| 246 |
+
|
| 247 |
+
self.venues_structured = pd.read_csv(self.venues_csv_path)
|
| 248 |
+
|
| 249 |
+
logger.info(f"Loaded {len(self.venues_data)} venues from JSON")
|
| 250 |
+
logger.info(f"Loaded {len(self.venues_structured)} venues from CSV")
|
| 251 |
+
|
| 252 |
+
def _process_five_star_reviews(self):
|
| 253 |
+
"""Extract and process 5-star reviews for each venue"""
|
| 254 |
+
for venue in self.venues_data:
|
| 255 |
+
venue_name = venue.get('name', '')
|
| 256 |
+
reviews = venue.get('reviews', [])
|
| 257 |
+
|
| 258 |
+
# Filter 5-star reviews
|
| 259 |
+
five_star = [review for review in reviews if review.get('rating') == 5]
|
| 260 |
+
|
| 261 |
+
if five_star:
|
| 262 |
+
# Separate reviews by language
|
| 263 |
+
english_reviews = []
|
| 264 |
+
armenian_reviews = []
|
| 265 |
+
|
| 266 |
+
for review in five_star:
|
| 267 |
+
text = review.get('text', '').strip()
|
| 268 |
+
language = review.get('language', 'en')
|
| 269 |
+
original_language = review.get('original_language', 'en')
|
| 270 |
+
|
| 271 |
+
if text and len(text) > 20: # Only meaningful reviews
|
| 272 |
+
if language == 'hy' or original_language == 'hy':
|
| 273 |
+
armenian_reviews.append(text)
|
| 274 |
+
else:
|
| 275 |
+
english_reviews.append(text)
|
| 276 |
+
|
| 277 |
+
# Store both language versions
|
| 278 |
+
if english_reviews or armenian_reviews:
|
| 279 |
+
self.five_star_reviews[venue_name] = {
|
| 280 |
+
'english': english_reviews[:3], # Top 3 English reviews
|
| 281 |
+
'armenian': armenian_reviews[:3] # Top 3 Armenian reviews
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
logger.info(f"Processed 5-star reviews for {len(self.five_star_reviews)} venues")
|
| 285 |
+
|
| 286 |
+
def _get_reviews_by_language(self, venue_name: str, language: str) -> List[str]:
|
| 287 |
+
"""Get reviews in the specified language"""
|
| 288 |
+
if venue_name not in self.five_star_reviews:
|
| 289 |
+
return []
|
| 290 |
+
|
| 291 |
+
reviews_data = self.five_star_reviews[venue_name]
|
| 292 |
+
|
| 293 |
+
if language == "armenian" and reviews_data.get('armenian'):
|
| 294 |
+
return reviews_data['armenian']
|
| 295 |
+
elif reviews_data.get('english'):
|
| 296 |
+
return reviews_data['english']
|
| 297 |
+
else:
|
| 298 |
+
# Fallback to any available reviews
|
| 299 |
+
return reviews_data.get('armenian', []) + reviews_data.get('english', [])
|
| 300 |
+
|
| 301 |
+
def _detect_language(self, text: str) -> str:
|
| 302 |
+
"""Enhanced language detection"""
|
| 303 |
+
armenian_chars = re.findall(r'[Ա-Ֆա-ֆ]', text)
|
| 304 |
+
armenian_ratio = len(armenian_chars) / len(text) if text else 0
|
| 305 |
+
|
| 306 |
+
armenian_keywords = ['բար', 'ռեստորան', 'սրճարան', 'ակումբ', 'հուկա', 'ուզում', 'գտնել', 'որտեղ', 'կարող', 'լավ', 'հետաքրքիր']
|
| 307 |
+
armenian_keyword_count = sum(1 for keyword in armenian_keywords if keyword in text.lower())
|
| 308 |
+
|
| 309 |
+
if armenian_ratio > 0.15 or armenian_keyword_count > 0:
|
| 310 |
+
return "armenian"
|
| 311 |
+
return "english"
|
| 312 |
+
|
| 313 |
+
def _extract_enhanced_location_context(self, query: str) -> Dict[str, List[str]]:
|
| 314 |
+
"""Enhanced location extraction with comprehensive Armenian support"""
|
| 315 |
+
query_lower = query.lower()
|
| 316 |
+
context = {
|
| 317 |
+
"streets": [],
|
| 318 |
+
"districts": [],
|
| 319 |
+
"landmarks": []
|
| 320 |
+
}
|
| 321 |
+
|
| 322 |
+
# Enhanced street detection
|
| 323 |
+
for street_eng, variations in self.yerevan_streets["streets"].items():
|
| 324 |
+
for variation in variations:
|
| 325 |
+
if variation.lower() in query_lower:
|
| 326 |
+
context["streets"].append(street_eng)
|
| 327 |
+
break
|
| 328 |
+
|
| 329 |
+
# Enhanced district detection
|
| 330 |
+
for district_eng, variations in self.yerevan_streets["districts"].items():
|
| 331 |
+
for variation in variations:
|
| 332 |
+
if variation.lower() in query_lower:
|
| 333 |
+
context["districts"].append(district_eng)
|
| 334 |
+
break
|
| 335 |
+
|
| 336 |
+
# Enhanced landmark detection
|
| 337 |
+
for landmark_eng, variations in self.yerevan_streets["landmarks"].items():
|
| 338 |
+
for variation in variations:
|
| 339 |
+
if variation.lower() in query_lower:
|
| 340 |
+
context["landmarks"].append(landmark_eng)
|
| 341 |
+
break
|
| 342 |
+
|
| 343 |
+
return context
|
| 344 |
+
|
| 345 |
+
def _get_user_location_from_query(self, query: str) -> Optional[Tuple[float, float]]:
|
| 346 |
+
"""Extract user location coordinates from street/landmark names in query"""
|
| 347 |
+
location_context = self._extract_enhanced_location_context(query)
|
| 348 |
+
|
| 349 |
+
# Check streets first
|
| 350 |
+
for street in location_context["streets"]:
|
| 351 |
+
if street in self.street_coordinates:
|
| 352 |
+
return self.street_coordinates[street]
|
| 353 |
+
|
| 354 |
+
# Check districts
|
| 355 |
+
for district in location_context["districts"]:
|
| 356 |
+
if district in self.street_coordinates:
|
| 357 |
+
return self.street_coordinates[district]
|
| 358 |
+
|
| 359 |
+
# Check landmarks
|
| 360 |
+
for landmark in location_context["landmarks"]:
|
| 361 |
+
if landmark in self.street_coordinates:
|
| 362 |
+
return self.street_coordinates[landmark]
|
| 363 |
+
|
| 364 |
+
return None
|
| 365 |
+
|
| 366 |
+
def _calculate_distance(self, user_location: Tuple[float, float], venue: Dict) -> Optional[float]:
|
| 367 |
+
"""Calculate distance between user location and venue"""
|
| 368 |
+
try:
|
| 369 |
+
venue_lat = venue.get('latitude')
|
| 370 |
+
venue_lng = venue.get('longitude')
|
| 371 |
+
|
| 372 |
+
if venue_lat is not None and venue_lng is not None:
|
| 373 |
+
distance = geodesic(user_location, (venue_lat, venue_lng)).kilometers
|
| 374 |
+
return distance
|
| 375 |
+
except Exception as e:
|
| 376 |
+
logger.debug(f"Distance calculation error: {e}")
|
| 377 |
+
|
| 378 |
+
return None
|
| 379 |
+
|
| 380 |
+
def _smart_venue_search(self, query: str, top_k: int = 20) -> List[Dict]:
|
| 381 |
+
"""Improved search using venue summaries, metadata, and category matching"""
|
| 382 |
+
query_lower = query.lower()
|
| 383 |
+
results = []
|
| 384 |
+
|
| 385 |
+
query_words = set(query_lower.split())
|
| 386 |
+
|
| 387 |
+
# Detect category from query
|
| 388 |
+
language = self._detect_language(query)
|
| 389 |
+
detected_category = self._detect_category(query, language)
|
| 390 |
+
|
| 391 |
+
# Detect location context for exact street matching
|
| 392 |
+
location_context = self._extract_enhanced_location_context(query)
|
| 393 |
+
|
| 394 |
+
for venue in self.venues_data:
|
| 395 |
+
score = 0
|
| 396 |
+
venue_name = venue.get('name', '')
|
| 397 |
+
venue_address = venue.get('address', '').lower()
|
| 398 |
+
|
| 399 |
+
# Get structured venue info
|
| 400 |
+
structured_info = self.venues_structured[
|
| 401 |
+
self.venues_structured['venue_name'] == venue_name
|
| 402 |
+
]
|
| 403 |
+
|
| 404 |
+
if structured_info.empty:
|
| 405 |
+
continue
|
| 406 |
+
|
| 407 |
+
venue_category = structured_info.iloc[0]['category']
|
| 408 |
+
venue_summary = str(structured_info.iloc[0]['venue_summary']).lower()
|
| 409 |
+
|
| 410 |
+
# JSON metadata scoring
|
| 411 |
+
venue_types = venue.get('types', [])
|
| 412 |
+
|
| 413 |
+
# PRIORITY: Exact street/location matching (very high score)
|
| 414 |
+
exact_location_match = False
|
| 415 |
+
if location_context["streets"]:
|
| 416 |
+
for street in location_context["streets"]:
|
| 417 |
+
street_variations = self.yerevan_streets["streets"][street]
|
| 418 |
+
for variation in street_variations:
|
| 419 |
+
if variation.lower() in venue_address:
|
| 420 |
+
score += 100 # Very high score for exact street match
|
| 421 |
+
exact_location_match = True
|
| 422 |
+
break
|
| 423 |
+
if exact_location_match:
|
| 424 |
+
break
|
| 425 |
+
|
| 426 |
+
if location_context["districts"]:
|
| 427 |
+
for district in location_context["districts"]:
|
| 428 |
+
district_variations = self.yerevan_streets["districts"][district]
|
| 429 |
+
for variation in district_variations:
|
| 430 |
+
if variation.lower() in venue_address:
|
| 431 |
+
score += 80 # High score for district match
|
| 432 |
+
exact_location_match = True
|
| 433 |
+
break
|
| 434 |
+
if exact_location_match:
|
| 435 |
+
break
|
| 436 |
+
|
| 437 |
+
if location_context["landmarks"]:
|
| 438 |
+
for landmark in location_context["landmarks"]:
|
| 439 |
+
landmark_variations = self.yerevan_streets["landmarks"][landmark]
|
| 440 |
+
for variation in landmark_variations:
|
| 441 |
+
if variation.lower() in venue_address:
|
| 442 |
+
score += 90 # Very high score for landmark match
|
| 443 |
+
exact_location_match = True
|
| 444 |
+
break
|
| 445 |
+
if exact_location_match:
|
| 446 |
+
break
|
| 447 |
+
|
| 448 |
+
# Category matching (high priority)
|
| 449 |
+
if detected_category:
|
| 450 |
+
category_info = self.venue_categories[detected_category]
|
| 451 |
+
|
| 452 |
+
# Check CSV category
|
| 453 |
+
if venue_category in category_info["types"]:
|
| 454 |
+
score += 15 # High score for category match
|
| 455 |
+
|
| 456 |
+
# Check JSON types
|
| 457 |
+
for json_type in category_info["json_types"]:
|
| 458 |
+
if json_type in venue_types:
|
| 459 |
+
score += 20 # Even higher for JSON type match
|
| 460 |
+
|
| 461 |
+
# Check metadata fields for specific features
|
| 462 |
+
for metadata_field in category_info["metadata_fields"]:
|
| 463 |
+
if venue.get(metadata_field) is True:
|
| 464 |
+
score += 10 # Good score for feature match
|
| 465 |
+
|
| 466 |
+
# Extra points for specific matches
|
| 467 |
+
for keyword in category_info["keywords"]:
|
| 468 |
+
if keyword in venue_summary or keyword in venue_name.lower():
|
| 469 |
+
score += 5
|
| 470 |
+
|
| 471 |
+
# Enhanced keyword matching with metadata
|
| 472 |
+
special_keywords = {
|
| 473 |
+
'draft': {
|
| 474 |
+
'keywords': ['draft', 'tap', 'beer'],
|
| 475 |
+
'metadata': ['serves_beer'],
|
| 476 |
+
'bonus': 25
|
| 477 |
+
},
|
| 478 |
+
'craft': {
|
| 479 |
+
'keywords': ['craft', 'artisan', 'microbrewery'],
|
| 480 |
+
'metadata': ['serves_beer'],
|
| 481 |
+
'bonus': 20
|
| 482 |
+
},
|
| 483 |
+
'beer': {
|
| 484 |
+
'keywords': ['beer', 'brewery', 'ale', 'lager'],
|
| 485 |
+
'metadata': ['serves_beer'],
|
| 486 |
+
'bonus': 15
|
| 487 |
+
},
|
| 488 |
+
'cocktail': {
|
| 489 |
+
'keywords': ['cocktail', 'mixology', 'bartender'],
|
| 490 |
+
'metadata': ['serves_cocktails'],
|
| 491 |
+
'bonus': 15
|
| 492 |
+
},
|
| 493 |
+
'wine': {
|
| 494 |
+
'keywords': ['wine', 'vino', 'winery'],
|
| 495 |
+
'metadata': ['serves_wine'],
|
| 496 |
+
'bonus': 15
|
| 497 |
+
},
|
| 498 |
+
'coffee': {
|
| 499 |
+
'keywords': ['coffee', 'espresso', 'cappuccino', 'latte'],
|
| 500 |
+
'metadata': ['serves_coffee'],
|
| 501 |
+
'bonus': 15
|
| 502 |
+
},
|
| 503 |
+
'breakfast': {
|
| 504 |
+
'keywords': ['breakfast', 'brunch', 'morning'],
|
| 505 |
+
'metadata': ['serves_breakfast', 'serves_brunch'],
|
| 506 |
+
'bonus': 15
|
| 507 |
+
},
|
| 508 |
+
'live music': {
|
| 509 |
+
'keywords': ['live music', 'jazz', 'band', 'concert'],
|
| 510 |
+
'metadata': ['live_music'],
|
| 511 |
+
'bonus': 20
|
| 512 |
+
},
|
| 513 |
+
'romantic': {
|
| 514 |
+
'keywords': ['romantic', 'date', 'intimate', 'cozy'],
|
| 515 |
+
'metadata': ['romantic', 'good_for_date_night'],
|
| 516 |
+
'bonus': 15
|
| 517 |
+
},
|
| 518 |
+
'pub': {
|
| 519 |
+
'keywords': ['pub', 'tavern'],
|
| 520 |
+
'metadata': ['serves_beer', 'has_bar'],
|
| 521 |
+
'bonus': 20
|
| 522 |
+
},
|
| 523 |
+
'bar': {
|
| 524 |
+
'keywords': ['bar', 'lounge'],
|
| 525 |
+
'metadata': ['has_bar', 'serves_spirits'],
|
| 526 |
+
'bonus': 20
|
| 527 |
+
},
|
| 528 |
+
'restaurant': {
|
| 529 |
+
'keywords': ['restaurant', 'dining', 'cuisine'],
|
| 530 |
+
'metadata': ['serves_lunch', 'serves_dinner'],
|
| 531 |
+
'bonus': 15
|
| 532 |
+
}
|
| 533 |
+
}
|
| 534 |
+
|
| 535 |
+
# Apply special keyword scoring
|
| 536 |
+
for special_key, special_info in special_keywords.items():
|
| 537 |
+
if any(word in query_lower for word in special_info['keywords']):
|
| 538 |
+
# Check keywords in venue text
|
| 539 |
+
for keyword in special_info['keywords']:
|
| 540 |
+
if keyword in venue_summary or keyword in venue_name.lower():
|
| 541 |
+
score += special_info['bonus']
|
| 542 |
+
|
| 543 |
+
# Check metadata
|
| 544 |
+
for metadata_field in special_info['metadata']:
|
| 545 |
+
if venue.get(metadata_field) is True:
|
| 546 |
+
score += special_info['bonus']
|
| 547 |
+
|
| 548 |
+
# Venue name matching
|
| 549 |
+
venue_name_lower = venue_name.lower()
|
| 550 |
+
for word in query_words:
|
| 551 |
+
if word in venue_name_lower:
|
| 552 |
+
score += 8
|
| 553 |
+
|
| 554 |
+
# Summary matching (use the rich summary data)
|
| 555 |
+
for word in query_words:
|
| 556 |
+
if word in venue_summary:
|
| 557 |
+
score += 3
|
| 558 |
+
|
| 559 |
+
# Address matching
|
| 560 |
+
if venue.get('address'):
|
| 561 |
+
address_lower = venue['address'].lower()
|
| 562 |
+
for word in query_words:
|
| 563 |
+
if word in address_lower:
|
| 564 |
+
score += 2
|
| 565 |
+
|
| 566 |
+
# 5-star review matching
|
| 567 |
+
if venue_name in self.five_star_reviews:
|
| 568 |
+
reviews = self._get_reviews_by_language(venue_name, "english")
|
| 569 |
+
if reviews:
|
| 570 |
+
review_text = " ".join(reviews).lower()
|
| 571 |
+
for word in query_words:
|
| 572 |
+
if word in review_text:
|
| 573 |
+
score += 4
|
| 574 |
+
|
| 575 |
+
# JSON types matching
|
| 576 |
+
for venue_type in venue_types:
|
| 577 |
+
if venue_type in query_lower:
|
| 578 |
+
score += 12
|
| 579 |
+
|
| 580 |
+
if score > 0:
|
| 581 |
+
venue_copy = venue.copy()
|
| 582 |
+
venue_copy['similarity_score'] = score
|
| 583 |
+
venue_copy['category'] = venue_category
|
| 584 |
+
venue_copy['summary'] = structured_info.iloc[0]['venue_summary']
|
| 585 |
+
venue_copy['exact_location_match'] = exact_location_match
|
| 586 |
+
results.append(venue_copy)
|
| 587 |
+
|
| 588 |
+
# Sort by exact location match first, then by score
|
| 589 |
+
results.sort(key=lambda x: (x.get('exact_location_match', False), x['similarity_score']), reverse=True)
|
| 590 |
+
return results[:top_k]
|
| 591 |
+
|
| 592 |
+
def _filter_venues(self, venues: List[Dict], min_rating: float, price_range: str,
|
| 593 |
+
max_distance: float, location_context: Dict) -> List[Dict]:
|
| 594 |
+
"""Filter venues based on criteria with distance calculation"""
|
| 595 |
+
|
| 596 |
+
filtered = []
|
| 597 |
+
|
| 598 |
+
# Get user location if specified in query
|
| 599 |
+
user_location = self._get_user_location_from_query_context(location_context)
|
| 600 |
+
|
| 601 |
+
for venue in venues:
|
| 602 |
+
# Rating filter
|
| 603 |
+
rating = venue.get('rating')
|
| 604 |
+
if rating is None:
|
| 605 |
+
rating = 0.0
|
| 606 |
+
try:
|
| 607 |
+
rating = float(rating)
|
| 608 |
+
except (ValueError, TypeError):
|
| 609 |
+
rating = 0.0
|
| 610 |
+
|
| 611 |
+
if rating < min_rating:
|
| 612 |
+
continue
|
| 613 |
+
|
| 614 |
+
# Price range filter
|
| 615 |
+
venue_price = str(venue.get('price_level', 'all')).lower()
|
| 616 |
+
if price_range != 'all' and venue_price != 'all' and venue_price != price_range:
|
| 617 |
+
continue
|
| 618 |
+
|
| 619 |
+
# Distance filter
|
| 620 |
+
if user_location:
|
| 621 |
+
venue_location = self._get_venue_coordinates(venue)
|
| 622 |
+
if venue_location:
|
| 623 |
+
distance = self._calculate_distance(user_location, venue)
|
| 624 |
+
if distance is not None and distance <= max_distance:
|
| 625 |
+
venue['calculated_distance'] = distance
|
| 626 |
+
filtered.append(venue)
|
| 627 |
+
else:
|
| 628 |
+
# If venue has no coordinates but has exact location match (street-based search),
|
| 629 |
+
# include it anyway since it was found via street matching
|
| 630 |
+
if venue.get('exact_location_match', False):
|
| 631 |
+
venue['calculated_distance'] = None # Mark as no distance data
|
| 632 |
+
filtered.append(venue)
|
| 633 |
+
# Otherwise exclude venues without coordinates when location is specified
|
| 634 |
+
else:
|
| 635 |
+
# If no location in query, add all venues that pass other filters
|
| 636 |
+
filtered.append(venue)
|
| 637 |
+
|
| 638 |
+
return filtered
|
| 639 |
+
|
| 640 |
+
def _get_user_location_from_query_context(self, location_context: Dict) -> Optional[Tuple[float, float]]:
|
| 641 |
+
"""Get user location from extracted query context"""
|
| 642 |
+
|
| 643 |
+
# Prioritize streets, then landmarks, then districts
|
| 644 |
+
for loc_type in ["streets", "landmarks", "districts"]:
|
| 645 |
+
if location_context.get(loc_type):
|
| 646 |
+
# Use the first identified location of the highest priority type
|
| 647 |
+
location_name = location_context[loc_type][0]
|
| 648 |
+
return self.street_coordinates.get(location_name)
|
| 649 |
+
|
| 650 |
+
return None
|
| 651 |
+
|
| 652 |
+
def _get_venue_coordinates(self, venue: Dict) -> Optional[Tuple[float, float]]:
|
| 653 |
+
"""Get coordinates for a venue"""
|
| 654 |
+
lat = venue.get('latitude')
|
| 655 |
+
lng = venue.get('longitude')
|
| 656 |
+
if lat is not None and lng is not None:
|
| 657 |
+
try:
|
| 658 |
+
return (float(lat), float(lng))
|
| 659 |
+
except (ValueError, TypeError):
|
| 660 |
+
return None
|
| 661 |
+
return None
|
| 662 |
+
|
| 663 |
+
def _calculate_distance(self, user_location: Tuple[float, float], venue: Dict) -> Optional[float]:
|
| 664 |
+
"""Calculate distance in km between user and venue"""
|
| 665 |
+
venue_location = self._get_venue_coordinates(venue)
|
| 666 |
+
if user_location and venue_location:
|
| 667 |
+
return geodesic(user_location, venue_location).kilometers
|
| 668 |
+
return None
|
| 669 |
+
|
| 670 |
+
def _create_enhanced_response(self, venues: List[Dict], language: str, user_query: str, location_context: Dict) -> str:
|
| 671 |
+
"""Create an enhanced, user-friendly response with location and category context"""
|
| 672 |
+
|
| 673 |
+
if not venues:
|
| 674 |
+
if language == 'armenian':
|
| 675 |
+
return "Ցավոք, ձեր հարցմանը համապատասխանող վենու չի գտնվել: Փորձեք փոխել որոնման պարամետրերը:"
|
| 676 |
+
return "Sorry, no venues found matching your criteria. Try adjusting your search parameters."
|
| 677 |
+
|
| 678 |
+
response_parts = []
|
| 679 |
+
|
| 680 |
+
# Get intro based on language
|
| 681 |
+
intro = self.conversation_templates[language]["recommendation_intros"]
|
| 682 |
+
response_parts.append(random.choice(intro))
|
| 683 |
+
|
| 684 |
+
# Add location context
|
| 685 |
+
if location_context["streets"]:
|
| 686 |
+
loc_str = self.conversation_templates[language]["location_contexts"]["street"].format(location=location_context["streets"][0])
|
| 687 |
+
response_parts.append(f"\n📍 {loc_str}")
|
| 688 |
+
elif location_context["landmarks"]:
|
| 689 |
+
loc_str = self.conversation_templates[language]["location_contexts"]["landmark"].format(location=location_context["landmarks"][0])
|
| 690 |
+
response_parts.append(f"\n📍 {loc_str}")
|
| 691 |
+
elif location_context["districts"]:
|
| 692 |
+
loc_str = self.conversation_templates[language]["location_contexts"]["district"].format(location=location_context["districts"][0])
|
| 693 |
+
response_parts.append(f"\n📍 {loc_str}")
|
| 694 |
+
|
| 695 |
+
# Add category context
|
| 696 |
+
detected_category = self._detect_category(user_query, language)
|
| 697 |
+
if detected_category:
|
| 698 |
+
category_str = self.conversation_templates[language]["category_matches"].get(detected_category)
|
| 699 |
+
if category_str:
|
| 700 |
+
response_parts.append(f"🏷️ {category_str}")
|
| 701 |
+
|
| 702 |
+
for i, venue in enumerate(venues[:5]):
|
| 703 |
+
response_parts.append(f"\n{i+1}. {self._format_enhanced_venue_info(venue, language)}")
|
| 704 |
+
|
| 705 |
+
# Add ending
|
| 706 |
+
response_parts.append("\n" + random.choice(self.conversation_templates[language]["endings"]))
|
| 707 |
+
|
| 708 |
+
return "\n".join(response_parts)
|
| 709 |
+
|
| 710 |
+
def _detect_category(self, query: str, language: str) -> Optional[str]:
|
| 711 |
+
"""Detect venue category from query, respecting the detected language."""
|
| 712 |
+
query_lower = query.lower()
|
| 713 |
+
|
| 714 |
+
for category, info in self.venue_categories.items():
|
| 715 |
+
if language == "armenian":
|
| 716 |
+
search_terms = info.get("armenian_terms", []) + info.get("armenian_keywords", [])
|
| 717 |
+
else:
|
| 718 |
+
search_terms = info.get("keywords", [])
|
| 719 |
+
|
| 720 |
+
for term in search_terms:
|
| 721 |
+
if term.lower() in query_lower:
|
| 722 |
+
return category
|
| 723 |
+
|
| 724 |
+
# If no language-specific match, do a general search
|
| 725 |
+
for category, info in self.venue_categories.items():
|
| 726 |
+
all_terms = info.get("keywords", []) + info.get("armenian_terms", [])
|
| 727 |
+
for term in all_terms:
|
| 728 |
+
if term.lower() in query_lower:
|
| 729 |
+
return category
|
| 730 |
+
|
| 731 |
+
return None
|
| 732 |
+
|
| 733 |
+
def _format_enhanced_venue_info(self, venue: Dict, language: str = "english") -> str:
|
| 734 |
+
"""Enhanced venue information formatting with 5-star reviews and metadata"""
|
| 735 |
+
if language == "armenian":
|
| 736 |
+
info_parts = [f"**{venue['name']}**"]
|
| 737 |
+
if venue.get('address'):
|
| 738 |
+
info_parts.append(f"📍 {venue['address']}")
|
| 739 |
+
|
| 740 |
+
# Safe rating display
|
| 741 |
+
rating = venue.get('rating')
|
| 742 |
+
if rating is not None and rating > 0:
|
| 743 |
+
info_parts.append(f"⭐ {rating}")
|
| 744 |
+
|
| 745 |
+
# Add distance
|
| 746 |
+
if venue.get('calculated_distance'):
|
| 747 |
+
distance = venue['calculated_distance']
|
| 748 |
+
info_parts.append(f"🚗 {distance:.1f} կմ")
|
| 749 |
+
|
| 750 |
+
# Add category and summary
|
| 751 |
+
if venue.get('category'):
|
| 752 |
+
category = venue['category']
|
| 753 |
+
category_map = {
|
| 754 |
+
"pub": "պաբ", "bar": "բար", "restaurant": "ռեստորան",
|
| 755 |
+
"cafe": "սրճարան", "club": "ակումբ", "hookah": "հուկա բար"
|
| 756 |
+
}
|
| 757 |
+
armenian_category = category_map.get(category, category)
|
| 758 |
+
info_parts.append(f"🏷️ {armenian_category}")
|
| 759 |
+
|
| 760 |
+
# Add metadata features
|
| 761 |
+
features = []
|
| 762 |
+
if venue.get('serves_beer'): features.append("գարեջուր")
|
| 763 |
+
if venue.get('serves_cocktails'): features.append("կոկտեյլ")
|
| 764 |
+
if venue.get('live_music'): features.append("կենդանի երաժշտություն")
|
| 765 |
+
if venue.get('outdoor_seating'): features.append("բացօթյա նստարան")
|
| 766 |
+
if features:
|
| 767 |
+
info_parts.append(f"✨ {', '.join(features)}")
|
| 768 |
+
|
| 769 |
+
# Add 5-star review
|
| 770 |
+
venue_name = venue.get('name', '')
|
| 771 |
+
if venue_name in self.five_star_reviews:
|
| 772 |
+
reviews = self._get_reviews_by_language(venue_name, language)
|
| 773 |
+
if reviews:
|
| 774 |
+
info_parts.append(f"💬 5⭐ \"{reviews[0][:150]}...\"")
|
| 775 |
+
|
| 776 |
+
else:
|
| 777 |
+
info_parts = [f"**{venue['name']}** - {venue.get('rating', 'N/A')}⭐"]
|
| 778 |
+
if venue.get('address'):
|
| 779 |
+
info_parts.append(f"📍 {venue['address']}")
|
| 780 |
+
|
| 781 |
+
# Add distance
|
| 782 |
+
if venue.get('calculated_distance'):
|
| 783 |
+
distance = venue['calculated_distance']
|
| 784 |
+
info_parts.append(f"🚗 {distance:.1f} km away")
|
| 785 |
+
|
| 786 |
+
# Add category and summary
|
| 787 |
+
if venue.get('category'):
|
| 788 |
+
info_parts.append(f"🏷️ {venue['category']}")
|
| 789 |
+
|
| 790 |
+
# Add metadata features
|
| 791 |
+
features = []
|
| 792 |
+
if venue.get('serves_beer'): features.append("serves beer")
|
| 793 |
+
if venue.get('serves_cocktails'): features.append("cocktails")
|
| 794 |
+
if venue.get('live_music'): features.append("live music")
|
| 795 |
+
if venue.get('outdoor_seating'): features.append("outdoor seating")
|
| 796 |
+
if venue.get('good_for_date_night'): features.append("romantic")
|
| 797 |
+
if venue.get('good_for_groups'): features.append("good for groups")
|
| 798 |
+
if features:
|
| 799 |
+
info_parts.append(f"✨ {', '.join(features)}")
|
| 800 |
+
|
| 801 |
+
# Add 5-star review
|
| 802 |
+
venue_name = venue.get('name', '')
|
| 803 |
+
if venue_name in self.five_star_reviews:
|
| 804 |
+
reviews = self._get_reviews_by_language(venue_name, language)
|
| 805 |
+
if reviews:
|
| 806 |
+
info_parts.append(f"💬 5⭐ \"{reviews[0][:150]}...\"")
|
| 807 |
+
|
| 808 |
+
return "\n".join(info_parts)
|
| 809 |
+
|
| 810 |
+
def get_enhanced_recommendations(self, user_query: str, min_rating: float = 3.0,
|
| 811 |
+
price_range: str = "all", max_distance: float = 10.0) -> Dict:
|
| 812 |
+
"""
|
| 813 |
+
Enhanced recommendation system with conversational capabilities
|
| 814 |
+
Handles both venue queries and casual conversation
|
| 815 |
+
"""
|
| 816 |
+
# Detect language
|
| 817 |
+
language = self._detect_language(user_query)
|
| 818 |
+
|
| 819 |
+
# Check if this is a venue-related query or casual conversation
|
| 820 |
+
is_venue_query = self._is_venue_related_query(user_query)
|
| 821 |
+
is_greeting_or_casual = self._detect_greeting_or_casual(user_query)
|
| 822 |
+
|
| 823 |
+
# Handle conversational queries
|
| 824 |
+
if not is_venue_query or is_greeting_or_casual:
|
| 825 |
+
conversational_response = self._generate_conversational_response(user_query, language)
|
| 826 |
+
|
| 827 |
+
# Add to conversation history
|
| 828 |
+
self._add_to_conversation_history(user_query, conversational_response)
|
| 829 |
+
|
| 830 |
+
# Return conversational response format
|
| 831 |
+
return {
|
| 832 |
+
"language": language,
|
| 833 |
+
"query": user_query,
|
| 834 |
+
"response_type": "conversational",
|
| 835 |
+
"conversational_response": conversational_response,
|
| 836 |
+
"venue_suggestions": [],
|
| 837 |
+
"total_found": 0,
|
| 838 |
+
"is_venue_query": False,
|
| 839 |
+
"location_context": {}
|
| 840 |
+
}
|
| 841 |
+
|
| 842 |
+
# Handle venue queries with the existing logic
|
| 843 |
+
location_context = self._extract_enhanced_location_context(user_query)
|
| 844 |
+
|
| 845 |
+
# Perform venue search
|
| 846 |
+
venues = self._smart_venue_search(user_query, top_k=50)
|
| 847 |
+
|
| 848 |
+
# Filter venues
|
| 849 |
+
filtered_venues = self._filter_venues(venues, min_rating, price_range, max_distance, location_context)
|
| 850 |
+
|
| 851 |
+
# Create response
|
| 852 |
+
response_text = self._create_enhanced_response(filtered_venues, language, user_query, location_context)
|
| 853 |
+
|
| 854 |
+
# Add venue recommendations to conversation history
|
| 855 |
+
self._add_to_conversation_history(user_query, f"Found {len(filtered_venues)} venues. {response_text[:100]}...")
|
| 856 |
+
|
| 857 |
+
return {
|
| 858 |
+
"language": language,
|
| 859 |
+
"query": user_query,
|
| 860 |
+
"response_type": "venue_recommendation",
|
| 861 |
+
"recommended_venues": filtered_venues[:10],
|
| 862 |
+
"response_text": response_text,
|
| 863 |
+
"total_found": len(filtered_venues),
|
| 864 |
+
"location_context": location_context,
|
| 865 |
+
"is_venue_query": True
|
| 866 |
+
}
|
| 867 |
+
|
| 868 |
+
def _initialize_conversational_llm(self):
|
| 869 |
+
"""Initialize the conversational LLM for chat-like responses"""
|
| 870 |
+
if not LLAMA_CPP_AVAILABLE:
|
| 871 |
+
logger.warning("llama-cpp-python not available. Conversational features will be limited.")
|
| 872 |
+
return
|
| 873 |
+
|
| 874 |
+
try:
|
| 875 |
+
# Use TinyLlama for CPU deployment - much smaller and faster
|
| 876 |
+
try:
|
| 877 |
+
from huggingface_hub import hf_hub_download
|
| 878 |
+
logger.info("Downloading TinyLlama model from Hugging Face Hub...")
|
| 879 |
+
|
| 880 |
+
# Download smaller, CPU-optimized model
|
| 881 |
+
model_path = hf_hub_download(
|
| 882 |
+
repo_id="TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 883 |
+
filename="tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf",
|
| 884 |
+
cache_dir="./model_cache"
|
| 885 |
+
)
|
| 886 |
+
|
| 887 |
+
logger.info(f"TinyLlama model downloaded to: {model_path}")
|
| 888 |
+
model_paths = [model_path]
|
| 889 |
+
|
| 890 |
+
except Exception as e:
|
| 891 |
+
logger.error(f"Failed to download TinyLlama from HF Hub: {e}")
|
| 892 |
+
# Fallback - no local model available
|
| 893 |
+
logger.warning("No conversational model available. Using template responses.")
|
| 894 |
+
return
|
| 895 |
+
|
| 896 |
+
for model_path in model_paths:
|
| 897 |
+
try:
|
| 898 |
+
logger.info(f"Attempting to load conversational model: {model_path}")
|
| 899 |
+
self.conversational_llm = Llama(
|
| 900 |
+
model_path=model_path,
|
| 901 |
+
n_ctx=1024, # Smaller context window for CPU
|
| 902 |
+
n_threads=2, # Limit CPU threads
|
| 903 |
+
n_gpu_layers=0, # CPU only
|
| 904 |
+
verbose=False,
|
| 905 |
+
use_mmap=True, # Memory mapping for efficiency
|
| 906 |
+
use_mlock=False # Don't lock memory
|
| 907 |
+
)
|
| 908 |
+
logger.info(f"Successfully loaded TinyLlama model: {model_path}")
|
| 909 |
+
return # Exit after successful load
|
| 910 |
+
except Exception as e:
|
| 911 |
+
logger.warning(f"Failed to load model {model_path}: {e}")
|
| 912 |
+
|
| 913 |
+
logger.error("Could not load any conversational model. Using template responses.")
|
| 914 |
+
|
| 915 |
+
except Exception as e:
|
| 916 |
+
logger.error(f"Error initializing conversational LLM: {e}")
|
| 917 |
+
self.conversational_llm = None
|
| 918 |
+
|
| 919 |
+
def _add_to_conversation_history(self, user_message: str, ai_response: str):
|
| 920 |
+
"""Add a user message and AI response to the conversation history"""
|
| 921 |
+
self.conversation_history.append({"user": user_message, "ai": ai_response})
|
| 922 |
+
# Keep history to a reasonable size
|
| 923 |
+
if len(self.conversation_history) > self.max_conversation_history:
|
| 924 |
+
self.conversation_history.pop(0)
|
| 925 |
+
|
| 926 |
+
def _get_conversation_context(self) -> str:
|
| 927 |
+
"""Get the recent conversation history as a formatted string"""
|
| 928 |
+
context = ""
|
| 929 |
+
for turn in self.conversation_history:
|
| 930 |
+
context += f"User: {turn['user']}\nAI: {turn['ai']}\n"
|
| 931 |
+
return context
|
| 932 |
+
|
| 933 |
+
def _is_venue_related_query(self, query: str) -> bool:
|
| 934 |
+
"""Determine if a query is related to finding venues"""
|
| 935 |
+
query_lower = query.lower()
|
| 936 |
+
|
| 937 |
+
# Keywords that indicate a venue search
|
| 938 |
+
venue_keywords = [
|
| 939 |
+
'find', 'where', 'recommend', 'any', 'good', 'best', 'search',
|
| 940 |
+
'restaurant', 'bar', 'pub', 'cafe', 'club', 'hookah',
|
| 941 |
+
'ռեստորան', 'բար', 'պաբ', 'փաբ', 'սրճարան', 'ակումբ', 'հուկա',
|
| 942 |
+
'գտնել', 'որտեղ', 'խորհուրդ', 'կա', 'լավ'
|
| 943 |
+
]
|
| 944 |
+
|
| 945 |
+
# Location keywords
|
| 946 |
+
location_keywords = [
|
| 947 |
+
'street', 'avenue', 'square', 'near', 'on', 'at',
|
| 948 |
+
'փողոց', 'պողոտա', 'հրապարակ', 'մոտ'
|
| 949 |
+
]
|
| 950 |
+
|
| 951 |
+
# Check for venue keywords
|
| 952 |
+
if any(keyword in query_lower for keyword in venue_keywords):
|
| 953 |
+
return True
|
| 954 |
+
|
| 955 |
+
# Check for location keywords
|
| 956 |
+
if any(keyword in query_lower for keyword in location_keywords):
|
| 957 |
+
return True
|
| 958 |
+
|
| 959 |
+
# Check against the known streets and landmarks
|
| 960 |
+
for street_info in self.yerevan_streets.values():
|
| 961 |
+
for variations in street_info.values():
|
| 962 |
+
if any(variation.lower() in query_lower for variation in variations):
|
| 963 |
+
return True
|
| 964 |
+
|
| 965 |
+
return False
|
| 966 |
+
|
| 967 |
+
def _generate_conversational_response(self, query: str, language: str) -> str:
|
| 968 |
+
"""Generate a conversational response using the LLM or templates"""
|
| 969 |
+
if not self.conversational_llm:
|
| 970 |
+
return self._generate_template_response(query, language)
|
| 971 |
+
|
| 972 |
+
try:
|
| 973 |
+
context = self._get_conversation_context()
|
| 974 |
+
|
| 975 |
+
# Optimized prompt for TinyLlama
|
| 976 |
+
if language == 'armenian':
|
| 977 |
+
prompt = f"""You are a helpful assistant for Yerevan, Armenia. Be brief and friendly.
|
| 978 |
+
User: {query}
|
| 979 |
+
Assistant:"""
|
| 980 |
+
else:
|
| 981 |
+
prompt = f"""You are a helpful assistant for Yerevan, Armenia. Be brief and friendly.
|
| 982 |
+
User: {query}
|
| 983 |
+
Assistant:"""
|
| 984 |
+
|
| 985 |
+
response = self.conversational_llm(
|
| 986 |
+
prompt,
|
| 987 |
+
max_tokens=50, # Shorter responses for CPU efficiency
|
| 988 |
+
stop=["User:", "Assistant:", "\n"],
|
| 989 |
+
temperature=0.7,
|
| 990 |
+
echo=False,
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
generated_text = response['choices'][0]['text'].strip()
|
| 994 |
+
return generated_text if generated_text else self._generate_template_response(query, language)
|
| 995 |
+
|
| 996 |
+
except Exception as e:
|
| 997 |
+
logger.error(f"Error generating conversational response: {e}")
|
| 998 |
+
return self._generate_template_response(query, language)
|
| 999 |
+
|
| 1000 |
+
def _generate_template_response(self, query: str, language: str) -> str:
|
| 1001 |
+
"""Generate template-based responses when LLM is not available"""
|
| 1002 |
+
query_lower = query.lower()
|
| 1003 |
+
|
| 1004 |
+
# Greeting responses
|
| 1005 |
+
if any(word in query_lower for word in ['hi', 'hello', 'hey', 'բարև', 'ողջույն']):
|
| 1006 |
+
if language == "armenian":
|
| 1007 |
+
return "Բարև ձեզ! Ես Երևանի վենուների ուղեցույցն եմ: Ինչ եք փնտրում?"
|
| 1008 |
+
return "Hello! I'm your Yerevan venue guide. What are you looking for?"
|
| 1009 |
+
|
| 1010 |
+
# How are you responses
|
| 1011 |
+
if any(phrase in query_lower for phrase in ['how are you', 'ինչպես ես', 'ոնց ես']):
|
| 1012 |
+
if language == "armenian":
|
| 1013 |
+
return "Շնորհակալություն հարցնելու համար! Ես պատրաստ եմ օգնել ձեզ գտնել լավագույն վայրերը Երևանում:"
|
| 1014 |
+
return "Thanks for asking! I'm ready to help you find the best venues in Yerevan!"
|
| 1015 |
+
|
| 1016 |
+
# What can you do responses
|
| 1017 |
+
if any(phrase in query_lower for phrase in ['what can you', 'ինչ կարող ես', 'քո մասին']):
|
| 1018 |
+
if language == "armenian":
|
| 1019 |
+
return "Ես կարող եմ օգնել ձեզ գտնել ռեստորաններ, բարեր, սրճարաններ և այլ վայրեր Երևանում: Ինչ եք փնտրում?"
|
| 1020 |
+
return "I can help you find restaurants, bars, cafes and other venues in Yerevan! What are you looking for?"
|
| 1021 |
+
|
| 1022 |
+
# Thanks responses
|
| 1023 |
+
if any(word in query_lower for word in ['thanks', 'thank you', 'շնորհակալություն']):
|
| 1024 |
+
if language == "armenian":
|
| 1025 |
+
return "Խնդրեմ! Ուրախ եմ, որ կարողացա օգնել:"
|
| 1026 |
+
return "You're welcome! Happy to help!"
|
| 1027 |
+
|
| 1028 |
+
# Default responses
|
| 1029 |
+
if language == "armenian":
|
| 1030 |
+
return "Ես կարող եմ օգնել ձեզ գտնել վայրեր Երևանում: Ինչ եք փնտրում?"
|
| 1031 |
+
return "I can help you find venues in Yerevan! What are you looking for?"
|
| 1032 |
+
|
| 1033 |
+
def _detect_greeting_or_casual(self, query: str) -> bool:
|
| 1034 |
+
"""Detect if the query is a greeting or casual conversation"""
|
| 1035 |
+
casual_patterns = [
|
| 1036 |
+
# English
|
| 1037 |
+
r'\b(hi|hello|hey|good morning|good evening|how are you|what\'s up|thanks|thank you)\b',
|
| 1038 |
+
r'\b(who are you|what can you do|help|about you)\b',
|
| 1039 |
+
# Armenian
|
| 1040 |
+
r'\b(բարև|ողջույն|բարի լույս|բարի երեկո|ինչպես ես|ինչ կա|շնորհակալություն)\b',
|
| 1041 |
+
r'\b(ով ես|ինչ կարող ես|օգնություն|քո մասին)\b'
|
| 1042 |
+
]
|
| 1043 |
+
|
| 1044 |
+
query_lower = query.lower()
|
| 1045 |
+
for pattern in casual_patterns:
|
| 1046 |
+
if re.search(pattern, query_lower):
|
| 1047 |
+
return True
|
| 1048 |
+
return False
|
| 1049 |
+
|
| 1050 |
+
# Global AI instance
|
| 1051 |
+
ai_instance = None
|
| 1052 |
+
|
| 1053 |
+
def initialize_ai():
|
| 1054 |
+
"""Initialize the global AI instance"""
|
| 1055 |
+
global ai_instance
|
| 1056 |
+
|
| 1057 |
+
if ai_instance is None:
|
| 1058 |
+
try:
|
| 1059 |
+
# Initialize with the data paths
|
| 1060 |
+
venues_json = "yerevan_pubs_bars_20250623_193205.json"
|
| 1061 |
+
venues_csv = "yerevan_venues_structured.csv"
|
| 1062 |
+
|
| 1063 |
+
# Check if files exist
|
| 1064 |
+
import os
|
| 1065 |
+
if not os.path.exists(venues_json):
|
| 1066 |
+
raise FileNotFoundError(f"Venue JSON file not found: {venues_json}")
|
| 1067 |
+
if not os.path.exists(venues_csv):
|
| 1068 |
+
raise FileNotFoundError(f"Venue CSV file not found: {venues_csv}")
|
| 1069 |
+
|
| 1070 |
+
logger.info("Creating CompleteYerevanVenueAI instance...")
|
| 1071 |
+
ai_instance = CompleteYerevanVenueAI(venues_json, venues_csv)
|
| 1072 |
+
|
| 1073 |
+
logger.info("Initializing venue data...")
|
| 1074 |
+
ai_instance.initialize()
|
| 1075 |
+
|
| 1076 |
+
logger.info("Global AI instance initialized successfully")
|
| 1077 |
+
|
| 1078 |
+
except Exception as e:
|
| 1079 |
+
logger.error(f"Failed to initialize AI instance: {e}")
|
| 1080 |
+
ai_instance = None
|
| 1081 |
+
raise e
|
| 1082 |
+
|
| 1083 |
+
return ai_instance
|
| 1084 |
+
|
| 1085 |
+
def get_recommendations(query, min_rating, price_range, max_distance):
|
| 1086 |
+
"""Gradio interface function with conversational support"""
|
| 1087 |
+
global ai_instance
|
| 1088 |
+
|
| 1089 |
+
if not query.strip():
|
| 1090 |
+
return "Please enter a question or venue request."
|
| 1091 |
+
|
| 1092 |
+
# Ensure AI instance is initialized
|
| 1093 |
+
if ai_instance is None:
|
| 1094 |
+
try:
|
| 1095 |
+
initialize_ai()
|
| 1096 |
+
except Exception as e:
|
| 1097 |
+
logger.error(f"Failed to initialize AI: {e}")
|
| 1098 |
+
return f"Sorry, I'm having trouble starting up. Error: {str(e)}"
|
| 1099 |
+
|
| 1100 |
+
# Double check AI instance exists
|
| 1101 |
+
if ai_instance is None:
|
| 1102 |
+
return "Sorry, the AI system is not available right now. Please try again later."
|
| 1103 |
+
|
| 1104 |
+
try:
|
| 1105 |
+
# Get recommendations (handles both conversational and venue queries)
|
| 1106 |
+
result = ai_instance.get_enhanced_recommendations(
|
| 1107 |
+
user_query=query,
|
| 1108 |
+
min_rating=min_rating,
|
| 1109 |
+
price_range=price_range,
|
| 1110 |
+
max_distance=max_distance
|
| 1111 |
+
)
|
| 1112 |
+
|
| 1113 |
+
# Handle conversational responses
|
| 1114 |
+
if result.get("response_type") == "conversational":
|
| 1115 |
+
return result["conversational_response"]
|
| 1116 |
+
|
| 1117 |
+
# Handle venue recommendations
|
| 1118 |
+
elif result.get("response_type") == "venue_recommendation":
|
| 1119 |
+
return result["response_text"]
|
| 1120 |
+
|
| 1121 |
+
# Fallback
|
| 1122 |
+
else:
|
| 1123 |
+
return "I can help you find venues in Yerevan or have a casual conversation. What would you like to know?"
|
| 1124 |
+
|
| 1125 |
+
except Exception as e:
|
| 1126 |
+
logger.error(f"Error in get_recommendations: {e}")
|
| 1127 |
+
return f"Sorry, I encountered an error: {str(e)}"
|
| 1128 |
+
|
| 1129 |
+
def create_gradio_interface():
|
| 1130 |
+
"""Create enhanced Gradio interface with conversational capabilities"""
|
| 1131 |
+
|
| 1132 |
+
with gr.Blocks(
|
| 1133 |
+
title="🇦🇲 Yerevan Venue AI Assistant",
|
| 1134 |
+
theme=gr.themes.Soft(),
|
| 1135 |
+
css="""
|
| 1136 |
+
.gradio-container {
|
| 1137 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 1138 |
+
}
|
| 1139 |
+
.gr-button-primary {
|
| 1140 |
+
background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
|
| 1141 |
+
border: none;
|
| 1142 |
+
}
|
| 1143 |
+
"""
|
| 1144 |
+
) as interface:
|
| 1145 |
+
|
| 1146 |
+
gr.Markdown("""
|
| 1147 |
+
# 🇦🇲 Yerevan Venue AI Assistant
|
| 1148 |
+
### Your Conversational Guide to Yerevan's Best Venues
|
| 1149 |
+
|
| 1150 |
+
I can help you with:
|
| 1151 |
+
- 🍽️ **Restaurant & Bar Recommendations** - Find the perfect dining spot
|
| 1152 |
+
- 🗺️ **Location-Based Search** - Venues near specific streets or landmarks
|
| 1153 |
+
- 💬 **Casual Conversation** - Ask me anything or just say hello!
|
| 1154 |
+
- 🇦🇲 **Bilingual Support** - Chat in Armenian or English
|
| 1155 |
+
|
| 1156 |
+
**Examples:**
|
| 1157 |
+
- "Hello! How are you?"
|
| 1158 |
+
- "Find me a good pub on Pushkin Street"
|
| 1159 |
+
- "բարեր Մաշտոցի մոտ" (bars near Mashtots)
|
| 1160 |
+
- "What can you help me with?"
|
| 1161 |
+
""")
|
| 1162 |
+
|
| 1163 |
+
with gr.Row():
|
| 1164 |
+
with gr.Column(scale=3):
|
| 1165 |
+
query_input = gr.Textbox(
|
| 1166 |
+
label="💬 Ask me anything or request venue recommendations",
|
| 1167 |
+
placeholder="Try: 'Hello!' or 'Find me a restaurant near Opera House' or 'բարեր Պուշկին փողոցում'",
|
| 1168 |
+
lines=2
|
| 1169 |
+
)
|
| 1170 |
+
|
| 1171 |
+
with gr.Row():
|
| 1172 |
+
min_rating = gr.Slider(
|
| 1173 |
+
minimum=0, maximum=5, value=3.0, step=0.1,
|
| 1174 |
+
label="⭐ Minimum Rating (for venue searches)"
|
| 1175 |
+
)
|
| 1176 |
+
max_distance = gr.Slider(
|
| 1177 |
+
minimum=0.5, maximum=20, value=5.0, step=0.5,
|
| 1178 |
+
label="📍 Max Distance (km, for venue searches)"
|
| 1179 |
+
)
|
| 1180 |
+
|
| 1181 |
+
price_range = gr.Radio(
|
| 1182 |
+
choices=["all", "budget", "mid", "expensive"],
|
| 1183 |
+
value="all",
|
| 1184 |
+
label="💰 Price Range (for venue searches)"
|
| 1185 |
+
)
|
| 1186 |
+
|
| 1187 |
+
search_btn = gr.Button("🔍 Chat / Search", variant="primary", size="lg")
|
| 1188 |
+
|
| 1189 |
+
with gr.Column(scale=2):
|
| 1190 |
+
gr.Markdown("""
|
| 1191 |
+
### 💡 Tips:
|
| 1192 |
+
- **Start a conversation**: "Hi", "Hello", "How are you?"
|
| 1193 |
+
- **Ask about me**: "What can you do?", "Who are you?"
|
| 1194 |
+
- **Get venue help**: "Find restaurants", "Bars near Opera"
|
| 1195 |
+
- **Use Armenian**: "բարև", "ռեստորան", "բար"
|
| 1196 |
+
- **Be specific**: Include location, cuisine type, or atmosphere
|
| 1197 |
+
|
| 1198 |
+
### 🗺️ Known Locations:
|
| 1199 |
+
Pushkin Street, Mashtots Avenue, Saryan Street, Republic Square, Opera House, Cascade, Northern Avenue, Nalbandyan Street
|
| 1200 |
+
""")
|
| 1201 |
+
|
| 1202 |
+
output = gr.Textbox(
|
| 1203 |
+
label="🤖 AI Response",
|
| 1204 |
+
lines=15,
|
| 1205 |
+
max_lines=20,
|
| 1206 |
+
show_copy_button=True
|
| 1207 |
+
)
|
| 1208 |
+
|
| 1209 |
+
# Examples for quick testing
|
| 1210 |
+
gr.Examples(
|
| 1211 |
+
examples=[
|
| 1212 |
+
["Hello! How are you today?"],
|
| 1213 |
+
["What can you help me with?"],
|
| 1214 |
+
["Find me a good pub with draft beer"],
|
| 1215 |
+
["Restaurants near Opera House"],
|
| 1216 |
+
["բարև ձեզ, ինչպես եք?"],
|
| 1217 |
+
["բարեր Պուշկին փողոցում"],
|
| 1218 |
+
["pubs on Nalbandyan street"],
|
| 1219 |
+
["Thanks for your help!"]
|
| 1220 |
+
],
|
| 1221 |
+
inputs=[query_input],
|
| 1222 |
+
label="💬 Try these examples:"
|
| 1223 |
+
)
|
| 1224 |
+
|
| 1225 |
+
search_btn.click(
|
| 1226 |
+
fn=get_recommendations,
|
| 1227 |
+
inputs=[query_input, min_rating, price_range, max_distance],
|
| 1228 |
+
outputs=output
|
| 1229 |
+
)
|
| 1230 |
+
|
| 1231 |
+
# Auto-submit on Enter
|
| 1232 |
+
query_input.submit(
|
| 1233 |
+
fn=get_recommendations,
|
| 1234 |
+
inputs=[query_input, min_rating, price_range, max_distance],
|
| 1235 |
+
outputs=output
|
| 1236 |
+
)
|
| 1237 |
+
|
| 1238 |
+
return interface
|
| 1239 |
+
|
| 1240 |
+
if __name__ == "__main__":
|
| 1241 |
+
print("Launching Yerevan Venue AI Assistant with Conversational Capabilities...")
|
| 1242 |
+
|
| 1243 |
+
# Initialize the AI system
|
| 1244 |
+
initialize_ai()
|
| 1245 |
+
|
| 1246 |
+
# Create and launch Gradio interface
|
| 1247 |
+
interface = create_gradio_interface()
|
| 1248 |
+
interface.launch(
|
| 1249 |
+
server_name="0.0.0.0",
|
| 1250 |
+
server_port=7861,
|
| 1251 |
+
share=True,
|
| 1252 |
+
show_error=True
|
| 1253 |
+
)
|
yerevan_pubs_bars_20250623_193205.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e726d829e432c66821d25e28edbc28da9967e0041cb3a59a5965d586f152e2e0
|
| 3 |
+
size 31571522
|
yerevan_venues_structured.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|