File size: 32,666 Bytes
3dcd27a
 
0d6aceb
3dcd27a
 
73d682a
3dcd27a
f1f4f5c
3dcd27a
0d6aceb
f1f4f5c
73d682a
0d6aceb
73d682a
 
 
9c5411c
 
 
3dcd27a
 
 
 
 
 
 
 
7402da1
 
 
 
c86fb75
 
7402da1
 
134ab5d
3fb9a8d
f5d00b4
dae3297
 
 
0d6aceb
f5d00b4
46043d3
43cd77a
73d682a
f5d00b4
 
 
73d682a
0d6aceb
f5d00b4
 
 
73d682a
 
c725b63
35c43a2
f5d00b4
 
 
3dcd27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcdb282
f5d00b4
dcdb282
 
 
 
f5d00b4
 
 
 
dcdb282
 
 
 
 
 
 
 
 
 
 
 
 
3d31827
 
 
 
 
 
3bf98ae
 
73d682a
 
 
 
 
f5d00b4
73d682a
dae3297
73d682a
 
 
 
 
 
 
 
 
 
 
bbf9633
 
 
 
 
8f25a52
bbf9633
 
 
 
 
 
 
73d682a
bbf9633
ddf12d3
 
 
73d682a
 
 
 
 
f5d00b4
dae3297
73d682a
217e436
73d682a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99c5308
73d682a
 
 
 
 
 
 
 
f1f4f5c
f5d00b4
f1f4f5c
 
0d6aceb
f5d00b4
f1f4f5c
0d6aceb
 
 
 
 
 
 
 
 
 
 
 
 
f1f4f5c
 
 
 
 
0d6aceb
4925ef7
87c2ab6
 
0d6aceb
f1f4f5c
c109720
f1f4f5c
 
 
f5d00b4
f1f4f5c
 
 
 
 
0d6aceb
4925ef7
87c2ab6
 
0d6aceb
f1f4f5c
c109720
f1f4f5c
 
 
f5d00b4
f1f4f5c
 
 
 
 
0d6aceb
4925ef7
87c2ab6
 
0d6aceb
f1f4f5c
c109720
f1f4f5c
 
 
f5d00b4
f1f4f5c
 
 
dd5c0c7
 
0d6aceb
4925ef7
dd5c0c7
 
0d6aceb
dd5c0c7
c109720
dd5c0c7
 
 
f5d00b4
dd5c0c7
 
 
0d6aceb
3bf98ae
f5d00b4
 
bc2c415
3bf98ae
bc2c415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dcd27a
46043d3
8305a77
e5d1adc
f5d00b4
8212c14
46043d3
 
 
9a4a0ec
0d6aceb
74e2c25
 
dae3297
f5d00b4
0d6aceb
c1b8cab
0d658c0
0d6aceb
 
0d658c0
0d6aceb
c1b8cab
 
 
 
 
 
 
 
 
0d658c0
0d6aceb
0d658c0
c1b8cab
f5d00b4
c1b8cab
0d6aceb
3d31827
3dcd27a
c0eda81
f5d00b4
c0eda81
3dcd27a
f5d00b4
313696f
af8c43f
 
f5d00b4
 
 
 
 
0d6aceb
3d31827
0d6aceb
c0eda81
 
 
0d6aceb
3d31827
717cb54
3d31827
f5d00b4
 
0d6aceb
f5d00b4
 
 
0d6aceb
f5d00b4
 
 
 
0d6aceb
f5d00b4
0d6aceb
f5d00b4
 
 
0d6aceb
f5d00b4
 
 
 
 
 
 
 
 
 
 
 
 
 
4a632be
 
d7ff03a
f5d00b4
 
 
767a7c9
 
 
 
 
759c172
 
 
 
8a9315b
8212c14
 
 
 
 
 
 
 
f5d00b4
759c172
767a7c9
759c172
 
 
 
f5d00b4
 
 
767a7c9
 
 
 
 
759c172
 
767a7c9
 
 
 
 
8212c14
f5d00b4
 
 
767a7c9
 
 
 
 
 
f5d00b4
 
 
 
8a9315b
f5d00b4
 
 
 
8a9315b
f5d00b4
 
 
c3011cc
f5d00b4
 
 
 
 
 
8a9315b
f5d00b4
 
 
8a9315b
f5d00b4
 
 
 
8a9315b
f5d00b4
 
 
d34dfc3
f5d00b4
 
 
43cd77a
f5d00b4
0d6aceb
f5d00b4
 
 
 
 
 
 
 
 
717cb54
f5d00b4
 
3d31827
3dcd27a
dae3297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dcd27a
 
dae3297
 
 
 
 
 
 
 
d454e42
dae3297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa66e07
 
dae3297
 
717cb54
dae3297
 
 
717cb54
dae3297
aa66e07
717cb54
d454e42
dae3297
 
 
 
 
 
717cb54
dae3297
 
 
 
 
 
 
 
3dcd27a
d454e42
dae3297
 
d454e42
dae3297
 
 
3dcd27a
717cb54
6cc4456
dae3297
 
 
 
 
 
717cb54
dae3297
 
 
 
 
717cb54
 
3dcd27a
d454e42
f5d00b4
 
d454e42
 
 
 
 
 
 
 
 
 
 
 
f5d00b4
d454e42
 
 
f5d00b4
d454e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717cb54
 
 
d454e42
4f8012e
717cb54
d454e42
 
 
4f8012e
 
8a9315b
d454e42
8a9315b
4f8012e
d454e42
4f8012e
d454e42
4f8012e
8a9315b
4f8012e
 
 
8a9315b
4f8012e
d454e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717cb54
d454e42
 
 
 
 
717cb54
f5d00b4
717cb54
 
d454e42
 
 
 
717cb54
 
 
d454e42
c86fb75
 
d454e42
 
 
717cb54
d454e42
 
 
 
 
 
 
 
f5d00b4
d454e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b868fb7
d454e42
 
 
f1f4f5c
 
b868fb7
 
d454e42
 
 
 
 
b868fb7
 
d454e42
 
0d6aceb
d454e42
 
 
 
3dcd27a
f5d00b4
3dcd27a
 
 
 
717cb54
f5d00b4
3dcd27a
f670436
73d682a
 
0118014
73d682a
717cb54
73d682a
717cb54
 
 
3dcd27a
0d6aceb
717cb54
c0eda81
717cb54
c0eda81
0d6aceb
717cb54
0d6aceb
3d31827
0d6aceb
3d31827
0d6aceb
c0eda81
0d6aceb
c0eda81
 
 
0d6aceb
c0eda81
f5d00b4
 
0d6aceb
c0eda81
 
0d6aceb
3d31827
 
0d6aceb
 
 
f670436
d454e42
 
717cb54
 
d454e42
 
0118014
d454e42
c725b63
 
 
 
 
 
 
 
d454e42
3dcd27a
73d682a
 
 
 
 
f5d00b4
73d682a
 
 
 
 
863c3c0
 
73d682a
 
 
e794810
73d682a
 
 
 
 
 
 
 
 
717cb54
73d682a
 
 
0118014
e794810
0118014
73d682a
9f10112
 
73d682a
 
3dcd27a
 
 
 
 
73d682a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
import json
import os
import time
from datetime import datetime, timezone, timedelta
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
from dotenv import load_dotenv
import duckdb
import backoff
import requests
import requests.exceptions
from apscheduler.schedulers.blocking import BlockingScheduler
from apscheduler.triggers.cron import CronTrigger
import logging
import traceback
import subprocess
import re

# Load environment variables
load_dotenv()

# =============================================================================
# CONFIGURATION
# =============================================================================

# Get script directory for relative paths
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
BASE_DIR = os.path.dirname(SCRIPT_DIR)  # Parent directory

AGENTS_REPO = "SWE-Arena/bot_data"
AGENTS_REPO_LOCAL_PATH = os.path.join(BASE_DIR, "bot_data")  # Local git clone path
DUCKDB_CACHE_FILE = os.path.join(SCRIPT_DIR, "cache.duckdb")
GHARCHIVE_DATA_LOCAL_PATH = os.path.join(BASE_DIR, "gharchive/data")
LEADERBOARD_FILENAME = f"{os.getenv('COMPOSE_PROJECT_NAME')}.json"
LEADERBOARD_REPO = "SWE-Arena/leaderboard_data"
LEADERBOARD_TIME_FRAME_DAYS = 180

# Git sync configuration (mandatory to get latest bot data)
GIT_SYNC_TIMEOUT = 300  # 5 minutes timeout for git pull

# Streaming batch configuration
BATCH_SIZE_DAYS = 1  # Process 1 day at a time (~24 hourly files)

# Download configuration
DOWNLOAD_WORKERS = 4
DOWNLOAD_RETRY_DELAY = 2
MAX_RETRIES = 5

# Upload configuration
UPLOAD_DELAY_SECONDS = 5
UPLOAD_INITIAL_BACKOFF = 60
UPLOAD_MAX_BACKOFF = 3600

# Scheduler configuration
SCHEDULE_ENABLED = False
SCHEDULE_DAY_OF_WEEK = 'wed'  # Wednesday
SCHEDULE_HOUR = 0
SCHEDULE_MINUTE = 0
SCHEDULE_TIMEZONE = 'UTC'

# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================

def load_jsonl(filename):
    """Load JSONL file and return list of dictionaries."""
    if not os.path.exists(filename):
        return []

    data = []
    with open(filename, 'r', encoding='utf-8') as f:
        for line in f:
            line = line.strip()
            if line:
                try:
                    data.append(json.loads(line))
                except json.JSONDecodeError as e:
                    print(f"Warning: Skipping invalid JSON line: {e}")
    return data


def save_jsonl(filename, data):
    """Save list of dictionaries to JSONL file."""
    with open(filename, 'w', encoding='utf-8') as f:
        for item in data:
            f.write(json.dumps(item) + '\n')


def normalize_date_format(date_string):
    """Convert date strings or datetime objects to standardized ISO 8601 format with Z suffix."""
    if not date_string or date_string == 'N/A':
        return 'N/A'

    try:
        if isinstance(date_string, datetime):
            return date_string.strftime('%Y-%m-%dT%H:%M:%SZ')

        date_string = re.sub(r'\s+', ' ', date_string.strip())
        date_string = date_string.replace(' ', 'T')

        if len(date_string) >= 3:
            if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
                date_string = date_string + ':00'

        dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
        return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
    except Exception as e:
        print(f"Warning: Could not parse date '{date_string}': {e}")
        return date_string


def get_hf_token():
    """Get HuggingFace token from environment variables."""
    token = os.getenv('HF_TOKEN')
    if not token:
        print("Warning: HF_TOKEN not found in environment variables")
    return token


# =============================================================================
# GHARCHIVE DOWNLOAD FUNCTIONS
# =============================================================================

def download_file(url):
    """Download a GHArchive file with retry logic."""
    filename = url.split("/")[-1]
    filepath = os.path.join(GHARCHIVE_DATA_LOCAL_PATH, filename)

    if os.path.exists(filepath):
        return True

    for attempt in range(MAX_RETRIES):
        try:
            response = requests.get(url, timeout=30)
            response.raise_for_status()
            with open(filepath, "wb") as f:
                f.write(response.content)
            return True

        except requests.exceptions.HTTPError as e:
            # 404 means the file doesn't exist in GHArchive - skip without retry
            if e.response.status_code == 404:
                if attempt == 0:  # Only log once, not for each retry
                    print(f"   ⚠ {filename}: Not available (404) - skipping")
                return False

            # Other HTTP errors (5xx, etc.) should be retried
            wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
            print(f"   ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
            time.sleep(wait_time)

        except Exception as e:
            # Network errors, timeouts, etc. should be retried
            wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
            print(f"   ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
            time.sleep(wait_time)

    return False


def download_all_gharchive_data():
    """Download all GHArchive data files for the last LEADERBOARD_TIME_FRAME_DAYS."""
    os.makedirs(GHARCHIVE_DATA_LOCAL_PATH, exist_ok=True)

    end_date = datetime.now(timezone.utc)
    start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)

    urls = []
    current_date = start_date
    while current_date <= end_date:
        date_str = current_date.strftime("%Y-%m-%d")
        for hour in range(24):
            url = f"https://data.gharchive.org/{date_str}-{hour}.json.gz"
            urls.append(url)
        current_date += timedelta(days=1)

    downloads_processed = 0

    try:
        with ThreadPoolExecutor(max_workers=DOWNLOAD_WORKERS) as executor:
            futures = [executor.submit(download_file, url) for url in urls]
            for future in as_completed(futures):
                downloads_processed += 1

        print(f"   Download complete: {downloads_processed} files")
        return True

    except Exception as e:
        print(f"Error during download: {str(e)}")
        traceback.print_exc()
        return False


# =============================================================================
# HUGGINGFACE API WRAPPERS
# =============================================================================

def is_retryable_error(e):
    """Check if exception is retryable (rate limit or timeout error)."""
    if isinstance(e, HfHubHTTPError):
        if e.response.status_code == 429:
            return True

    if isinstance(e, (requests.exceptions.Timeout,
                     requests.exceptions.ReadTimeout,
                     requests.exceptions.ConnectTimeout)):
        return True

    if isinstance(e, Exception):
        error_str = str(e).lower()
        if 'timeout' in error_str or 'timed out' in error_str:
            return True

    return False


@backoff.on_exception(
    backoff.expo,
    (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
    max_tries=MAX_RETRIES,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_retryable_error(e),
    on_backoff=lambda details: print(
        f"   {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
    )
)
def list_repo_files_with_backoff(api, **kwargs):
    """Wrapper for api.list_repo_files() with exponential backoff."""
    return api.list_repo_files(**kwargs)


@backoff.on_exception(
    backoff.expo,
    (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
    max_tries=MAX_RETRIES,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_retryable_error(e),
    on_backoff=lambda details: print(
        f"   {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
    )
)
def hf_hub_download_with_backoff(**kwargs):
    """Wrapper for hf_hub_download() with exponential backoff."""
    return hf_hub_download(**kwargs)


@backoff.on_exception(
    backoff.expo,
    (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
    max_tries=MAX_RETRIES,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_retryable_error(e),
    on_backoff=lambda details: print(
        f"   {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
    )
)
def upload_file_with_backoff(api, **kwargs):
    """Wrapper for api.upload_file() with exponential backoff."""
    return api.upload_file(**kwargs)


@backoff.on_exception(
    backoff.expo,
    (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
    max_tries=MAX_RETRIES,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_retryable_error(e),
    on_backoff=lambda details: print(
        f"   {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
    )
)
def upload_folder_with_backoff(api, **kwargs):
    """Wrapper for api.upload_folder() with exponential backoff."""
    return api.upload_folder(**kwargs)


def get_duckdb_connection():
    """
    Initialize DuckDB connection with OPTIMIZED memory settings.
    Uses persistent database and reduced memory footprint.
    Automatically removes cache file if lock conflict is detected.
    """
    try:
        conn = duckdb.connect(DUCKDB_CACHE_FILE)
    except Exception as e:
        # Check if it's a locking error
        error_msg = str(e)
        if "lock" in error_msg.lower() or "conflicting" in error_msg.lower():
            print(f"   ⚠ Lock conflict detected, removing {DUCKDB_CACHE_FILE}...")
            if os.path.exists(DUCKDB_CACHE_FILE):
                os.remove(DUCKDB_CACHE_FILE)
                print(f"   βœ“ Cache file removed, retrying connection...")
            # Retry connection after removing cache
            conn = duckdb.connect(DUCKDB_CACHE_FILE)
        else:
            # Re-raise if it's not a locking error
            raise

    # CORE MEMORY & THREADING SETTINGS
    conn.execute(f"SET threads TO 6;")
    conn.execute(f"SET max_memory = '50GB';")
    conn.execute("SET temp_directory = '/tmp/duckdb_temp';")
    
    # PERFORMANCE OPTIMIZATIONS
    conn.execute("SET preserve_insertion_order = false;")  # Disable expensive ordering
    conn.execute("SET enable_object_cache = true;")  # Cache repeatedly read files

    return conn


def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_LOCAL_PATH):
    """Generate file path patterns for GHArchive data in date range (only existing files)."""
    file_patterns = []
    missing_dates = set()

    current_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
    end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)

    while current_date <= end_day:
        date_has_files = False
        for hour in range(24):
            pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-{hour}.json.gz")
            if os.path.exists(pattern):
                file_patterns.append(pattern)
                date_has_files = True

        if not date_has_files:
            missing_dates.add(current_date.strftime('%Y-%m-%d'))

        current_date += timedelta(days=1)

    if missing_dates:
        print(f"   ⚠ Skipping {len(missing_dates)} date(s) with no data")

    return file_patterns


# =============================================================================
# STREAMING BATCH PROCESSING FOR REVIEW METADATA
# =============================================================================

def fetch_all_review_metadata_streaming(conn, identifiers, start_date, end_date):
    """
    QUERY: Fetch review metadata using streaming batch processing:
    - ReviewEvent (for PR review tracking)

    This prevents OOM errors by:
    1. Only keeping ~168 hourly files in memory per batch (vs 4,344)
    2. Incrementally building the results dictionary
    3. Allowing DuckDB to garbage collect after each batch

    Args:
        conn: DuckDB connection instance
        identifiers: List of GitHub usernames/bot identifiers
        start_date: Start datetime (timezone-aware)
        end_date: End datetime (timezone-aware)

    Returns:
        Dictionary mapping assistant identifier to list of review metadata
    """
    identifier_list = ', '.join([f"'{id}'" for id in identifiers])
    metadata_by_agent = defaultdict(list)

    # Calculate total batches
    total_days = (end_date - start_date).days
    total_batches = (total_days // BATCH_SIZE_DAYS) + 1

    # Process in configurable batches
    current_date = start_date
    batch_num = 0
    total_reviews = 0

    print(f"   Streaming {total_batches} batches of {BATCH_SIZE_DAYS}-day intervals...")

    while current_date <= end_date:
        batch_num += 1
        batch_end = min(current_date + timedelta(days=BATCH_SIZE_DAYS - 1), end_date)

        # Get file patterns for THIS BATCH ONLY
        file_patterns = generate_file_path_patterns(current_date, batch_end)

        if not file_patterns:
            print(f"   Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} - NO DATA")
            current_date = batch_end + timedelta(days=1)
            continue

        # Progress indicator
        print(f"   Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} ({len(file_patterns)} files)... ", end="", flush=True)

        # Build file patterns SQL for THIS BATCH
        file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']'

        # Query for this batch
        # Note: For PullRequestReviewEvent, we use the actor as reviewer
        # For PullRequestReviewCommentEvent, we use the commenter as reviewer
        query = f"""
        WITH review_events AS (
            SELECT
                CONCAT(
                    REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
                    '/pull/',
                    CAST(payload.pull_request.number AS VARCHAR)
                ) as pr_url,
                CASE
                    WHEN type = 'PullRequestReviewEvent' THEN actor.login
                    WHEN type = 'PullRequestReviewCommentEvent' THEN struct_extract(struct_extract(payload.comment, 'user'), 'login')
                END as reviewer,
                created_at as reviewed_at
            FROM read_json(
                {file_patterns_sql}, 
                union_by_name=true, 
                filename=true, 
                compression='gzip', 
                format='newline_delimited', 
                ignore_errors=true
            )
            WHERE
                type IN ('PullRequestReviewEvent', 'PullRequestReviewCommentEvent')
                AND payload.pull_request.number IS NOT NULL
                AND (
                    (type = 'PullRequestReviewEvent' AND actor.login IN ({identifier_list}))
                    OR (type = 'PullRequestReviewCommentEvent' AND struct_extract(struct_extract(payload.comment, 'user'), 'login') IN ({identifier_list}))
                )
        ),
        pr_status AS (
            SELECT
                CONCAT(
                    REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
                    '/pull/',
                    CAST(payload.pull_request.number AS VARCHAR)
                ) as pr_url,
                TRY_CAST(json_extract_string(to_json(payload), '$.pull_request.merged_at') AS VARCHAR) as merged_at,
                created_at as closed_at,
                ROW_NUMBER() OVER (PARTITION BY CONCAT(
                    REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
                    '/pull/',
                    CAST(payload.pull_request.number AS VARCHAR)
                ) ORDER BY created_at DESC) as rn
            FROM read_json({file_patterns_sql}, union_by_name=false, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true)
            WHERE
                type = 'PullRequestEvent'
                AND payload.action = 'closed'
                AND payload.pull_request.number IS NOT NULL
                AND CONCAT(
                    REPLACE(repo.url, 'api.github.com/repos/', 'github.com/'),
                    '/pull/',
                    CAST(payload.pull_request.number AS VARCHAR)
                ) IN (SELECT DISTINCT pr_url FROM review_events)
        )
        SELECT
            re.reviewer,
            re.pr_url as url,
            re.reviewed_at,
            ps.merged_at,
            ps.closed_at
        FROM review_events re
        LEFT JOIN (SELECT * FROM pr_status WHERE rn = 1) ps ON re.pr_url = ps.pr_url
        ORDER BY re.reviewer, re.reviewed_at DESC
        """

        try:
            results = conn.execute(query).fetchall()
            batch_reviews = 0

            # Add results to accumulating dictionary
            for row in results:
                reviewer = row[0]
                url = row[1]
                reviewed_at = normalize_date_format(row[2]) if row[2] else None
                merged_at = normalize_date_format(row[3]) if row[3] else None
                closed_at = normalize_date_format(row[4]) if row[4] else None

                if not url or not reviewed_at:
                    continue

                review_metadata = {
                    'url': url,
                    'reviewed_at': reviewed_at,
                    'merged_at': merged_at,
                    'closed_at': closed_at,
                }

                metadata_by_agent[reviewer].append(review_metadata)
                batch_reviews += 1
                total_reviews += 1

            print(f"βœ“ {batch_reviews} reviews found")

        except Exception as e:
            print(f"\n   βœ— Batch {batch_num} error: {str(e)}")
            traceback.print_exc()

        # Move to next batch
        current_date = batch_end + timedelta(days=1)

    # Final summary
    agents_with_data = sum(1 for reviews in metadata_by_agent.values() if reviews)
    print(f"\n   βœ“ Complete: {total_reviews} reviews found for {agents_with_data}/{len(identifiers)} assistants")

    return dict(metadata_by_agent)


def sync_agents_repo():
    """
    Sync local bot_data repository with remote using git pull.
    This is MANDATORY to ensure we have the latest bot data.
    Raises exception if sync fails.
    """
    if not os.path.exists(AGENTS_REPO_LOCAL_PATH):
        error_msg = f"Local repository not found at {AGENTS_REPO_LOCAL_PATH}"
        print(f"   βœ— {error_msg}")
        print(f"   Please clone it first: git clone https://huggingface.co/datasets/{AGENTS_REPO}")
        raise FileNotFoundError(error_msg)

    if not os.path.exists(os.path.join(AGENTS_REPO_LOCAL_PATH, '.git')):
        error_msg = f"{AGENTS_REPO_LOCAL_PATH} exists but is not a git repository"
        print(f"   βœ— {error_msg}")
        raise ValueError(error_msg)

    try:
        # Run git pull with extended timeout due to large repository
        result = subprocess.run(
            ['git', 'pull'],
            cwd=AGENTS_REPO_LOCAL_PATH,
            capture_output=True,
            text=True,
            timeout=GIT_SYNC_TIMEOUT
        )

        if result.returncode == 0:
            output = result.stdout.strip()
            if "Already up to date" in output or "Already up-to-date" in output:
                print(f"   βœ“ Repository is up to date")
            else:
                print(f"   βœ“ Repository synced successfully")
                if output:
                    # Print first few lines of output
                    lines = output.split('\n')[:5]
                    for line in lines:
                        print(f"     {line}")
            return True
        else:
            error_msg = f"Git pull failed: {result.stderr.strip()}"
            print(f"   βœ— {error_msg}")
            raise RuntimeError(error_msg)

    except subprocess.TimeoutExpired:
        error_msg = f"Git pull timed out after {GIT_SYNC_TIMEOUT} seconds"
        print(f"   βœ— {error_msg}")
        raise TimeoutError(error_msg)
    except (FileNotFoundError, ValueError, RuntimeError, TimeoutError):
        raise  # Re-raise expected exceptions
    except Exception as e:
        error_msg = f"Error syncing repository: {str(e)}"
        print(f"   βœ— {error_msg}")
        raise RuntimeError(error_msg) from e


def load_agents_from_hf():
    """
    Load all assistant metadata JSON files from local git repository.
    ALWAYS syncs with remote first to ensure we have the latest bot data.
    """
    # MANDATORY: Sync with remote first to get latest bot data
    print(f"   Syncing bot_data repository to get latest assistants...")
    sync_agents_repo()  # Will raise exception if sync fails

    assistants = []

    # Scan local directory for JSON files
    if not os.path.exists(AGENTS_REPO_LOCAL_PATH):
        raise FileNotFoundError(f"Local repository not found at {AGENTS_REPO_LOCAL_PATH}")

    # Walk through the directory to find all JSON files
    files_processed = 0
    print(f"   Loading assistant metadata from {AGENTS_REPO_LOCAL_PATH}...")

    for root, dirs, files in os.walk(AGENTS_REPO_LOCAL_PATH):
        # Skip .git directory
        if '.git' in root:
            continue

        for filename in files:
            if not filename.endswith('.json'):
                continue

            files_processed += 1
            file_path = os.path.join(root, filename)

            try:
                with open(file_path, 'r', encoding='utf-8') as f:
                    agent_data = json.load(f)

                # Only include active assistants
                if agent_data.get('status') != 'active':
                    continue

                # Extract github_identifier from filename
                github_identifier = filename.replace('.json', '')
                agent_data['github_identifier'] = github_identifier

                assistants.append(agent_data)

            except Exception as e:
                print(f"   ⚠ Error loading {filename}: {str(e)}")
                continue

    print(f"   βœ“ Loaded {len(assistants)} active assistants (from {files_processed} total files)")
    return assistants


def get_pr_status_from_metadata(review_meta):
    """Derive PR status from merged_at and closed_at fields."""
    merged_at = review_meta.get('merged_at')
    closed_at = review_meta.get('closed_at')

    if merged_at:
        return 'merged'
    elif closed_at:
        return 'closed'
    else:
        return 'open'


def calculate_review_stats_from_metadata(metadata_list):
    """Calculate statistics from a list of review metadata."""
    total_reviews = len(metadata_list)

    merged_prs = sum(1 for review_meta in metadata_list
                     if get_pr_status_from_metadata(review_meta) == 'merged')

    rejected_prs = sum(1 for review_meta in metadata_list
                      if get_pr_status_from_metadata(review_meta) == 'closed')

    pending_prs = sum(1 for review_meta in metadata_list
                     if get_pr_status_from_metadata(review_meta) == 'open')

    # Calculate acceptance rate (exclude pending PRs)
    completed_prs = merged_prs + rejected_prs
    acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0

    return {
        'total_reviews': total_reviews,
        'merged_prs': merged_prs,
        'pending_prs': pending_prs,
        'acceptance_rate': round(acceptance_rate, 2),
    }


def calculate_monthly_metrics_by_agent(all_metadata_dict, assistants):
    """Calculate monthly metrics for all assistants for visualization."""
    identifier_to_name = {assistant.get('github_identifier'): assistant.get('name') for assistant in assistants if assistant.get('github_identifier')}

    if not all_metadata_dict:
        return {'assistants': [], 'months': [], 'data': {}}

    agent_month_data = defaultdict(lambda: defaultdict(list))

    for agent_identifier, metadata_list in all_metadata_dict.items():
        for review_meta in metadata_list:
            reviewed_at = review_meta.get('reviewed_at')

            if not reviewed_at:
                continue

            agent_name = identifier_to_name.get(agent_identifier, agent_identifier)

            try:
                dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
                month_key = f"{dt.year}-{dt.month:02d}"
                agent_month_data[agent_name][month_key].append(review_meta)
            except Exception as e:
                print(f"Warning: Could not parse date '{reviewed_at}': {e}")
                continue

    all_months = set()
    for agent_data in agent_month_data.values():
        all_months.update(agent_data.keys())
    months = sorted(list(all_months))

    result_data = {}
    for agent_name, month_dict in agent_month_data.items():
        acceptance_rates = []
        total_reviews_list = []
        merged_prs_list = []

        for month in months:
            reviews_in_month = month_dict.get(month, [])

            merged_count = sum(1 for review in reviews_in_month
                                if get_pr_status_from_metadata(review) == 'merged')

            rejected_count = sum(1 for review in reviews_in_month
                                if get_pr_status_from_metadata(review) == 'closed')

            total_count = len(reviews_in_month)

            completed_count = merged_count + rejected_count
            acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None

            acceptance_rates.append(acceptance_rate)
            total_reviews_list.append(total_count)
            merged_prs_list.append(merged_count)

        result_data[agent_name] = {
            'acceptance_rates': acceptance_rates,
            'total_reviews': total_reviews_list,
            'merged_prs': merged_prs_list,
        }

    agents_list = sorted(list(agent_month_data.keys()))

    return {
        'assistants': agents_list,
        'months': months,
        'data': result_data
    }


def construct_leaderboard_from_metadata(all_metadata_dict, assistants):
    """Construct leaderboard from in-memory review metadata."""
    if not assistants:
        print("Error: No assistants found")
        return {}

    cache_dict = {}

    for assistant in assistants:
        identifier = assistant.get('github_identifier')
        agent_name = assistant.get('name', 'Unknown')

        bot_data = all_metadata_dict.get(identifier, [])
        stats = calculate_review_stats_from_metadata(bot_data)

        cache_dict[identifier] = {
            'name': agent_name,
            'website': assistant.get('website', 'N/A'),
            'github_identifier': identifier,
            **stats
        }

    return cache_dict


def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
    """Save leaderboard data and monthly metrics to HuggingFace dataset."""
    try:
        token = get_hf_token()
        if not token:
            raise Exception("No HuggingFace token found")

        api = HfApi(token=token)

        combined_data = {
            'last_updated': datetime.now(timezone.utc).isoformat(),
            'leaderboard': leaderboard_dict,
            'monthly_metrics': monthly_metrics,
            'metadata': {
                'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS
            }
        }

        with open(LEADERBOARD_FILENAME, 'w') as f:
            json.dump(combined_data, f, indent=2)

        try:
            upload_file_with_backoff(
                api=api,
                path_or_fileobj=LEADERBOARD_FILENAME,
                path_in_repo=LEADERBOARD_FILENAME,
                repo_id=LEADERBOARD_REPO,
                repo_type="dataset"
            )
            return True
        finally:
            if os.path.exists(LEADERBOARD_FILENAME):
                os.remove(LEADERBOARD_FILENAME)

    except Exception as e:
        print(f"Error saving leaderboard data: {str(e)}")
        traceback.print_exc()
        return False


# =============================================================================
# MINING FUNCTION
# =============================================================================

def mine_all_agents():
    """
    Mine review metadata for all assistants using STREAMING batch processing.
    Downloads GHArchive data, then uses BATCH-based DuckDB queries.
    """
    print(f"\n[1/4] Downloading GHArchive data...")

    if not download_all_gharchive_data():
        print("Warning: Download had errors, continuing with available data...")

    print(f"\n[2/4] Loading assistant metadata...")

    assistants = load_agents_from_hf()
    if not assistants:
        print("Error: No assistants found")
        return

    identifiers = [assistant['github_identifier'] for assistant in assistants if assistant.get('github_identifier')]
    if not identifiers:
        print("Error: No valid assistant identifiers found")
        return

    print(f"\n[3/4] Mining review metadata ({len(identifiers)} assistants, {LEADERBOARD_TIME_FRAME_DAYS} days)...")

    try:
        conn = get_duckdb_connection()
    except Exception as e:
        print(f"Failed to initialize DuckDB connection: {str(e)}")
        return

    current_time = datetime.now(timezone.utc)
    end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
    start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)

    try:
        # USE STREAMING FUNCTION
        all_metadata = fetch_all_review_metadata_streaming(
            conn, identifiers, start_date, end_date
        )
    except Exception as e:
        print(f"Error during DuckDB fetch: {str(e)}")
        traceback.print_exc()
        return
    finally:
        conn.close()

    print(f"\n[4/4] Saving leaderboard...")

    try:
        leaderboard_dict = construct_leaderboard_from_metadata(all_metadata, assistants)
        monthly_metrics = calculate_monthly_metrics_by_agent(all_metadata, assistants)
        save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
    except Exception as e:
        print(f"Error saving leaderboard: {str(e)}")
        traceback.print_exc()
    finally:
        # Clean up DuckDB cache file to save storage
        if os.path.exists(DUCKDB_CACHE_FILE):
            try:
                os.remove(DUCKDB_CACHE_FILE)
                print(f"   βœ“ Cache file removed: {DUCKDB_CACHE_FILE}")
            except Exception as e:
                print(f"   ⚠ Failed to remove cache file: {str(e)}")


# =============================================================================
# SCHEDULER SETUP
# =============================================================================

def setup_scheduler():
    """Set up APScheduler to run mining jobs periodically."""
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
    )

    logging.getLogger('httpx').setLevel(logging.WARNING)

    scheduler = BlockingScheduler(timezone=SCHEDULE_TIMEZONE)

    trigger = CronTrigger(
        day_of_week=SCHEDULE_DAY_OF_WEEK,
        hour=SCHEDULE_HOUR,
        minute=SCHEDULE_MINUTE,
        timezone=SCHEDULE_TIMEZONE
    )

    scheduler.add_job(
        mine_all_agents,
        trigger=trigger,
        id='mine_all_agents',
        name='Mine GHArchive data for all assistants',
        replace_existing=True
    )

    next_run = trigger.get_next_fire_time(None, datetime.now(trigger.timezone))
    print(f"Scheduler: Weekly on {SCHEDULE_DAY_OF_WEEK} at {SCHEDULE_HOUR:02d}:{SCHEDULE_MINUTE:02d} {SCHEDULE_TIMEZONE}")
    print(f"Next run: {next_run}\n")

    print(f"\nScheduler started")
    scheduler.start()


# =============================================================================
# ENTRY POINT
# =============================================================================

if __name__ == "__main__":
    if SCHEDULE_ENABLED:
        setup_scheduler()
    else:
        mine_all_agents()