Spaces:
Sleeping
Sleeping
refine
Browse files
app.py
CHANGED
|
@@ -25,32 +25,15 @@ load_dotenv()
|
|
| 25 |
|
| 26 |
# Parse command-line arguments
|
| 27 |
parser = argparse.ArgumentParser(description='SWE Agent Review Leaderboard')
|
| 28 |
-
parser.add_argument('--debug', '--DEBUG', action='store_true',
|
| 29 |
-
help='Enable debug mode (limits review retrieval to 10 per query pattern)')
|
| 30 |
-
parser.add_argument('--no-debug', '--production', action='store_true',
|
| 31 |
-
help='Explicitly disable debug mode (force production mode)')
|
| 32 |
args = parser.parse_args()
|
| 33 |
|
| 34 |
# =============================================================================
|
| 35 |
# CONFIGURATION
|
| 36 |
# =============================================================================
|
| 37 |
|
| 38 |
-
# DEBUG MODE: Set to True to limit review retrieval for testing
|
| 39 |
-
# When enabled, only fetches up to 10 reviews per query pattern per agent
|
| 40 |
-
# Priority: 1) Command-line args, 2) Environment variable, 3) Default (False)
|
| 41 |
-
if args.no_debug:
|
| 42 |
-
DEBUG_MODE = False
|
| 43 |
-
elif args.debug:
|
| 44 |
-
DEBUG_MODE = True
|
| 45 |
-
else:
|
| 46 |
-
DEBUG_MODE = os.getenv('DEBUG_MODE', 'False').lower() in ('true', '1', 'yes')
|
| 47 |
-
|
| 48 |
-
# In-memory cache for debug mode (data persists during session but NOT saved to HF)
|
| 49 |
-
DEBUG_REVIEW_METADATA_CACHE = defaultdict(list)
|
| 50 |
-
|
| 51 |
AGENTS_REPO = "SWE-Arena/swe_agents" # HuggingFace dataset for agent metadata
|
| 52 |
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata" # HuggingFace dataset for review metadata
|
| 53 |
-
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for leaderboard
|
| 54 |
|
| 55 |
LEADERBOARD_COLUMNS = [
|
| 56 |
("Agent Name", "string"),
|
|
@@ -191,7 +174,7 @@ def fetch_reviews_from_bigquery(client, identifier, start_date, end_date):
|
|
| 191 |
SELECT
|
| 192 |
repo.name as repo_name,
|
| 193 |
actor.login as actor_login,
|
| 194 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.
|
| 195 |
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number,
|
| 196 |
JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at') as reviewed_at,
|
| 197 |
created_at
|
|
@@ -222,7 +205,7 @@ def fetch_reviews_from_bigquery(client, identifier, start_date, end_date):
|
|
| 222 |
return []
|
| 223 |
|
| 224 |
|
| 225 |
-
def fetch_pr_status_from_bigquery(client,
|
| 226 |
"""
|
| 227 |
Fetch PR status (merged/closed) from GitHub Archive PullRequestEvent.
|
| 228 |
|
|
@@ -231,29 +214,29 @@ def fetch_pr_status_from_bigquery(client, pr_urls, start_date, end_date):
|
|
| 231 |
|
| 232 |
Args:
|
| 233 |
client: BigQuery client instance
|
| 234 |
-
|
| 235 |
start_date: Start datetime (should cover review period and after)
|
| 236 |
end_date: End datetime (should be recent/current)
|
| 237 |
|
| 238 |
Returns:
|
| 239 |
Dictionary mapping PR URL to status dict:
|
| 240 |
{
|
| 241 |
-
'
|
| 242 |
'status': 'merged'|'closed'|'open',
|
| 243 |
'merged': bool,
|
| 244 |
'closed_at': timestamp or None
|
| 245 |
}
|
| 246 |
}
|
| 247 |
"""
|
| 248 |
-
if not
|
| 249 |
return {}
|
| 250 |
|
| 251 |
-
print(f"\nπ Querying BigQuery for PR status ({len(
|
| 252 |
|
| 253 |
# Extract repo and PR number from URLs
|
| 254 |
# URL format: https://github.com/owner/repo/pull/123
|
| 255 |
pr_info = []
|
| 256 |
-
for url in
|
| 257 |
try:
|
| 258 |
parts = url.replace('https://github.com/', '').split('/')
|
| 259 |
if len(parts) >= 4:
|
|
@@ -305,7 +288,7 @@ def fetch_pr_status_from_bigquery(client, pr_urls, start_date, end_date):
|
|
| 305 |
SELECT
|
| 306 |
repo.name as repo_name,
|
| 307 |
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number,
|
| 308 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.
|
| 309 |
JSON_EXTRACT_SCALAR(payload, '$.action') as action,
|
| 310 |
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged') AS BOOL) as merged,
|
| 311 |
JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at,
|
|
@@ -331,7 +314,7 @@ def fetch_pr_status_from_bigquery(client, pr_urls, start_date, end_date):
|
|
| 331 |
# Build status map by PR URL
|
| 332 |
status_map = {}
|
| 333 |
for row in results:
|
| 334 |
-
|
| 335 |
|
| 336 |
merged = row.merged if row.merged is not None else False
|
| 337 |
closed_at = row.closed_at or row.merged_at
|
|
@@ -342,14 +325,14 @@ def fetch_pr_status_from_bigquery(client, pr_urls, start_date, end_date):
|
|
| 342 |
|
| 343 |
status = 'merged' if merged else 'closed'
|
| 344 |
|
| 345 |
-
status_map[
|
| 346 |
'status': status,
|
| 347 |
'merged': merged,
|
| 348 |
'closed_at': closed_at
|
| 349 |
}
|
| 350 |
|
| 351 |
# Mark remaining PRs as open
|
| 352 |
-
for url in
|
| 353 |
if url not in status_map:
|
| 354 |
status_map[url] = {
|
| 355 |
'status': 'open',
|
|
@@ -368,7 +351,7 @@ def fetch_pr_status_from_bigquery(client, pr_urls, start_date, end_date):
|
|
| 368 |
except Exception as e:
|
| 369 |
print(f" β BigQuery error: {str(e)}")
|
| 370 |
# Return all as open on error
|
| 371 |
-
return {url: {'status': 'open', 'merged': False, 'closed_at': None} for url in
|
| 372 |
|
| 373 |
|
| 374 |
def extract_review_metadata_from_bigquery(review_row, status_info):
|
|
@@ -382,7 +365,7 @@ def extract_review_metadata_from_bigquery(review_row, status_info):
|
|
| 382 |
Returns:
|
| 383 |
Dictionary with review metadata
|
| 384 |
"""
|
| 385 |
-
|
| 386 |
pr_number = review_row.pr_number
|
| 387 |
reviewed_at = review_row.reviewed_at or review_row.created_at
|
| 388 |
|
|
@@ -391,12 +374,12 @@ def extract_review_metadata_from_bigquery(review_row, status_info):
|
|
| 391 |
reviewed_at = reviewed_at.isoformat()
|
| 392 |
|
| 393 |
return {
|
| 394 |
-
'
|
| 395 |
'reviewed_at': reviewed_at,
|
| 396 |
'pr_status': status_info['status'],
|
| 397 |
-
'
|
| 398 |
-
'
|
| 399 |
-
'
|
| 400 |
'review_id': f"pr_{pr_number}"
|
| 401 |
}
|
| 402 |
|
|
@@ -703,14 +686,13 @@ def validate_github_username(identifier):
|
|
| 703 |
return False, f"Validation error: {str(e)}"
|
| 704 |
|
| 705 |
|
| 706 |
-
def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_pool, prs_by_url,
|
| 707 |
"""
|
| 708 |
Fetch reviews within a specific time range using time-based partitioning.
|
| 709 |
Recursively splits the time range if hitting the 1000-result limit.
|
| 710 |
Supports splitting by day, hour, minute, and second as needed.
|
| 711 |
|
| 712 |
Args:
|
| 713 |
-
debug_limit: If set, stops fetching after this many NEW reviews total across all partitions (for testing)
|
| 714 |
depth: Current recursion depth (for tracking)
|
| 715 |
|
| 716 |
Returns the number of reviews found in this time partition.
|
|
@@ -748,10 +730,6 @@ def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_po
|
|
| 748 |
total_in_partition = 0
|
| 749 |
|
| 750 |
while True:
|
| 751 |
-
# Check debug limit GLOBALLY (total unique PRs across all partitions)
|
| 752 |
-
if debug_limit is not None and len(prs_by_url) >= debug_limit:
|
| 753 |
-
print(f"{indent} π DEBUG MODE: Reached global limit of {debug_limit} PRs, stopping...")
|
| 754 |
-
return total_in_partition
|
| 755 |
url = 'https://api.github.com/search/issues' # Use issues endpoint for PR search
|
| 756 |
params = {
|
| 757 |
'q': query,
|
|
@@ -782,11 +760,11 @@ def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_po
|
|
| 782 |
|
| 783 |
# Add PR reviews to global dict (keyed by PR URL)
|
| 784 |
for pr in items:
|
| 785 |
-
|
| 786 |
pr_number = pr.get('number')
|
| 787 |
# Use PR URL as unique key (more reliable than number alone)
|
| 788 |
-
if
|
| 789 |
-
prs_by_url[
|
| 790 |
total_in_partition += 1
|
| 791 |
|
| 792 |
# Check if we hit the 1000-result limit
|
|
@@ -813,7 +791,7 @@ def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_po
|
|
| 813 |
split_start = split_start + timedelta(seconds=1)
|
| 814 |
|
| 815 |
count = fetch_reviews_with_time_partition(
|
| 816 |
-
base_query, split_start, split_end, token_pool, prs_by_url,
|
| 817 |
)
|
| 818 |
total_from_splits += count
|
| 819 |
|
|
@@ -834,7 +812,7 @@ def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_po
|
|
| 834 |
split_start = split_start + timedelta(minutes=1)
|
| 835 |
|
| 836 |
count = fetch_reviews_with_time_partition(
|
| 837 |
-
base_query, split_start, split_end, token_pool, prs_by_url,
|
| 838 |
)
|
| 839 |
total_from_splits += count
|
| 840 |
|
|
@@ -855,7 +833,7 @@ def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_po
|
|
| 855 |
split_start = split_start + timedelta(hours=1)
|
| 856 |
|
| 857 |
count = fetch_reviews_with_time_partition(
|
| 858 |
-
base_query, split_start, split_end, token_pool, prs_by_url,
|
| 859 |
)
|
| 860 |
total_from_splits += count
|
| 861 |
|
|
@@ -886,7 +864,7 @@ def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_po
|
|
| 886 |
split_start = split_start + timedelta(days=1)
|
| 887 |
|
| 888 |
count = fetch_reviews_with_time_partition(
|
| 889 |
-
base_query, split_start, split_end, token_pool, prs_by_url,
|
| 890 |
)
|
| 891 |
total_from_splits += count
|
| 892 |
|
|
@@ -897,10 +875,10 @@ def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_po
|
|
| 897 |
|
| 898 |
# Recursively fetch both halves
|
| 899 |
count1 = fetch_reviews_with_time_partition(
|
| 900 |
-
base_query, start_date, mid_date, token_pool, prs_by_url,
|
| 901 |
)
|
| 902 |
count2 = fetch_reviews_with_time_partition(
|
| 903 |
-
base_query, mid_date + timedelta(days=1), end_date, token_pool, prs_by_url,
|
| 904 |
)
|
| 905 |
|
| 906 |
return count1 + count2
|
|
@@ -922,7 +900,7 @@ def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_po
|
|
| 922 |
return total_in_partition
|
| 923 |
|
| 924 |
|
| 925 |
-
def fetch_reviews_parallel(query_patterns, start_date, end_date, token_pool, prs_by_url
|
| 926 |
"""
|
| 927 |
Fetch reviews for multiple query patterns in parallel using available parallel tokens.
|
| 928 |
|
|
@@ -936,7 +914,6 @@ def fetch_reviews_parallel(query_patterns, start_date, end_date, token_pool, prs
|
|
| 936 |
end_date: End datetime for time range
|
| 937 |
token_pool: TokenPool instance for token management
|
| 938 |
prs_by_url: Dictionary to collect PRs by URL (shared across patterns)
|
| 939 |
-
debug_limit: Optional limit on total PRs to fetch (for testing)
|
| 940 |
|
| 941 |
Returns:
|
| 942 |
Total number of PRs found across all patterns
|
|
@@ -954,7 +931,7 @@ def fetch_reviews_parallel(query_patterns, start_date, end_date, token_pool, prs
|
|
| 954 |
for pattern in query_patterns:
|
| 955 |
pattern_prs = {}
|
| 956 |
count = fetch_reviews_with_time_partition(
|
| 957 |
-
pattern, start_date, end_date, token_pool, pattern_prs,
|
| 958 |
)
|
| 959 |
# Merge pattern results into global dict
|
| 960 |
with threading.Lock():
|
|
@@ -975,7 +952,7 @@ def fetch_reviews_parallel(query_patterns, start_date, end_date, token_pool, prs
|
|
| 975 |
pattern_prs = {}
|
| 976 |
try:
|
| 977 |
count = fetch_reviews_with_time_partition(
|
| 978 |
-
pattern, start_date, end_date, token_pool, pattern_prs,
|
| 979 |
)
|
| 980 |
return pattern, pattern_prs, count
|
| 981 |
except Exception as e:
|
|
@@ -1017,20 +994,20 @@ def fetch_reviews_parallel(query_patterns, start_date, end_date, token_pool, prs
|
|
| 1017 |
def extract_review_metadata(pr):
|
| 1018 |
"""
|
| 1019 |
Extract minimal PR review metadata for efficient storage.
|
| 1020 |
-
Only keeps essential fields:
|
| 1021 |
Note: agent_name is not stored as it's inferred from the folder structure.
|
| 1022 |
|
| 1023 |
PR status:
|
| 1024 |
- pr_status: 'open', 'merged', or 'closed'
|
| 1025 |
-
-
|
| 1026 |
-
-
|
| 1027 |
|
| 1028 |
Merged PR = PR that was merged after agent review
|
| 1029 |
Rejected PR = PR that was closed without merging after agent review
|
| 1030 |
"""
|
| 1031 |
# Extract PR metadata from search results
|
| 1032 |
# The GitHub search API returns PR data from /search/issues endpoint
|
| 1033 |
-
|
| 1034 |
pr_number = pr.get('number')
|
| 1035 |
created_at = pr.get('created_at')
|
| 1036 |
closed_at = pr.get('closed_at')
|
|
@@ -1041,10 +1018,10 @@ def extract_review_metadata(pr):
|
|
| 1041 |
|
| 1042 |
# For initial extraction, we don't know if merged yet
|
| 1043 |
# This will be updated by update_pr_status function
|
| 1044 |
-
|
| 1045 |
|
| 1046 |
# Determine initial status
|
| 1047 |
-
if
|
| 1048 |
status = 'merged'
|
| 1049 |
elif state == 'closed':
|
| 1050 |
status = 'closed'
|
|
@@ -1052,12 +1029,11 @@ def extract_review_metadata(pr):
|
|
| 1052 |
status = 'open'
|
| 1053 |
|
| 1054 |
return {
|
| 1055 |
-
'
|
| 1056 |
'reviewed_at': created_at, # When the PR was created (agent reviewed it)
|
| 1057 |
'pr_status': status,
|
| 1058 |
-
'
|
| 1059 |
-
'
|
| 1060 |
-
'pr_url': pr_url, # Store PR URL for tracking
|
| 1061 |
'review_id': f"pr_{pr_number}" # Use PR number for deduplication
|
| 1062 |
}
|
| 1063 |
|
|
@@ -1069,8 +1045,6 @@ def update_pr_status(metadata_list, token_pool):
|
|
| 1069 |
For each PR associated with a review, fetch current status from GitHub API.
|
| 1070 |
Updates metadata_list in-place with PR status information.
|
| 1071 |
|
| 1072 |
-
In DEBUG MODE: Skips status updates to avoid API rate limits.
|
| 1073 |
-
|
| 1074 |
Args:
|
| 1075 |
metadata_list: List of review metadata dictionaries
|
| 1076 |
token_pool: TokenPool instance for rotating tokens
|
|
@@ -1081,32 +1055,27 @@ def update_pr_status(metadata_list, token_pool):
|
|
| 1081 |
if not metadata_list:
|
| 1082 |
return metadata_list
|
| 1083 |
|
| 1084 |
-
# In debug mode, skip status updates to avoid excessive API calls
|
| 1085 |
-
if DEBUG_MODE:
|
| 1086 |
-
print(f" π DEBUG MODE: Skipping PR status updates for {len(metadata_list)} reviews")
|
| 1087 |
-
return metadata_list
|
| 1088 |
-
|
| 1089 |
# Track unique PRs to avoid duplicate API calls
|
| 1090 |
-
|
| 1091 |
updated_count = 0
|
| 1092 |
|
| 1093 |
for metadata in metadata_list:
|
| 1094 |
-
|
| 1095 |
-
if not
|
| 1096 |
continue
|
| 1097 |
|
| 1098 |
# Skip if already fetched for this PR
|
| 1099 |
-
if
|
| 1100 |
-
status_info =
|
| 1101 |
metadata['pr_status'] = status_info['status']
|
| 1102 |
-
metadata['
|
| 1103 |
-
metadata['
|
| 1104 |
continue
|
| 1105 |
|
| 1106 |
try:
|
| 1107 |
# Convert HTML URL to API URL
|
| 1108 |
# https://github.com/owner/repo/pull/123 -> https://api.github.com/repos/owner/repo/pulls/123
|
| 1109 |
-
parts =
|
| 1110 |
if len(parts) >= 4:
|
| 1111 |
owner, repo, pull_word, pr_number = parts[0], parts[1], parts[2], parts[3]
|
| 1112 |
api_url = f'https://api.github.com/repos/{owner}/{repo}/pulls/{pr_number}'
|
|
@@ -1137,17 +1106,17 @@ def update_pr_status(metadata_list, token_pool):
|
|
| 1137 |
}
|
| 1138 |
|
| 1139 |
# Cache and update
|
| 1140 |
-
|
| 1141 |
metadata['pr_status'] = status
|
| 1142 |
-
metadata['
|
| 1143 |
-
metadata['
|
| 1144 |
updated_count += 1
|
| 1145 |
|
| 1146 |
# Small delay to avoid rate limiting
|
| 1147 |
time.sleep(0.1)
|
| 1148 |
|
| 1149 |
except Exception as e:
|
| 1150 |
-
print(f" Warning: Could not check PR status for {
|
| 1151 |
continue
|
| 1152 |
|
| 1153 |
if updated_count > 0:
|
|
@@ -1158,33 +1127,57 @@ def update_pr_status(metadata_list, token_pool):
|
|
| 1158 |
|
| 1159 |
|
| 1160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1161 |
def calculate_review_stats_from_metadata(metadata_list):
|
| 1162 |
"""
|
| 1163 |
Calculate statistics from a list of review metadata (lightweight objects).
|
| 1164 |
-
Works with minimal metadata:
|
| 1165 |
|
| 1166 |
Returns a dictionary with comprehensive review metrics.
|
| 1167 |
|
| 1168 |
Acceptance Rate is calculated as:
|
| 1169 |
merged PRs / (merged PRs + rejected PRs) * 100
|
| 1170 |
|
| 1171 |
-
Merged PRs = PRs that were merged (
|
| 1172 |
-
Rejected PRs = PRs that were closed without merging (
|
| 1173 |
-
Pending PRs = PRs still open (
|
| 1174 |
"""
|
| 1175 |
total_reviews = len(metadata_list)
|
| 1176 |
|
| 1177 |
-
# Count merged PRs (
|
| 1178 |
merged_prs = sum(1 for review_meta in metadata_list
|
| 1179 |
-
if review_meta
|
| 1180 |
|
| 1181 |
# Count rejected PRs (closed without merging)
|
| 1182 |
rejected_prs = sum(1 for review_meta in metadata_list
|
| 1183 |
-
if review_meta
|
| 1184 |
|
| 1185 |
# Count pending PRs (still open)
|
| 1186 |
pending_prs = sum(1 for review_meta in metadata_list
|
| 1187 |
-
if review_meta
|
| 1188 |
|
| 1189 |
# Calculate acceptance rate (exclude pending PRs)
|
| 1190 |
completed_prs = merged_prs + rejected_prs
|
|
@@ -1198,11 +1191,15 @@ def calculate_review_stats_from_metadata(metadata_list):
|
|
| 1198 |
}
|
| 1199 |
|
| 1200 |
|
| 1201 |
-
def calculate_monthly_metrics_by_agent():
|
| 1202 |
"""
|
| 1203 |
-
Calculate monthly metrics for all agents for visualization.
|
| 1204 |
Loads data directly from SWE-Arena/review_metadata dataset.
|
| 1205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1206 |
Returns:
|
| 1207 |
dict: {
|
| 1208 |
'agents': list of agent names,
|
|
@@ -1220,7 +1217,7 @@ def calculate_monthly_metrics_by_agent():
|
|
| 1220 |
agents = load_agents_from_hf()
|
| 1221 |
|
| 1222 |
# Create mapping from agent_identifier to agent_name
|
| 1223 |
-
identifier_to_name = {agent.get('github_identifier'): agent.get('
|
| 1224 |
|
| 1225 |
# Load all review metadata from review_metadata dataset
|
| 1226 |
all_metadata = load_review_metadata()
|
|
@@ -1290,8 +1287,25 @@ def calculate_monthly_metrics_by_agent():
|
|
| 1290 |
'merged_prs': merged_prs_list,
|
| 1291 |
}
|
| 1292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1293 |
return {
|
| 1294 |
-
'agents':
|
| 1295 |
'months': months,
|
| 1296 |
'data': result_data
|
| 1297 |
}
|
|
@@ -1327,7 +1341,6 @@ def save_review_metadata_to_hf(metadata_list, agent_identifier):
|
|
| 1327 |
"""
|
| 1328 |
Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 1329 |
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
|
| 1330 |
-
In debug mode, saves to in-memory cache only.
|
| 1331 |
|
| 1332 |
This function APPENDS new metadata and DEDUPLICATES by review_id.
|
| 1333 |
Uses batch upload to avoid rate limit (uploads entire folder in single commit).
|
|
@@ -1339,17 +1352,6 @@ def save_review_metadata_to_hf(metadata_list, agent_identifier):
|
|
| 1339 |
import tempfile
|
| 1340 |
import shutil
|
| 1341 |
|
| 1342 |
-
# Skip saving to HF in debug mode - use in-memory cache instead
|
| 1343 |
-
if DEBUG_MODE:
|
| 1344 |
-
global DEBUG_REVIEW_METADATA_CACHE
|
| 1345 |
-
# Merge with existing cache, deduplicating by review_id
|
| 1346 |
-
existing = {review['review_id']: review for review in DEBUG_REVIEW_METADATA_CACHE[agent_identifier] if review.get('review_id')}
|
| 1347 |
-
new = {review['review_id']: review for review in metadata_list if review.get('review_id')}
|
| 1348 |
-
existing.update(new)
|
| 1349 |
-
DEBUG_REVIEW_METADATA_CACHE[agent_identifier] = list(existing.values())
|
| 1350 |
-
print(f"π DEBUG MODE: Saved to in-memory cache only ({len(metadata_list)} reviews) - NOT saved to HuggingFace")
|
| 1351 |
-
return True
|
| 1352 |
-
|
| 1353 |
try:
|
| 1354 |
token = get_hf_token()
|
| 1355 |
if not token:
|
|
@@ -1428,8 +1430,6 @@ def load_review_metadata():
|
|
| 1428 |
"""
|
| 1429 |
Load review metadata from the last LEADERBOARD_TIME_FRAME_DAYS.
|
| 1430 |
|
| 1431 |
-
In debug mode, loads from in-memory cache if available and filters by time frame.
|
| 1432 |
-
|
| 1433 |
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 1434 |
|
| 1435 |
Returns:
|
|
@@ -1440,28 +1440,6 @@ def load_review_metadata():
|
|
| 1440 |
current_time = datetime.now(timezone.utc)
|
| 1441 |
cutoff_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1442 |
|
| 1443 |
-
# In debug mode, check in-memory cache first
|
| 1444 |
-
if DEBUG_MODE and DEBUG_REVIEW_METADATA_CACHE:
|
| 1445 |
-
all_metadata = []
|
| 1446 |
-
for agent_identifier, metadata_list in DEBUG_REVIEW_METADATA_CACHE.items():
|
| 1447 |
-
for review_meta in metadata_list:
|
| 1448 |
-
# Filter by time frame
|
| 1449 |
-
reviewed_at = review_meta.get('reviewed_at')
|
| 1450 |
-
if reviewed_at:
|
| 1451 |
-
try:
|
| 1452 |
-
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
|
| 1453 |
-
if dt < cutoff_date:
|
| 1454 |
-
continue # Skip reviews older than time frame
|
| 1455 |
-
except Exception:
|
| 1456 |
-
pass # Keep reviews with unparseable dates
|
| 1457 |
-
|
| 1458 |
-
review_with_agent = review_meta.copy()
|
| 1459 |
-
review_with_agent['agent_identifier'] = agent_identifier
|
| 1460 |
-
all_metadata.append(review_with_agent)
|
| 1461 |
-
if all_metadata:
|
| 1462 |
-
print(f"π DEBUG MODE: Loading review metadata from in-memory cache (last {LEADERBOARD_TIME_FRAME_DAYS} days, {len(all_metadata)} reviews)")
|
| 1463 |
-
return all_metadata
|
| 1464 |
-
|
| 1465 |
try:
|
| 1466 |
api = HfApi()
|
| 1467 |
token = get_hf_token()
|
|
@@ -1495,6 +1473,8 @@ def load_review_metadata():
|
|
| 1495 |
print(f"π₯ Loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days ({len(time_frame_files)} daily files across all agents)...")
|
| 1496 |
|
| 1497 |
all_metadata = []
|
|
|
|
|
|
|
| 1498 |
for filename in time_frame_files:
|
| 1499 |
try:
|
| 1500 |
# Extract agent_identifier from path (first part)
|
|
@@ -1505,6 +1485,7 @@ def load_review_metadata():
|
|
| 1505 |
continue
|
| 1506 |
|
| 1507 |
agent_identifier = parts[0]
|
|
|
|
| 1508 |
|
| 1509 |
file_path = hf_hub_download(
|
| 1510 |
repo_id=REVIEW_METADATA_REPO,
|
|
@@ -1536,6 +1517,14 @@ def load_review_metadata():
|
|
| 1536 |
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 1537 |
|
| 1538 |
print(f"β Loaded {len(all_metadata)} total reviews from last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1539 |
return all_metadata
|
| 1540 |
|
| 1541 |
except Exception as e:
|
|
@@ -1601,13 +1590,12 @@ def get_latest_review_date_for_agent(agent_identifier):
|
|
| 1601 |
return None
|
| 1602 |
|
| 1603 |
|
| 1604 |
-
def
|
| 1605 |
"""
|
| 1606 |
-
Get list of daily file paths for an agent from the
|
| 1607 |
|
| 1608 |
Args:
|
| 1609 |
agent_identifier: GitHub identifier of the agent
|
| 1610 |
-
n_months: Number of months to look back (default: 6)
|
| 1611 |
|
| 1612 |
Returns:
|
| 1613 |
List of file paths in format: [agent_identifier]/YYYY.MM.DD.jsonl
|
|
@@ -1616,9 +1604,9 @@ def get_daily_files_last_n_months(agent_identifier, n_months=6):
|
|
| 1616 |
api = HfApi()
|
| 1617 |
token = get_hf_token()
|
| 1618 |
|
| 1619 |
-
# Calculate date range
|
| 1620 |
today = datetime.now(timezone.utc)
|
| 1621 |
-
|
| 1622 |
|
| 1623 |
# List all files in the repository
|
| 1624 |
files = api.list_repo_files(repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
|
|
@@ -1644,8 +1632,8 @@ def get_daily_files_last_n_months(agent_identifier, n_months=6):
|
|
| 1644 |
file_year, file_month, file_day = map(int, date_components)
|
| 1645 |
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 1646 |
|
| 1647 |
-
# Include if within
|
| 1648 |
-
if
|
| 1649 |
recent_files.append(filename)
|
| 1650 |
except Exception:
|
| 1651 |
continue
|
|
@@ -1704,7 +1692,7 @@ def fetch_review_current_status(review_url, token):
|
|
| 1704 |
|
| 1705 |
def refresh_review_status_for_agent(agent_identifier, token):
|
| 1706 |
"""
|
| 1707 |
-
Refresh status for all open reviews from the last
|
| 1708 |
Only updates reviews that are still open (state="open" or no state_reason).
|
| 1709 |
|
| 1710 |
This implements the smart update strategy:
|
|
@@ -1719,11 +1707,11 @@ def refresh_review_status_for_agent(agent_identifier, token):
|
|
| 1719 |
Returns:
|
| 1720 |
Tuple: (total_checked, updated_count)
|
| 1721 |
"""
|
| 1722 |
-
print(f"\nπ Refreshing open reviews for {agent_identifier} (last
|
| 1723 |
|
| 1724 |
try:
|
| 1725 |
-
# Get daily files from
|
| 1726 |
-
recent_files =
|
| 1727 |
|
| 1728 |
if not recent_files:
|
| 1729 |
print(f" No recent files found for {agent_identifier}")
|
|
@@ -1760,7 +1748,7 @@ def refresh_review_status_for_agent(agent_identifier, token):
|
|
| 1760 |
continue
|
| 1761 |
|
| 1762 |
# Review may have been reverted, check status
|
| 1763 |
-
review_url = review.get("
|
| 1764 |
|
| 1765 |
if not review_url:
|
| 1766 |
updated_reviews.append(review)
|
|
@@ -1848,6 +1836,16 @@ def load_agents_from_hf():
|
|
| 1848 |
|
| 1849 |
with open(file_path, 'r') as f:
|
| 1850 |
agent_data = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1851 |
agents.append(agent_data)
|
| 1852 |
|
| 1853 |
except Exception as e:
|
|
@@ -1961,21 +1959,21 @@ def save_agent_to_hf(data):
|
|
| 1961 |
|
| 1962 |
def update_all_agents_incremental():
|
| 1963 |
"""
|
| 1964 |
-
|
| 1965 |
|
| 1966 |
Strategy:
|
| 1967 |
-
1. Update PR status for all existing metadata (last LEADERBOARD_TIME_FRAME_DAYS -
|
| 1968 |
-
2. Fetch
|
| 1969 |
3. Save all updated/new metadata back to HuggingFace
|
| 1970 |
4. Reload statistics from updated metadata
|
| 1971 |
"""
|
| 1972 |
print(f"\n{'='*80}")
|
| 1973 |
-
print(f"π
|
| 1974 |
print(f"{'='*80}")
|
| 1975 |
|
| 1976 |
try:
|
| 1977 |
# Fetch and update reviews
|
| 1978 |
-
|
| 1979 |
|
| 1980 |
# Reload statistics from updated metadata
|
| 1981 |
print(f"\nπ Reloading statistics from updated review metadata...")
|
|
@@ -1984,14 +1982,14 @@ def update_all_agents_incremental():
|
|
| 1984 |
print(f"\n{'='*80}")
|
| 1985 |
print(f"π Update Summary:")
|
| 1986 |
print(f" β Updated existing review statuses")
|
| 1987 |
-
print(f" β Fetched
|
| 1988 |
print(f" β Statistics reloaded")
|
| 1989 |
print(f"{'='*80}")
|
| 1990 |
|
| 1991 |
-
print(f"\nβ
|
| 1992 |
|
| 1993 |
except Exception as e:
|
| 1994 |
-
print(f"β
|
| 1995 |
import traceback
|
| 1996 |
traceback.print_exc()
|
| 1997 |
|
|
@@ -2004,24 +2002,39 @@ def construct_leaderboard_from_metadata():
|
|
| 2004 |
Returns dictionary of agent stats.
|
| 2005 |
"""
|
| 2006 |
print("π Constructing leaderboard from review metadata...")
|
|
|
|
| 2007 |
# Load agents
|
| 2008 |
agents = load_agents_from_hf()
|
| 2009 |
if not agents:
|
| 2010 |
-
print("No agents found")
|
| 2011 |
return {}
|
| 2012 |
|
|
|
|
|
|
|
| 2013 |
# Load all review metadata
|
| 2014 |
all_metadata = load_review_metadata()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2015 |
|
| 2016 |
cache_dict = {}
|
| 2017 |
|
| 2018 |
for agent in agents:
|
| 2019 |
identifier = agent.get('github_identifier')
|
| 2020 |
-
agent_name = agent.get('
|
| 2021 |
|
| 2022 |
# Filter metadata for this agent
|
| 2023 |
agent_metadata = [review for review in all_metadata if review.get("agent_identifier") == identifier]
|
| 2024 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2025 |
# Calculate stats
|
| 2026 |
stats = calculate_review_stats_from_metadata(agent_metadata)
|
| 2027 |
|
|
@@ -2032,6 +2045,8 @@ def construct_leaderboard_from_metadata():
|
|
| 2032 |
**stats
|
| 2033 |
}
|
| 2034 |
|
|
|
|
|
|
|
| 2035 |
return cache_dict
|
| 2036 |
|
| 2037 |
|
|
@@ -2039,15 +2054,18 @@ def construct_leaderboard_from_metadata():
|
|
| 2039 |
# UI FUNCTIONS
|
| 2040 |
# =============================================================================
|
| 2041 |
|
| 2042 |
-
def create_monthly_metrics_plot():
|
| 2043 |
"""
|
| 2044 |
Create a Plotly figure with dual y-axes showing:
|
| 2045 |
- Left y-axis: Acceptance Rate (%) as line curves
|
| 2046 |
- Right y-axis: Total Reviews created as bar charts
|
| 2047 |
|
| 2048 |
Each agent gets a unique color for both their line and bars.
|
|
|
|
|
|
|
|
|
|
| 2049 |
"""
|
| 2050 |
-
metrics = calculate_monthly_metrics_by_agent()
|
| 2051 |
|
| 2052 |
if not metrics['agents'] or not metrics['months']:
|
| 2053 |
# Return an empty figure with a message
|
|
@@ -2104,7 +2122,7 @@ def create_monthly_metrics_plot():
|
|
| 2104 |
line=dict(color=color, width=2),
|
| 2105 |
marker=dict(size=8),
|
| 2106 |
legendgroup=agent_name,
|
| 2107 |
-
showlegend=
|
| 2108 |
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 2109 |
'Month: %{x}<br>' +
|
| 2110 |
'Acceptance Rate: %{y:.2f}%<br>' +
|
|
@@ -2130,7 +2148,7 @@ def create_monthly_metrics_plot():
|
|
| 2130 |
name=agent_name,
|
| 2131 |
marker=dict(color=color, opacity=0.6),
|
| 2132 |
legendgroup=agent_name,
|
| 2133 |
-
showlegend=False, # Hide legend
|
| 2134 |
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 2135 |
'Month: %{x}<br>' +
|
| 2136 |
'Total Reviews: %{y}<br>' +
|
|
@@ -2146,13 +2164,14 @@ def create_monthly_metrics_plot():
|
|
| 2146 |
fig.update_yaxes(title_text="<b>Total Reviews</b>", secondary_y=True)
|
| 2147 |
|
| 2148 |
# Update layout
|
|
|
|
| 2149 |
fig.update_layout(
|
| 2150 |
title=None,
|
| 2151 |
hovermode='closest', # Show individual agent info on hover
|
| 2152 |
barmode='group',
|
| 2153 |
height=600,
|
| 2154 |
-
showlegend=
|
| 2155 |
-
margin=dict(l=50, r=50, t=50, b=50) #
|
| 2156 |
)
|
| 2157 |
|
| 2158 |
return fig
|
|
@@ -2163,28 +2182,44 @@ def get_leaderboard_dataframe():
|
|
| 2163 |
Construct leaderboard from review metadata and convert to pandas DataFrame for display.
|
| 2164 |
Returns formatted DataFrame sorted by retention rate.
|
| 2165 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2166 |
# Construct leaderboard from metadata
|
| 2167 |
cache_dict = construct_leaderboard_from_metadata()
|
| 2168 |
|
|
|
|
|
|
|
| 2169 |
if not cache_dict:
|
|
|
|
| 2170 |
# Return empty DataFrame with correct columns if no data
|
| 2171 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 2172 |
return pd.DataFrame(columns=column_names)
|
| 2173 |
|
| 2174 |
rows = []
|
| 2175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2176 |
# Filter out agents with zero total reviews
|
| 2177 |
-
if
|
|
|
|
| 2178 |
continue
|
|
|
|
| 2179 |
# Only include display-relevant fields
|
| 2180 |
rows.append([
|
| 2181 |
data.get('agent_name', 'Unknown'),
|
| 2182 |
data.get('website', 'N/A'),
|
| 2183 |
-
|
| 2184 |
data.get('merged_prs', 0),
|
| 2185 |
data.get('acceptance_rate', 0.0),
|
| 2186 |
])
|
| 2187 |
|
|
|
|
|
|
|
|
|
|
| 2188 |
# Create DataFrame
|
| 2189 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 2190 |
df = pd.DataFrame(rows, columns=column_names)
|
|
@@ -2199,6 +2234,9 @@ def get_leaderboard_dataframe():
|
|
| 2199 |
if "Acceptance Rate (%)" in df.columns and not df.empty:
|
| 2200 |
df = df.sort_values(by="Acceptance Rate (%)", ascending=False).reset_index(drop=True)
|
| 2201 |
|
|
|
|
|
|
|
|
|
|
| 2202 |
return df
|
| 2203 |
|
| 2204 |
|
|
@@ -2209,13 +2247,13 @@ def submit_agent(identifier, agent_name, organization, description, website):
|
|
| 2209 |
"""
|
| 2210 |
# Validate required fields
|
| 2211 |
if not identifier or not identifier.strip():
|
| 2212 |
-
return "β GitHub identifier is required", get_leaderboard_dataframe()
|
| 2213 |
if not agent_name or not agent_name.strip():
|
| 2214 |
-
return "β Agent name is required", get_leaderboard_dataframe()
|
| 2215 |
if not organization or not organization.strip():
|
| 2216 |
-
return "β Organization name is required", get_leaderboard_dataframe()
|
| 2217 |
if not website or not website.strip():
|
| 2218 |
-
return "β Website URL is required", get_leaderboard_dataframe()
|
| 2219 |
|
| 2220 |
# Clean inputs
|
| 2221 |
identifier = identifier.strip()
|
|
@@ -2227,14 +2265,14 @@ def submit_agent(identifier, agent_name, organization, description, website):
|
|
| 2227 |
# Validate GitHub identifier
|
| 2228 |
is_valid, message = validate_github_username(identifier)
|
| 2229 |
if not is_valid:
|
| 2230 |
-
return f"β {message}", get_leaderboard_dataframe()
|
| 2231 |
|
| 2232 |
# Check for duplicates by loading agents from HuggingFace
|
| 2233 |
agents = load_agents_from_hf()
|
| 2234 |
if agents:
|
| 2235 |
existing_names = {agent['github_identifier'] for agent in agents}
|
| 2236 |
if identifier in existing_names:
|
| 2237 |
-
return f"β οΈ Agent with identifier '{identifier}' already exists", get_leaderboard_dataframe()
|
| 2238 |
|
| 2239 |
# Create submission
|
| 2240 |
submission = {
|
|
@@ -2247,25 +2285,25 @@ def submit_agent(identifier, agent_name, organization, description, website):
|
|
| 2247 |
|
| 2248 |
# Save to HuggingFace
|
| 2249 |
if not save_agent_to_hf(submission):
|
| 2250 |
-
return "β Failed to save submission", get_leaderboard_dataframe()
|
| 2251 |
|
| 2252 |
# Return success message - data will be populated by daily incremental updates
|
| 2253 |
-
return f"β
Successfully submitted {agent_name}! Review data will be populated by the next daily incremental update.", get_leaderboard_dataframe()
|
| 2254 |
|
| 2255 |
|
| 2256 |
# =============================================================================
|
| 2257 |
# BACKGROUND TASKS
|
| 2258 |
# =============================================================================
|
| 2259 |
|
| 2260 |
-
def
|
| 2261 |
"""
|
| 2262 |
Fetch and update reviews with comprehensive status checking using BigQuery.
|
| 2263 |
|
| 2264 |
Strategy:
|
| 2265 |
1. For each agent:
|
| 2266 |
-
- Examine ALL open reviews from last LEADERBOARD_TIME_FRAME_DAYS -
|
| 2267 |
-
- Update PR status for all existing metadata using BigQuery (last LEADERBOARD_TIME_FRAME_DAYS -
|
| 2268 |
-
- Fetch new reviews from
|
| 2269 |
- Save all updated/new metadata back to HuggingFace
|
| 2270 |
"""
|
| 2271 |
# Initialize BigQuery client
|
|
@@ -2284,18 +2322,18 @@ def fetch_and_update_daily_reviews():
|
|
| 2284 |
# Calculate date range
|
| 2285 |
today_utc = datetime.now(timezone.utc)
|
| 2286 |
today_midnight = datetime.combine(today_utc.date(), datetime.min.time(), tzinfo=timezone.utc)
|
| 2287 |
-
|
| 2288 |
-
cutoff_date = today_midnight - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS -
|
| 2289 |
|
| 2290 |
print(f"π
Time Range Configuration:")
|
| 2291 |
-
print(f"
|
| 2292 |
print(f" Today 12am UTC: {today_midnight.isoformat()}")
|
| 2293 |
print(f" Cutoff for existing reviews: {cutoff_date.isoformat()}")
|
| 2294 |
print(f" Examining reviews from: {cutoff_date.date()} to {today_midnight.date()}")
|
| 2295 |
|
| 2296 |
for agent in agents:
|
| 2297 |
identifier = agent.get('github_identifier')
|
| 2298 |
-
agent_name = agent.get('
|
| 2299 |
|
| 2300 |
if not identifier:
|
| 2301 |
print(f"Warning: Skipping agent without identifier: {agent}")
|
|
@@ -2330,46 +2368,46 @@ def fetch_and_update_daily_reviews():
|
|
| 2330 |
if recent_metadata:
|
| 2331 |
print(f"π Updating PR status for {len(recent_metadata)} existing reviews using BigQuery...")
|
| 2332 |
# Extract PR URLs from existing metadata
|
| 2333 |
-
|
| 2334 |
-
if
|
| 2335 |
# Fetch status from BigQuery
|
| 2336 |
extended_end_date = today_utc
|
| 2337 |
-
status_map = fetch_pr_status_from_bigquery(client,
|
| 2338 |
|
| 2339 |
# Update metadata with new status
|
| 2340 |
for review in recent_metadata:
|
| 2341 |
-
|
| 2342 |
-
if
|
| 2343 |
-
status_info = status_map[
|
| 2344 |
review['pr_status'] = status_info['status']
|
| 2345 |
-
review['
|
| 2346 |
-
review['
|
| 2347 |
|
| 2348 |
print(f" β Updated PR status for existing reviews")
|
| 2349 |
|
| 2350 |
-
# Step 3: Fetch NEW reviews from
|
| 2351 |
-
print(f"π Fetching new reviews from {
|
| 2352 |
|
| 2353 |
-
review_rows = fetch_reviews_from_bigquery(client, identifier,
|
| 2354 |
|
| 2355 |
# Extract unique PR URLs and fetch status
|
| 2356 |
-
|
| 2357 |
-
print(f" Found {len(review_rows)} review events across {len(
|
| 2358 |
|
| 2359 |
# Fetch PR status for new reviews
|
| 2360 |
extended_end_date = today_utc
|
| 2361 |
-
status_map = fetch_pr_status_from_bigquery(client,
|
| 2362 |
|
| 2363 |
# Extract metadata for new reviews
|
| 2364 |
-
|
| 2365 |
seen_prs = set()
|
| 2366 |
for row in review_rows:
|
| 2367 |
-
|
| 2368 |
-
if
|
| 2369 |
continue
|
| 2370 |
-
seen_prs.add(
|
| 2371 |
|
| 2372 |
-
status_info = status_map.get(
|
| 2373 |
'status': 'open',
|
| 2374 |
'merged': False,
|
| 2375 |
'closed_at': None
|
|
@@ -2377,17 +2415,17 @@ def fetch_and_update_daily_reviews():
|
|
| 2377 |
|
| 2378 |
metadata = extract_review_metadata_from_bigquery(row, status_info)
|
| 2379 |
metadata['agent_identifier'] = identifier
|
| 2380 |
-
|
| 2381 |
|
| 2382 |
-
print(f" β Found {len(
|
| 2383 |
|
| 2384 |
# Step 4: Combine and save all metadata
|
| 2385 |
-
all_updated_metadata = recent_metadata +
|
| 2386 |
|
| 2387 |
if all_updated_metadata:
|
| 2388 |
print(f"πΎ Saving {len(all_updated_metadata)} total reviews to HuggingFace...")
|
| 2389 |
save_review_metadata_to_hf(all_updated_metadata, identifier)
|
| 2390 |
-
print(f"β Updated {identifier}: {len(recent_metadata)} existing (status checked) + {len(
|
| 2391 |
else:
|
| 2392 |
print(f" No reviews to save for {identifier}")
|
| 2393 |
|
|
@@ -2402,66 +2440,58 @@ def fetch_and_update_daily_reviews():
|
|
| 2402 |
# GRADIO APPLICATION
|
| 2403 |
# =============================================================================
|
| 2404 |
|
| 2405 |
-
#
|
| 2406 |
-
if DEBUG_MODE:
|
| 2407 |
-
print("\n" + "="*80)
|
| 2408 |
-
print("π DEBUG MODE ENABLED π")
|
| 2409 |
-
print("="*80)
|
| 2410 |
-
print("Review retrieval is limited to 10 reviews per query pattern per agent")
|
| 2411 |
-
|
| 2412 |
-
# Show how debug mode was enabled
|
| 2413 |
-
if args.debug:
|
| 2414 |
-
print("Enabled via: command-line flag '--debug'")
|
| 2415 |
-
print("To disable: run without '--debug' flag")
|
| 2416 |
-
else:
|
| 2417 |
-
print("Enabled via: DEBUG_MODE environment variable")
|
| 2418 |
-
print("To disable: run with '--no-debug' flag or unset DEBUG_MODE")
|
| 2419 |
-
|
| 2420 |
-
print("="*80 + "\n")
|
| 2421 |
-
else:
|
| 2422 |
-
print("\nπ Starting in PRODUCTION MODE - full review retrieval enabled")
|
| 2423 |
-
if args.no_debug:
|
| 2424 |
-
print(" (Explicitly set via '--no-debug' flag)")
|
| 2425 |
-
print()
|
| 2426 |
-
|
| 2427 |
-
# Start APScheduler for daily updates at 12:00 AM UTC
|
| 2428 |
scheduler = BackgroundScheduler(timezone="UTC")
|
| 2429 |
scheduler.add_job(
|
| 2430 |
update_all_agents_incremental,
|
| 2431 |
-
trigger=CronTrigger(hour=0, minute=0), # 12:00 AM UTC
|
| 2432 |
-
id='
|
| 2433 |
-
name='
|
| 2434 |
replace_existing=True
|
| 2435 |
)
|
| 2436 |
scheduler.start()
|
| 2437 |
-
print("β Scheduler started:
|
| 2438 |
|
| 2439 |
# Create Gradio interface
|
| 2440 |
with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as app:
|
| 2441 |
|
| 2442 |
gr.Markdown("# π SWE Agent Review Leaderboard")
|
| 2443 |
-
gr.Markdown("Track and compare GitHub PR review acceptance statistics for SWE agents (last
|
| 2444 |
|
| 2445 |
with gr.Tabs():
|
| 2446 |
-
|
| 2447 |
# Leaderboard Tab
|
| 2448 |
with gr.Tab("π Leaderboard"):
|
| 2449 |
-
gr.Markdown("*All statistics are based on reviews from the last
|
| 2450 |
leaderboard_table = Leaderboard(
|
| 2451 |
-
value=
|
| 2452 |
datatype=LEADERBOARD_COLUMNS,
|
| 2453 |
search_columns=["Agent Name", "Website"],
|
| 2454 |
filter_columns=["Acceptance Rate (%)"]
|
| 2455 |
)
|
| 2456 |
|
| 2457 |
-
|
| 2458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2459 |
|
| 2460 |
-
|
| 2461 |
-
|
| 2462 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2463 |
)
|
| 2464 |
|
|
|
|
| 2465 |
# Submit Agent Tab
|
| 2466 |
with gr.Tab("β Submit Agent"):
|
| 2467 |
|
|
@@ -2507,7 +2537,7 @@ with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as
|
|
| 2507 |
submit_button.click(
|
| 2508 |
fn=submit_agent,
|
| 2509 |
inputs=[github_input, name_input, organization_input, description_input, website_input],
|
| 2510 |
-
outputs=[submission_status, leaderboard_table
|
| 2511 |
)
|
| 2512 |
|
| 2513 |
|
|
|
|
| 25 |
|
| 26 |
# Parse command-line arguments
|
| 27 |
parser = argparse.ArgumentParser(description='SWE Agent Review Leaderboard')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
args = parser.parse_args()
|
| 29 |
|
| 30 |
# =============================================================================
|
| 31 |
# CONFIGURATION
|
| 32 |
# =============================================================================
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
AGENTS_REPO = "SWE-Arena/swe_agents" # HuggingFace dataset for agent metadata
|
| 35 |
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata" # HuggingFace dataset for review metadata
|
| 36 |
+
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for leaderboard
|
| 37 |
|
| 38 |
LEADERBOARD_COLUMNS = [
|
| 39 |
("Agent Name", "string"),
|
|
|
|
| 174 |
SELECT
|
| 175 |
repo.name as repo_name,
|
| 176 |
actor.login as actor_login,
|
| 177 |
+
JSON_EXTRACT_SCALAR(payload, '$.pull_request.url') as url,
|
| 178 |
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number,
|
| 179 |
JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at') as reviewed_at,
|
| 180 |
created_at
|
|
|
|
| 205 |
return []
|
| 206 |
|
| 207 |
|
| 208 |
+
def fetch_pr_status_from_bigquery(client, urls, start_date, end_date):
|
| 209 |
"""
|
| 210 |
Fetch PR status (merged/closed) from GitHub Archive PullRequestEvent.
|
| 211 |
|
|
|
|
| 214 |
|
| 215 |
Args:
|
| 216 |
client: BigQuery client instance
|
| 217 |
+
urls: List of PR URLs to check status for
|
| 218 |
start_date: Start datetime (should cover review period and after)
|
| 219 |
end_date: End datetime (should be recent/current)
|
| 220 |
|
| 221 |
Returns:
|
| 222 |
Dictionary mapping PR URL to status dict:
|
| 223 |
{
|
| 224 |
+
'url': {
|
| 225 |
'status': 'merged'|'closed'|'open',
|
| 226 |
'merged': bool,
|
| 227 |
'closed_at': timestamp or None
|
| 228 |
}
|
| 229 |
}
|
| 230 |
"""
|
| 231 |
+
if not urls:
|
| 232 |
return {}
|
| 233 |
|
| 234 |
+
print(f"\nπ Querying BigQuery for PR status ({len(urls)} PRs)...")
|
| 235 |
|
| 236 |
# Extract repo and PR number from URLs
|
| 237 |
# URL format: https://github.com/owner/repo/pull/123
|
| 238 |
pr_info = []
|
| 239 |
+
for url in urls:
|
| 240 |
try:
|
| 241 |
parts = url.replace('https://github.com/', '').split('/')
|
| 242 |
if len(parts) >= 4:
|
|
|
|
| 288 |
SELECT
|
| 289 |
repo.name as repo_name,
|
| 290 |
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number,
|
| 291 |
+
JSON_EXTRACT_SCALAR(payload, '$.pull_request.url') as url,
|
| 292 |
JSON_EXTRACT_SCALAR(payload, '$.action') as action,
|
| 293 |
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged') AS BOOL) as merged,
|
| 294 |
JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at,
|
|
|
|
| 314 |
# Build status map by PR URL
|
| 315 |
status_map = {}
|
| 316 |
for row in results:
|
| 317 |
+
url = row.url
|
| 318 |
|
| 319 |
merged = row.merged if row.merged is not None else False
|
| 320 |
closed_at = row.closed_at or row.merged_at
|
|
|
|
| 325 |
|
| 326 |
status = 'merged' if merged else 'closed'
|
| 327 |
|
| 328 |
+
status_map[url] = {
|
| 329 |
'status': status,
|
| 330 |
'merged': merged,
|
| 331 |
'closed_at': closed_at
|
| 332 |
}
|
| 333 |
|
| 334 |
# Mark remaining PRs as open
|
| 335 |
+
for url in urls:
|
| 336 |
if url not in status_map:
|
| 337 |
status_map[url] = {
|
| 338 |
'status': 'open',
|
|
|
|
| 351 |
except Exception as e:
|
| 352 |
print(f" β BigQuery error: {str(e)}")
|
| 353 |
# Return all as open on error
|
| 354 |
+
return {url: {'status': 'open', 'merged': False, 'closed_at': None} for url in urls}
|
| 355 |
|
| 356 |
|
| 357 |
def extract_review_metadata_from_bigquery(review_row, status_info):
|
|
|
|
| 365 |
Returns:
|
| 366 |
Dictionary with review metadata
|
| 367 |
"""
|
| 368 |
+
url = review_row.url
|
| 369 |
pr_number = review_row.pr_number
|
| 370 |
reviewed_at = review_row.reviewed_at or review_row.created_at
|
| 371 |
|
|
|
|
| 374 |
reviewed_at = reviewed_at.isoformat()
|
| 375 |
|
| 376 |
return {
|
| 377 |
+
'url': url,
|
| 378 |
'reviewed_at': reviewed_at,
|
| 379 |
'pr_status': status_info['status'],
|
| 380 |
+
'merged_at': status_info['merged'],
|
| 381 |
+
'closed_at': status_info['closed_at'],
|
| 382 |
+
'url': url,
|
| 383 |
'review_id': f"pr_{pr_number}"
|
| 384 |
}
|
| 385 |
|
|
|
|
| 686 |
return False, f"Validation error: {str(e)}"
|
| 687 |
|
| 688 |
|
| 689 |
+
def fetch_reviews_with_time_partition(base_query, start_date, end_date, token_pool, prs_by_url, depth=0):
|
| 690 |
"""
|
| 691 |
Fetch reviews within a specific time range using time-based partitioning.
|
| 692 |
Recursively splits the time range if hitting the 1000-result limit.
|
| 693 |
Supports splitting by day, hour, minute, and second as needed.
|
| 694 |
|
| 695 |
Args:
|
|
|
|
| 696 |
depth: Current recursion depth (for tracking)
|
| 697 |
|
| 698 |
Returns the number of reviews found in this time partition.
|
|
|
|
| 730 |
total_in_partition = 0
|
| 731 |
|
| 732 |
while True:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 733 |
url = 'https://api.github.com/search/issues' # Use issues endpoint for PR search
|
| 734 |
params = {
|
| 735 |
'q': query,
|
|
|
|
| 760 |
|
| 761 |
# Add PR reviews to global dict (keyed by PR URL)
|
| 762 |
for pr in items:
|
| 763 |
+
url = pr.get('url')
|
| 764 |
pr_number = pr.get('number')
|
| 765 |
# Use PR URL as unique key (more reliable than number alone)
|
| 766 |
+
if url and url not in prs_by_url:
|
| 767 |
+
prs_by_url[url] = pr
|
| 768 |
total_in_partition += 1
|
| 769 |
|
| 770 |
# Check if we hit the 1000-result limit
|
|
|
|
| 791 |
split_start = split_start + timedelta(seconds=1)
|
| 792 |
|
| 793 |
count = fetch_reviews_with_time_partition(
|
| 794 |
+
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
|
| 795 |
)
|
| 796 |
total_from_splits += count
|
| 797 |
|
|
|
|
| 812 |
split_start = split_start + timedelta(minutes=1)
|
| 813 |
|
| 814 |
count = fetch_reviews_with_time_partition(
|
| 815 |
+
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
|
| 816 |
)
|
| 817 |
total_from_splits += count
|
| 818 |
|
|
|
|
| 833 |
split_start = split_start + timedelta(hours=1)
|
| 834 |
|
| 835 |
count = fetch_reviews_with_time_partition(
|
| 836 |
+
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
|
| 837 |
)
|
| 838 |
total_from_splits += count
|
| 839 |
|
|
|
|
| 864 |
split_start = split_start + timedelta(days=1)
|
| 865 |
|
| 866 |
count = fetch_reviews_with_time_partition(
|
| 867 |
+
base_query, split_start, split_end, token_pool, prs_by_url, depth + 1
|
| 868 |
)
|
| 869 |
total_from_splits += count
|
| 870 |
|
|
|
|
| 875 |
|
| 876 |
# Recursively fetch both halves
|
| 877 |
count1 = fetch_reviews_with_time_partition(
|
| 878 |
+
base_query, start_date, mid_date, token_pool, prs_by_url, depth + 1
|
| 879 |
)
|
| 880 |
count2 = fetch_reviews_with_time_partition(
|
| 881 |
+
base_query, mid_date + timedelta(days=1), end_date, token_pool, prs_by_url, depth + 1
|
| 882 |
)
|
| 883 |
|
| 884 |
return count1 + count2
|
|
|
|
| 900 |
return total_in_partition
|
| 901 |
|
| 902 |
|
| 903 |
+
def fetch_reviews_parallel(query_patterns, start_date, end_date, token_pool, prs_by_url):
|
| 904 |
"""
|
| 905 |
Fetch reviews for multiple query patterns in parallel using available parallel tokens.
|
| 906 |
|
|
|
|
| 914 |
end_date: End datetime for time range
|
| 915 |
token_pool: TokenPool instance for token management
|
| 916 |
prs_by_url: Dictionary to collect PRs by URL (shared across patterns)
|
|
|
|
| 917 |
|
| 918 |
Returns:
|
| 919 |
Total number of PRs found across all patterns
|
|
|
|
| 931 |
for pattern in query_patterns:
|
| 932 |
pattern_prs = {}
|
| 933 |
count = fetch_reviews_with_time_partition(
|
| 934 |
+
pattern, start_date, end_date, token_pool, pattern_prs, depth=0
|
| 935 |
)
|
| 936 |
# Merge pattern results into global dict
|
| 937 |
with threading.Lock():
|
|
|
|
| 952 |
pattern_prs = {}
|
| 953 |
try:
|
| 954 |
count = fetch_reviews_with_time_partition(
|
| 955 |
+
pattern, start_date, end_date, token_pool, pattern_prs, depth=0
|
| 956 |
)
|
| 957 |
return pattern, pattern_prs, count
|
| 958 |
except Exception as e:
|
|
|
|
| 994 |
def extract_review_metadata(pr):
|
| 995 |
"""
|
| 996 |
Extract minimal PR review metadata for efficient storage.
|
| 997 |
+
Only keeps essential fields: url, reviewed_at, pr_status, merged_at, closed_at.
|
| 998 |
Note: agent_name is not stored as it's inferred from the folder structure.
|
| 999 |
|
| 1000 |
PR status:
|
| 1001 |
- pr_status: 'open', 'merged', or 'closed'
|
| 1002 |
+
- merged_at: True if PR was merged, False otherwise
|
| 1003 |
+
- closed_at: Date when PR was closed/merged (if applicable)
|
| 1004 |
|
| 1005 |
Merged PR = PR that was merged after agent review
|
| 1006 |
Rejected PR = PR that was closed without merging after agent review
|
| 1007 |
"""
|
| 1008 |
# Extract PR metadata from search results
|
| 1009 |
# The GitHub search API returns PR data from /search/issues endpoint
|
| 1010 |
+
url = pr.get('url')
|
| 1011 |
pr_number = pr.get('number')
|
| 1012 |
created_at = pr.get('created_at')
|
| 1013 |
closed_at = pr.get('closed_at')
|
|
|
|
| 1018 |
|
| 1019 |
# For initial extraction, we don't know if merged yet
|
| 1020 |
# This will be updated by update_pr_status function
|
| 1021 |
+
merged_at = pull_request_data.get('merged_at') is not None if pull_request_data else False
|
| 1022 |
|
| 1023 |
# Determine initial status
|
| 1024 |
+
if merged_at:
|
| 1025 |
status = 'merged'
|
| 1026 |
elif state == 'closed':
|
| 1027 |
status = 'closed'
|
|
|
|
| 1029 |
status = 'open'
|
| 1030 |
|
| 1031 |
return {
|
| 1032 |
+
'url': url,
|
| 1033 |
'reviewed_at': created_at, # When the PR was created (agent reviewed it)
|
| 1034 |
'pr_status': status,
|
| 1035 |
+
'merged_at': merged_at,
|
| 1036 |
+
'closed_at': closed_at,
|
|
|
|
| 1037 |
'review_id': f"pr_{pr_number}" # Use PR number for deduplication
|
| 1038 |
}
|
| 1039 |
|
|
|
|
| 1045 |
For each PR associated with a review, fetch current status from GitHub API.
|
| 1046 |
Updates metadata_list in-place with PR status information.
|
| 1047 |
|
|
|
|
|
|
|
| 1048 |
Args:
|
| 1049 |
metadata_list: List of review metadata dictionaries
|
| 1050 |
token_pool: TokenPool instance for rotating tokens
|
|
|
|
| 1055 |
if not metadata_list:
|
| 1056 |
return metadata_list
|
| 1057 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1058 |
# Track unique PRs to avoid duplicate API calls
|
| 1059 |
+
url_to_status = {}
|
| 1060 |
updated_count = 0
|
| 1061 |
|
| 1062 |
for metadata in metadata_list:
|
| 1063 |
+
url = metadata.get('url')
|
| 1064 |
+
if not url:
|
| 1065 |
continue
|
| 1066 |
|
| 1067 |
# Skip if already fetched for this PR
|
| 1068 |
+
if url in url_to_status:
|
| 1069 |
+
status_info = url_to_status[url]
|
| 1070 |
metadata['pr_status'] = status_info['status']
|
| 1071 |
+
metadata['merged_at'] = status_info['merged']
|
| 1072 |
+
metadata['closed_at'] = status_info['closed_at']
|
| 1073 |
continue
|
| 1074 |
|
| 1075 |
try:
|
| 1076 |
# Convert HTML URL to API URL
|
| 1077 |
# https://github.com/owner/repo/pull/123 -> https://api.github.com/repos/owner/repo/pulls/123
|
| 1078 |
+
parts = url.replace('https://github.com/', '').split('/')
|
| 1079 |
if len(parts) >= 4:
|
| 1080 |
owner, repo, pull_word, pr_number = parts[0], parts[1], parts[2], parts[3]
|
| 1081 |
api_url = f'https://api.github.com/repos/{owner}/{repo}/pulls/{pr_number}'
|
|
|
|
| 1106 |
}
|
| 1107 |
|
| 1108 |
# Cache and update
|
| 1109 |
+
url_to_status[url] = status_info
|
| 1110 |
metadata['pr_status'] = status
|
| 1111 |
+
metadata['merged_at'] = merged
|
| 1112 |
+
metadata['closed_at'] = closed_at or merged_at
|
| 1113 |
updated_count += 1
|
| 1114 |
|
| 1115 |
# Small delay to avoid rate limiting
|
| 1116 |
time.sleep(0.1)
|
| 1117 |
|
| 1118 |
except Exception as e:
|
| 1119 |
+
print(f" Warning: Could not check PR status for {url}: {e}")
|
| 1120 |
continue
|
| 1121 |
|
| 1122 |
if updated_count > 0:
|
|
|
|
| 1127 |
|
| 1128 |
|
| 1129 |
|
| 1130 |
+
def get_pr_status_from_metadata(review_meta):
|
| 1131 |
+
"""
|
| 1132 |
+
Derive PR status from merged_at and closed_at fields.
|
| 1133 |
+
|
| 1134 |
+
Args:
|
| 1135 |
+
review_meta: Dictionary containing merged_at and closed_at fields
|
| 1136 |
+
|
| 1137 |
+
Returns:
|
| 1138 |
+
str: 'merged', 'closed', or 'open'
|
| 1139 |
+
"""
|
| 1140 |
+
merged_at = review_meta.get('merged_at')
|
| 1141 |
+
closed_at = review_meta.get('closed_at')
|
| 1142 |
+
|
| 1143 |
+
# If merged_at is set (not None and not False), PR is merged
|
| 1144 |
+
if merged_at:
|
| 1145 |
+
return 'merged'
|
| 1146 |
+
# If closed_at is set but not merged, PR is closed without merging
|
| 1147 |
+
elif closed_at:
|
| 1148 |
+
return 'closed'
|
| 1149 |
+
# Otherwise, PR is still open
|
| 1150 |
+
else:
|
| 1151 |
+
return 'open'
|
| 1152 |
+
|
| 1153 |
+
|
| 1154 |
def calculate_review_stats_from_metadata(metadata_list):
|
| 1155 |
"""
|
| 1156 |
Calculate statistics from a list of review metadata (lightweight objects).
|
| 1157 |
+
Works with minimal metadata: url, reviewed_at, merged_at, closed_at.
|
| 1158 |
|
| 1159 |
Returns a dictionary with comprehensive review metrics.
|
| 1160 |
|
| 1161 |
Acceptance Rate is calculated as:
|
| 1162 |
merged PRs / (merged PRs + rejected PRs) * 100
|
| 1163 |
|
| 1164 |
+
Merged PRs = PRs that were merged (merged_at is not None)
|
| 1165 |
+
Rejected PRs = PRs that were closed without merging (closed_at is not None but merged_at is None)
|
| 1166 |
+
Pending PRs = PRs still open (both merged_at and closed_at are None) - excluded from acceptance rate
|
| 1167 |
"""
|
| 1168 |
total_reviews = len(metadata_list)
|
| 1169 |
|
| 1170 |
+
# Count merged PRs (merged_at is set)
|
| 1171 |
merged_prs = sum(1 for review_meta in metadata_list
|
| 1172 |
+
if get_pr_status_from_metadata(review_meta) == 'merged')
|
| 1173 |
|
| 1174 |
# Count rejected PRs (closed without merging)
|
| 1175 |
rejected_prs = sum(1 for review_meta in metadata_list
|
| 1176 |
+
if get_pr_status_from_metadata(review_meta) == 'closed')
|
| 1177 |
|
| 1178 |
# Count pending PRs (still open)
|
| 1179 |
pending_prs = sum(1 for review_meta in metadata_list
|
| 1180 |
+
if get_pr_status_from_metadata(review_meta) == 'open')
|
| 1181 |
|
| 1182 |
# Calculate acceptance rate (exclude pending PRs)
|
| 1183 |
completed_prs = merged_prs + rejected_prs
|
|
|
|
| 1191 |
}
|
| 1192 |
|
| 1193 |
|
| 1194 |
+
def calculate_monthly_metrics_by_agent(top_n=None):
|
| 1195 |
"""
|
| 1196 |
+
Calculate monthly metrics for all agents (or top N agents) for visualization.
|
| 1197 |
Loads data directly from SWE-Arena/review_metadata dataset.
|
| 1198 |
|
| 1199 |
+
Args:
|
| 1200 |
+
top_n: If specified, only return metrics for the top N agents by total reviews.
|
| 1201 |
+
Agents are ranked by their total review count across all months.
|
| 1202 |
+
|
| 1203 |
Returns:
|
| 1204 |
dict: {
|
| 1205 |
'agents': list of agent names,
|
|
|
|
| 1217 |
agents = load_agents_from_hf()
|
| 1218 |
|
| 1219 |
# Create mapping from agent_identifier to agent_name
|
| 1220 |
+
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
|
| 1221 |
|
| 1222 |
# Load all review metadata from review_metadata dataset
|
| 1223 |
all_metadata = load_review_metadata()
|
|
|
|
| 1287 |
'merged_prs': merged_prs_list,
|
| 1288 |
}
|
| 1289 |
|
| 1290 |
+
# Filter to top N agents if specified
|
| 1291 |
+
agents_list = sorted(list(agent_month_data.keys()))
|
| 1292 |
+
if top_n is not None and top_n > 0:
|
| 1293 |
+
# Calculate total reviews for each agent across all months
|
| 1294 |
+
agent_totals = []
|
| 1295 |
+
for agent_name in agents_list:
|
| 1296 |
+
total_reviews = sum(result_data[agent_name]['total_reviews'])
|
| 1297 |
+
agent_totals.append((agent_name, total_reviews))
|
| 1298 |
+
|
| 1299 |
+
# Sort by total reviews (descending) and take top N
|
| 1300 |
+
agent_totals.sort(key=lambda x: x[1], reverse=True)
|
| 1301 |
+
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
|
| 1302 |
+
|
| 1303 |
+
# Filter result_data to only include top agents
|
| 1304 |
+
result_data = {agent: result_data[agent] for agent in top_agents if agent in result_data}
|
| 1305 |
+
agents_list = top_agents
|
| 1306 |
+
|
| 1307 |
return {
|
| 1308 |
+
'agents': agents_list,
|
| 1309 |
'months': months,
|
| 1310 |
'data': result_data
|
| 1311 |
}
|
|
|
|
| 1341 |
"""
|
| 1342 |
Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 1343 |
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
|
|
|
|
| 1344 |
|
| 1345 |
This function APPENDS new metadata and DEDUPLICATES by review_id.
|
| 1346 |
Uses batch upload to avoid rate limit (uploads entire folder in single commit).
|
|
|
|
| 1352 |
import tempfile
|
| 1353 |
import shutil
|
| 1354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1355 |
try:
|
| 1356 |
token = get_hf_token()
|
| 1357 |
if not token:
|
|
|
|
| 1430 |
"""
|
| 1431 |
Load review metadata from the last LEADERBOARD_TIME_FRAME_DAYS.
|
| 1432 |
|
|
|
|
|
|
|
| 1433 |
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 1434 |
|
| 1435 |
Returns:
|
|
|
|
| 1440 |
current_time = datetime.now(timezone.utc)
|
| 1441 |
cutoff_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1442 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1443 |
try:
|
| 1444 |
api = HfApi()
|
| 1445 |
token = get_hf_token()
|
|
|
|
| 1473 |
print(f"π₯ Loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days ({len(time_frame_files)} daily files across all agents)...")
|
| 1474 |
|
| 1475 |
all_metadata = []
|
| 1476 |
+
agent_identifiers_found = set()
|
| 1477 |
+
|
| 1478 |
for filename in time_frame_files:
|
| 1479 |
try:
|
| 1480 |
# Extract agent_identifier from path (first part)
|
|
|
|
| 1485 |
continue
|
| 1486 |
|
| 1487 |
agent_identifier = parts[0]
|
| 1488 |
+
agent_identifiers_found.add(agent_identifier)
|
| 1489 |
|
| 1490 |
file_path = hf_hub_download(
|
| 1491 |
repo_id=REVIEW_METADATA_REPO,
|
|
|
|
| 1517 |
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 1518 |
|
| 1519 |
print(f"β Loaded {len(all_metadata)} total reviews from last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 1520 |
+
|
| 1521 |
+
# DEBUG: Show unique agent identifiers found in review folders
|
| 1522 |
+
if agent_identifiers_found:
|
| 1523 |
+
print(f"π Agent identifiers found in review metadata folders:")
|
| 1524 |
+
for identifier in sorted(agent_identifiers_found):
|
| 1525 |
+
count = sum(1 for r in all_metadata if r.get('agent_identifier') == identifier)
|
| 1526 |
+
print(f" - '{identifier}': {count} reviews")
|
| 1527 |
+
|
| 1528 |
return all_metadata
|
| 1529 |
|
| 1530 |
except Exception as e:
|
|
|
|
| 1590 |
return None
|
| 1591 |
|
| 1592 |
|
| 1593 |
+
def get_daily_files_last_time_frame(agent_identifier):
|
| 1594 |
"""
|
| 1595 |
+
Get list of daily file paths for an agent from the configured time frame.
|
| 1596 |
|
| 1597 |
Args:
|
| 1598 |
agent_identifier: GitHub identifier of the agent
|
|
|
|
| 1599 |
|
| 1600 |
Returns:
|
| 1601 |
List of file paths in format: [agent_identifier]/YYYY.MM.DD.jsonl
|
|
|
|
| 1604 |
api = HfApi()
|
| 1605 |
token = get_hf_token()
|
| 1606 |
|
| 1607 |
+
# Calculate date range using configured time frame
|
| 1608 |
today = datetime.now(timezone.utc)
|
| 1609 |
+
cutoff_date = today - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1610 |
|
| 1611 |
# List all files in the repository
|
| 1612 |
files = api.list_repo_files(repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
|
|
|
|
| 1632 |
file_year, file_month, file_day = map(int, date_components)
|
| 1633 |
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 1634 |
|
| 1635 |
+
# Include if within configured time frame
|
| 1636 |
+
if cutoff_date <= file_date <= today:
|
| 1637 |
recent_files.append(filename)
|
| 1638 |
except Exception:
|
| 1639 |
continue
|
|
|
|
| 1692 |
|
| 1693 |
def refresh_review_status_for_agent(agent_identifier, token):
|
| 1694 |
"""
|
| 1695 |
+
Refresh status for all open reviews from the last month for an agent.
|
| 1696 |
Only updates reviews that are still open (state="open" or no state_reason).
|
| 1697 |
|
| 1698 |
This implements the smart update strategy:
|
|
|
|
| 1707 |
Returns:
|
| 1708 |
Tuple: (total_checked, updated_count)
|
| 1709 |
"""
|
| 1710 |
+
print(f"\nπ Refreshing open reviews for {agent_identifier} (last month)...")
|
| 1711 |
|
| 1712 |
try:
|
| 1713 |
+
# Get daily files from configured time frame
|
| 1714 |
+
recent_files = get_daily_files_last_time_frame(agent_identifier)
|
| 1715 |
|
| 1716 |
if not recent_files:
|
| 1717 |
print(f" No recent files found for {agent_identifier}")
|
|
|
|
| 1748 |
continue
|
| 1749 |
|
| 1750 |
# Review may have been reverted, check status
|
| 1751 |
+
review_url = review.get("url")
|
| 1752 |
|
| 1753 |
if not review_url:
|
| 1754 |
updated_reviews.append(review)
|
|
|
|
| 1836 |
|
| 1837 |
with open(file_path, 'r') as f:
|
| 1838 |
agent_data = json.load(f)
|
| 1839 |
+
|
| 1840 |
+
# Extract github_identifier from filename (e.g., "claude[bot].json" -> "claude[bot]")
|
| 1841 |
+
filename_identifier = json_file.replace('.json', '')
|
| 1842 |
+
|
| 1843 |
+
# Add or override github_identifier to match filename
|
| 1844 |
+
agent_data['github_identifier'] = filename_identifier
|
| 1845 |
+
|
| 1846 |
+
# DEBUG: Log the identifier being used
|
| 1847 |
+
print(f" β Loaded agent: '{filename_identifier}' -> {agent_data.get('name', 'Unknown')}")
|
| 1848 |
+
|
| 1849 |
agents.append(agent_data)
|
| 1850 |
|
| 1851 |
except Exception as e:
|
|
|
|
| 1959 |
|
| 1960 |
def update_all_agents_incremental():
|
| 1961 |
"""
|
| 1962 |
+
Weekly scheduled task for incremental review mining and statistics update.
|
| 1963 |
|
| 1964 |
Strategy:
|
| 1965 |
+
1. Update PR status for all existing metadata (last LEADERBOARD_TIME_FRAME_DAYS - 7)
|
| 1966 |
+
2. Fetch last week's new reviews
|
| 1967 |
3. Save all updated/new metadata back to HuggingFace
|
| 1968 |
4. Reload statistics from updated metadata
|
| 1969 |
"""
|
| 1970 |
print(f"\n{'='*80}")
|
| 1971 |
+
print(f"π Weekly Incremental Update started at {datetime.now(timezone.utc).isoformat()}")
|
| 1972 |
print(f"{'='*80}")
|
| 1973 |
|
| 1974 |
try:
|
| 1975 |
# Fetch and update reviews
|
| 1976 |
+
fetch_and_update_weekly_reviews()
|
| 1977 |
|
| 1978 |
# Reload statistics from updated metadata
|
| 1979 |
print(f"\nπ Reloading statistics from updated review metadata...")
|
|
|
|
| 1982 |
print(f"\n{'='*80}")
|
| 1983 |
print(f"π Update Summary:")
|
| 1984 |
print(f" β Updated existing review statuses")
|
| 1985 |
+
print(f" β Fetched last week's new reviews")
|
| 1986 |
print(f" β Statistics reloaded")
|
| 1987 |
print(f"{'='*80}")
|
| 1988 |
|
| 1989 |
+
print(f"\nβ
Weekly Incremental Update completed at {datetime.now(timezone.utc).isoformat()}")
|
| 1990 |
|
| 1991 |
except Exception as e:
|
| 1992 |
+
print(f"β Weekly update failed: {str(e)}")
|
| 1993 |
import traceback
|
| 1994 |
traceback.print_exc()
|
| 1995 |
|
|
|
|
| 2002 |
Returns dictionary of agent stats.
|
| 2003 |
"""
|
| 2004 |
print("π Constructing leaderboard from review metadata...")
|
| 2005 |
+
|
| 2006 |
# Load agents
|
| 2007 |
agents = load_agents_from_hf()
|
| 2008 |
if not agents:
|
| 2009 |
+
print("β οΈ No agents found")
|
| 2010 |
return {}
|
| 2011 |
|
| 2012 |
+
print(f"β Loaded {len(agents)} agents")
|
| 2013 |
+
|
| 2014 |
# Load all review metadata
|
| 2015 |
all_metadata = load_review_metadata()
|
| 2016 |
+
print(f"β Loaded {len(all_metadata)} review metadata entries")
|
| 2017 |
+
|
| 2018 |
+
# Debug: Check what agent_identifiers exist in review metadata
|
| 2019 |
+
if all_metadata:
|
| 2020 |
+
review_identifiers = set(r.get('agent_identifier') for r in all_metadata if r.get('agent_identifier'))
|
| 2021 |
+
print(f" Unique agent_identifiers in reviews: {review_identifiers}")
|
| 2022 |
+
else:
|
| 2023 |
+
print("β οΈ No review metadata loaded!")
|
| 2024 |
|
| 2025 |
cache_dict = {}
|
| 2026 |
|
| 2027 |
for agent in agents:
|
| 2028 |
identifier = agent.get('github_identifier')
|
| 2029 |
+
agent_name = agent.get('name', 'Unknown')
|
| 2030 |
|
| 2031 |
# Filter metadata for this agent
|
| 2032 |
agent_metadata = [review for review in all_metadata if review.get("agent_identifier") == identifier]
|
| 2033 |
|
| 2034 |
+
# Debug output
|
| 2035 |
+
if len(agent_metadata) > 0:
|
| 2036 |
+
print(f" β Agent '{identifier}' matched {len(agent_metadata)} reviews")
|
| 2037 |
+
|
| 2038 |
# Calculate stats
|
| 2039 |
stats = calculate_review_stats_from_metadata(agent_metadata)
|
| 2040 |
|
|
|
|
| 2045 |
**stats
|
| 2046 |
}
|
| 2047 |
|
| 2048 |
+
print(f"β Constructed cache with {len(cache_dict)} agent entries")
|
| 2049 |
+
|
| 2050 |
return cache_dict
|
| 2051 |
|
| 2052 |
|
|
|
|
| 2054 |
# UI FUNCTIONS
|
| 2055 |
# =============================================================================
|
| 2056 |
|
| 2057 |
+
def create_monthly_metrics_plot(top_n=None):
|
| 2058 |
"""
|
| 2059 |
Create a Plotly figure with dual y-axes showing:
|
| 2060 |
- Left y-axis: Acceptance Rate (%) as line curves
|
| 2061 |
- Right y-axis: Total Reviews created as bar charts
|
| 2062 |
|
| 2063 |
Each agent gets a unique color for both their line and bars.
|
| 2064 |
+
|
| 2065 |
+
Args:
|
| 2066 |
+
top_n: If specified, only show metrics for the top N agents by total reviews.
|
| 2067 |
"""
|
| 2068 |
+
metrics = calculate_monthly_metrics_by_agent(top_n=top_n)
|
| 2069 |
|
| 2070 |
if not metrics['agents'] or not metrics['months']:
|
| 2071 |
# Return an empty figure with a message
|
|
|
|
| 2122 |
line=dict(color=color, width=2),
|
| 2123 |
marker=dict(size=8),
|
| 2124 |
legendgroup=agent_name,
|
| 2125 |
+
showlegend=(top_n is not None and top_n <= 10), # Show legend for top N agents
|
| 2126 |
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 2127 |
'Month: %{x}<br>' +
|
| 2128 |
'Acceptance Rate: %{y:.2f}%<br>' +
|
|
|
|
| 2148 |
name=agent_name,
|
| 2149 |
marker=dict(color=color, opacity=0.6),
|
| 2150 |
legendgroup=agent_name,
|
| 2151 |
+
showlegend=False, # Hide duplicate legend entry (already shown in Scatter)
|
| 2152 |
hovertemplate='<b>Agent: %{fullData.name}</b><br>' +
|
| 2153 |
'Month: %{x}<br>' +
|
| 2154 |
'Total Reviews: %{y}<br>' +
|
|
|
|
| 2164 |
fig.update_yaxes(title_text="<b>Total Reviews</b>", secondary_y=True)
|
| 2165 |
|
| 2166 |
# Update layout
|
| 2167 |
+
show_legend = (top_n is not None and top_n <= 10)
|
| 2168 |
fig.update_layout(
|
| 2169 |
title=None,
|
| 2170 |
hovermode='closest', # Show individual agent info on hover
|
| 2171 |
barmode='group',
|
| 2172 |
height=600,
|
| 2173 |
+
showlegend=show_legend,
|
| 2174 |
+
margin=dict(l=50, r=150 if show_legend else 50, t=50, b=50) # More right margin when legend is shown
|
| 2175 |
)
|
| 2176 |
|
| 2177 |
return fig
|
|
|
|
| 2182 |
Construct leaderboard from review metadata and convert to pandas DataFrame for display.
|
| 2183 |
Returns formatted DataFrame sorted by retention rate.
|
| 2184 |
"""
|
| 2185 |
+
print("\n" + "="*60)
|
| 2186 |
+
print("π DEBUG: get_leaderboard_dataframe() called")
|
| 2187 |
+
print("="*60)
|
| 2188 |
+
|
| 2189 |
# Construct leaderboard from metadata
|
| 2190 |
cache_dict = construct_leaderboard_from_metadata()
|
| 2191 |
|
| 2192 |
+
print(f"π Cache dict size: {len(cache_dict)}")
|
| 2193 |
+
|
| 2194 |
if not cache_dict:
|
| 2195 |
+
print("β οΈ WARNING: cache_dict is empty!")
|
| 2196 |
# Return empty DataFrame with correct columns if no data
|
| 2197 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 2198 |
return pd.DataFrame(columns=column_names)
|
| 2199 |
|
| 2200 |
rows = []
|
| 2201 |
+
filtered_count = 0
|
| 2202 |
+
for identifier, data in cache_dict.items():
|
| 2203 |
+
total_reviews = data.get('total_reviews', 0)
|
| 2204 |
+
print(f" Agent '{identifier}': {total_reviews} reviews")
|
| 2205 |
+
|
| 2206 |
# Filter out agents with zero total reviews
|
| 2207 |
+
if total_reviews == 0:
|
| 2208 |
+
filtered_count += 1
|
| 2209 |
continue
|
| 2210 |
+
|
| 2211 |
# Only include display-relevant fields
|
| 2212 |
rows.append([
|
| 2213 |
data.get('agent_name', 'Unknown'),
|
| 2214 |
data.get('website', 'N/A'),
|
| 2215 |
+
total_reviews,
|
| 2216 |
data.get('merged_prs', 0),
|
| 2217 |
data.get('acceptance_rate', 0.0),
|
| 2218 |
])
|
| 2219 |
|
| 2220 |
+
print(f"π Filtered out {filtered_count} agents with 0 reviews")
|
| 2221 |
+
print(f"π Leaderboard will show {len(rows)} agents")
|
| 2222 |
+
|
| 2223 |
# Create DataFrame
|
| 2224 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 2225 |
df = pd.DataFrame(rows, columns=column_names)
|
|
|
|
| 2234 |
if "Acceptance Rate (%)" in df.columns and not df.empty:
|
| 2235 |
df = df.sort_values(by="Acceptance Rate (%)", ascending=False).reset_index(drop=True)
|
| 2236 |
|
| 2237 |
+
print(f"β
Final DataFrame shape: {df.shape}")
|
| 2238 |
+
print("="*60 + "\n")
|
| 2239 |
+
|
| 2240 |
return df
|
| 2241 |
|
| 2242 |
|
|
|
|
| 2247 |
"""
|
| 2248 |
# Validate required fields
|
| 2249 |
if not identifier or not identifier.strip():
|
| 2250 |
+
return "β GitHub identifier is required", get_leaderboard_dataframe()
|
| 2251 |
if not agent_name or not agent_name.strip():
|
| 2252 |
+
return "β Agent name is required", get_leaderboard_dataframe()
|
| 2253 |
if not organization or not organization.strip():
|
| 2254 |
+
return "β Organization name is required", get_leaderboard_dataframe()
|
| 2255 |
if not website or not website.strip():
|
| 2256 |
+
return "β Website URL is required", get_leaderboard_dataframe()
|
| 2257 |
|
| 2258 |
# Clean inputs
|
| 2259 |
identifier = identifier.strip()
|
|
|
|
| 2265 |
# Validate GitHub identifier
|
| 2266 |
is_valid, message = validate_github_username(identifier)
|
| 2267 |
if not is_valid:
|
| 2268 |
+
return f"β {message}", get_leaderboard_dataframe()
|
| 2269 |
|
| 2270 |
# Check for duplicates by loading agents from HuggingFace
|
| 2271 |
agents = load_agents_from_hf()
|
| 2272 |
if agents:
|
| 2273 |
existing_names = {agent['github_identifier'] for agent in agents}
|
| 2274 |
if identifier in existing_names:
|
| 2275 |
+
return f"β οΈ Agent with identifier '{identifier}' already exists", get_leaderboard_dataframe()
|
| 2276 |
|
| 2277 |
# Create submission
|
| 2278 |
submission = {
|
|
|
|
| 2285 |
|
| 2286 |
# Save to HuggingFace
|
| 2287 |
if not save_agent_to_hf(submission):
|
| 2288 |
+
return "β Failed to save submission", get_leaderboard_dataframe()
|
| 2289 |
|
| 2290 |
# Return success message - data will be populated by daily incremental updates
|
| 2291 |
+
return f"β
Successfully submitted {agent_name}! Review data will be populated by the next daily incremental update.", get_leaderboard_dataframe()
|
| 2292 |
|
| 2293 |
|
| 2294 |
# =============================================================================
|
| 2295 |
# BACKGROUND TASKS
|
| 2296 |
# =============================================================================
|
| 2297 |
|
| 2298 |
+
def fetch_and_update_weekly_reviews():
|
| 2299 |
"""
|
| 2300 |
Fetch and update reviews with comprehensive status checking using BigQuery.
|
| 2301 |
|
| 2302 |
Strategy:
|
| 2303 |
1. For each agent:
|
| 2304 |
+
- Examine ALL open reviews from last LEADERBOARD_TIME_FRAME_DAYS - 7 for their closed_at status
|
| 2305 |
+
- Update PR status for all existing metadata using BigQuery (last LEADERBOARD_TIME_FRAME_DAYS - 7)
|
| 2306 |
+
- Fetch new reviews from last week using BigQuery
|
| 2307 |
- Save all updated/new metadata back to HuggingFace
|
| 2308 |
"""
|
| 2309 |
# Initialize BigQuery client
|
|
|
|
| 2322 |
# Calculate date range
|
| 2323 |
today_utc = datetime.now(timezone.utc)
|
| 2324 |
today_midnight = datetime.combine(today_utc.date(), datetime.min.time(), tzinfo=timezone.utc)
|
| 2325 |
+
last_week_midnight = today_midnight - timedelta(days=7)
|
| 2326 |
+
cutoff_date = today_midnight - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS - 7)
|
| 2327 |
|
| 2328 |
print(f"π
Time Range Configuration:")
|
| 2329 |
+
print(f" Last week 12am UTC: {last_week_midnight.isoformat()}")
|
| 2330 |
print(f" Today 12am UTC: {today_midnight.isoformat()}")
|
| 2331 |
print(f" Cutoff for existing reviews: {cutoff_date.isoformat()}")
|
| 2332 |
print(f" Examining reviews from: {cutoff_date.date()} to {today_midnight.date()}")
|
| 2333 |
|
| 2334 |
for agent in agents:
|
| 2335 |
identifier = agent.get('github_identifier')
|
| 2336 |
+
agent_name = agent.get('name', 'Unknown')
|
| 2337 |
|
| 2338 |
if not identifier:
|
| 2339 |
print(f"Warning: Skipping agent without identifier: {agent}")
|
|
|
|
| 2368 |
if recent_metadata:
|
| 2369 |
print(f"π Updating PR status for {len(recent_metadata)} existing reviews using BigQuery...")
|
| 2370 |
# Extract PR URLs from existing metadata
|
| 2371 |
+
urls = [r.get('url') for r in recent_metadata if r.get('url')]
|
| 2372 |
+
if urls:
|
| 2373 |
# Fetch status from BigQuery
|
| 2374 |
extended_end_date = today_utc
|
| 2375 |
+
status_map = fetch_pr_status_from_bigquery(client, urls, cutoff_date, extended_end_date)
|
| 2376 |
|
| 2377 |
# Update metadata with new status
|
| 2378 |
for review in recent_metadata:
|
| 2379 |
+
url = review.get('url')
|
| 2380 |
+
if url and url in status_map:
|
| 2381 |
+
status_info = status_map[url]
|
| 2382 |
review['pr_status'] = status_info['status']
|
| 2383 |
+
review['merged_at'] = status_info['merged']
|
| 2384 |
+
review['closed_at'] = status_info['closed_at']
|
| 2385 |
|
| 2386 |
print(f" β Updated PR status for existing reviews")
|
| 2387 |
|
| 2388 |
+
# Step 3: Fetch NEW reviews from last week to today using BigQuery
|
| 2389 |
+
print(f"π Fetching new reviews from {last_week_midnight.isoformat()} to {today_midnight.isoformat()} using BigQuery...")
|
| 2390 |
|
| 2391 |
+
review_rows = fetch_reviews_from_bigquery(client, identifier, last_week_midnight, today_midnight)
|
| 2392 |
|
| 2393 |
# Extract unique PR URLs and fetch status
|
| 2394 |
+
urls = list(set([row.url for row in review_rows if row.url]))
|
| 2395 |
+
print(f" Found {len(review_rows)} review events across {len(urls)} unique PRs")
|
| 2396 |
|
| 2397 |
# Fetch PR status for new reviews
|
| 2398 |
extended_end_date = today_utc
|
| 2399 |
+
status_map = fetch_pr_status_from_bigquery(client, urls, last_week_midnight, extended_end_date)
|
| 2400 |
|
| 2401 |
# Extract metadata for new reviews
|
| 2402 |
+
weekly_metadata = []
|
| 2403 |
seen_prs = set()
|
| 2404 |
for row in review_rows:
|
| 2405 |
+
url = row.url
|
| 2406 |
+
if url in seen_prs:
|
| 2407 |
continue
|
| 2408 |
+
seen_prs.add(url)
|
| 2409 |
|
| 2410 |
+
status_info = status_map.get(url, {
|
| 2411 |
'status': 'open',
|
| 2412 |
'merged': False,
|
| 2413 |
'closed_at': None
|
|
|
|
| 2415 |
|
| 2416 |
metadata = extract_review_metadata_from_bigquery(row, status_info)
|
| 2417 |
metadata['agent_identifier'] = identifier
|
| 2418 |
+
weekly_metadata.append(metadata)
|
| 2419 |
|
| 2420 |
+
print(f" β Found {len(weekly_metadata)} unique PRs in 7-day window")
|
| 2421 |
|
| 2422 |
# Step 4: Combine and save all metadata
|
| 2423 |
+
all_updated_metadata = recent_metadata + weekly_metadata
|
| 2424 |
|
| 2425 |
if all_updated_metadata:
|
| 2426 |
print(f"πΎ Saving {len(all_updated_metadata)} total reviews to HuggingFace...")
|
| 2427 |
save_review_metadata_to_hf(all_updated_metadata, identifier)
|
| 2428 |
+
print(f"β Updated {identifier}: {len(recent_metadata)} existing (status checked) + {len(weekly_metadata)} new = {len(all_updated_metadata)} total")
|
| 2429 |
else:
|
| 2430 |
print(f" No reviews to save for {identifier}")
|
| 2431 |
|
|
|
|
| 2440 |
# GRADIO APPLICATION
|
| 2441 |
# =============================================================================
|
| 2442 |
|
| 2443 |
+
# Start APScheduler for weekly updates at 12:00 AM UTC every Monday
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2444 |
scheduler = BackgroundScheduler(timezone="UTC")
|
| 2445 |
scheduler.add_job(
|
| 2446 |
update_all_agents_incremental,
|
| 2447 |
+
trigger=CronTrigger(day_of_week='mon', hour=0, minute=0), # 12:00 AM UTC every Monday
|
| 2448 |
+
id='weekly_review_mining',
|
| 2449 |
+
name='Weekly Regular Review Mining',
|
| 2450 |
replace_existing=True
|
| 2451 |
)
|
| 2452 |
scheduler.start()
|
| 2453 |
+
print("β Scheduler started: Weekly Incremental Update at 12:00 AM UTC every Monday (updates existing metadata + mines last week's reviews)")
|
| 2454 |
|
| 2455 |
# Create Gradio interface
|
| 2456 |
with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as app:
|
| 2457 |
|
| 2458 |
gr.Markdown("# π SWE Agent Review Leaderboard")
|
| 2459 |
+
gr.Markdown("Track and compare GitHub PR review acceptance statistics for SWE agents (last month)")
|
| 2460 |
|
| 2461 |
with gr.Tabs():
|
| 2462 |
+
|
| 2463 |
# Leaderboard Tab
|
| 2464 |
with gr.Tab("π Leaderboard"):
|
| 2465 |
+
gr.Markdown("*All statistics are based on reviews from the last month*")
|
| 2466 |
leaderboard_table = Leaderboard(
|
| 2467 |
+
value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]), # Empty initially
|
| 2468 |
datatype=LEADERBOARD_COLUMNS,
|
| 2469 |
search_columns=["Agent Name", "Website"],
|
| 2470 |
filter_columns=["Acceptance Rate (%)"]
|
| 2471 |
)
|
| 2472 |
|
| 2473 |
+
# Load leaderboard data when app starts
|
| 2474 |
+
app.load(
|
| 2475 |
+
fn=get_leaderboard_dataframe,
|
| 2476 |
+
inputs=[],
|
| 2477 |
+
outputs=[leaderboard_table]
|
| 2478 |
+
)
|
| 2479 |
|
| 2480 |
+
# Monthly Metrics Section
|
| 2481 |
+
gr.Markdown("---") # Divider
|
| 2482 |
+
gr.Markdown("### π Monthly Performance - Top 5 Agents")
|
| 2483 |
+
gr.Markdown("*Shows acceptance rate trends and review volumes for the most active agents*")
|
| 2484 |
+
|
| 2485 |
+
monthly_metrics_plot = gr.Plot(label="Monthly Metrics")
|
| 2486 |
+
|
| 2487 |
+
# Load monthly metrics when app starts
|
| 2488 |
+
app.load(
|
| 2489 |
+
fn=lambda: create_monthly_metrics_plot(top_n=5),
|
| 2490 |
+
inputs=[],
|
| 2491 |
+
outputs=[monthly_metrics_plot]
|
| 2492 |
)
|
| 2493 |
|
| 2494 |
+
|
| 2495 |
# Submit Agent Tab
|
| 2496 |
with gr.Tab("β Submit Agent"):
|
| 2497 |
|
|
|
|
| 2537 |
submit_button.click(
|
| 2538 |
fn=submit_agent,
|
| 2539 |
inputs=[github_input, name_input, organization_input, description_input, website_input],
|
| 2540 |
+
outputs=[submission_status, leaderboard_table]
|
| 2541 |
)
|
| 2542 |
|
| 2543 |
|
msr.py
CHANGED
|
@@ -89,464 +89,188 @@ def get_bigquery_client():
|
|
| 89 |
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
|
| 90 |
|
| 91 |
|
| 92 |
-
|
| 93 |
-
# BIGQUERY FUNCTIONS
|
| 94 |
-
# =============================================================================
|
| 95 |
-
|
| 96 |
-
def fetch_reviews_from_bigquery(client, identifier, start_date, end_date):
|
| 97 |
"""
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
Queries githubarchive.day.YYYYMMDD tables for PullRequestReviewEvent where
|
| 101 |
-
actor.login matches the agent identifier.
|
| 102 |
-
|
| 103 |
Args:
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
end_date: End datetime (timezone-aware)
|
| 108 |
-
|
| 109 |
Returns:
|
| 110 |
-
|
| 111 |
"""
|
| 112 |
-
|
| 113 |
-
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 114 |
-
|
| 115 |
-
# Generate list of table names for each day in the range
|
| 116 |
-
table_refs = []
|
| 117 |
current_date = start_date
|
|
|
|
| 118 |
while current_date < end_date:
|
| 119 |
-
table_name = f"githubarchive.day.{current_date.strftime('%Y%m%d')}"
|
| 120 |
-
|
| 121 |
current_date += timedelta(days=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
# Build UNION ALL query for all daily tables
|
| 124 |
-
union_parts = []
|
| 125 |
-
for table_name in table_refs:
|
| 126 |
-
union_parts.append(f"""
|
| 127 |
-
SELECT
|
| 128 |
-
repo.name as repo_name,
|
| 129 |
-
actor.login as actor_login,
|
| 130 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as pr_url,
|
| 131 |
-
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number,
|
| 132 |
-
JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at') as reviewed_at,
|
| 133 |
-
created_at
|
| 134 |
-
FROM `{table_name}`
|
| 135 |
-
WHERE type = 'PullRequestReviewEvent'
|
| 136 |
-
AND actor.login = @identifier
|
| 137 |
-
""")
|
| 138 |
-
|
| 139 |
-
query = " UNION ALL ".join(union_parts)
|
| 140 |
-
|
| 141 |
-
job_config = bigquery.QueryJobConfig(
|
| 142 |
-
query_parameters=[
|
| 143 |
-
bigquery.ScalarQueryParameter("identifier", "STRING", identifier)
|
| 144 |
-
]
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
-
print(f" Querying {len(table_refs)} daily tables...")
|
| 148 |
-
|
| 149 |
-
try:
|
| 150 |
-
query_job = client.query(query, job_config=job_config)
|
| 151 |
-
results = list(query_job.result())
|
| 152 |
-
|
| 153 |
-
print(f" β Found {len(results)} review events")
|
| 154 |
-
return results
|
| 155 |
-
|
| 156 |
-
except Exception as e:
|
| 157 |
-
print(f" β BigQuery error: {str(e)}")
|
| 158 |
-
return []
|
| 159 |
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
def
|
| 162 |
"""
|
| 163 |
-
Fetch PR
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
| 168 |
Args:
|
| 169 |
client: BigQuery client instance
|
| 170 |
-
|
| 171 |
-
start_date: Start datetime (
|
| 172 |
-
end_date: End datetime (
|
| 173 |
-
|
| 174 |
Returns:
|
| 175 |
-
Dictionary mapping
|
| 176 |
{
|
| 177 |
-
'
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
}
|
| 183 |
"""
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
#
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
for repo, pr_numbers in repos_to_prs.items():
|
| 232 |
-
pr_list = ','.join(map(str, pr_numbers))
|
| 233 |
-
filter_conditions.append(f"(repo.name = '{repo}' AND CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) IN ({pr_list}))")
|
| 234 |
-
|
| 235 |
-
pr_filter = " OR ".join(filter_conditions)
|
| 236 |
-
|
| 237 |
-
# Build query to find close/merge events for specific PRs
|
| 238 |
-
union_parts = []
|
| 239 |
-
for table_name in table_refs:
|
| 240 |
-
union_parts.append(f"""
|
| 241 |
-
SELECT
|
| 242 |
-
repo.name as repo_name,
|
| 243 |
-
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number,
|
| 244 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as pr_url,
|
| 245 |
-
JSON_EXTRACT_SCALAR(payload, '$.action') as action,
|
| 246 |
-
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged') AS BOOL) as merged,
|
| 247 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at,
|
| 248 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged_at') as merged_at,
|
| 249 |
-
created_at
|
| 250 |
-
FROM `{table_name}`
|
| 251 |
-
WHERE type = 'PullRequestEvent'
|
| 252 |
AND JSON_EXTRACT_SCALAR(payload, '$.action') = 'closed'
|
| 253 |
-
AND (
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
try:
|
| 262 |
query_job = client.query(query)
|
| 263 |
results = list(query_job.result())
|
| 264 |
-
|
| 265 |
-
print(f" β Found {len(results)} PR
|
| 266 |
-
|
| 267 |
-
#
|
| 268 |
-
|
|
|
|
| 269 |
for row in results:
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
if hasattr(closed_at, 'isoformat'):
|
| 277 |
closed_at = closed_at.isoformat()
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
'
|
| 283 |
-
'
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
for
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
print(f" Status breakdown: {merged_count} merged, {closed_count} closed, {open_count} open")
|
| 301 |
-
|
| 302 |
-
return status_map
|
| 303 |
-
|
| 304 |
-
except Exception as e:
|
| 305 |
-
print(f" β BigQuery error: {str(e)}")
|
| 306 |
-
# Return all as open on error
|
| 307 |
-
return {url: {'status': 'open', 'merged': False, 'closed_at': None} for url in pr_urls}
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
def extract_review_metadata(review_row, status_info):
|
| 311 |
-
"""
|
| 312 |
-
Extract minimal PR review metadata from BigQuery row and status info.
|
| 313 |
-
|
| 314 |
-
Args:
|
| 315 |
-
review_row: BigQuery row from PullRequestReviewEvent query
|
| 316 |
-
status_info: Status dictionary from fetch_pr_status_from_bigquery
|
| 317 |
-
|
| 318 |
-
Returns:
|
| 319 |
-
Dictionary with review metadata
|
| 320 |
-
"""
|
| 321 |
-
pr_url = review_row.pr_url
|
| 322 |
-
pr_number = review_row.pr_number
|
| 323 |
-
reviewed_at = review_row.reviewed_at or review_row.created_at
|
| 324 |
-
|
| 325 |
-
# Convert to ISO format if datetime
|
| 326 |
-
if hasattr(reviewed_at, 'isoformat'):
|
| 327 |
-
reviewed_at = reviewed_at.isoformat()
|
| 328 |
-
|
| 329 |
-
return {
|
| 330 |
-
'html_url': pr_url,
|
| 331 |
-
'reviewed_at': reviewed_at,
|
| 332 |
-
'pr_status': status_info['status'],
|
| 333 |
-
'pr_merged': status_info['merged'],
|
| 334 |
-
'pr_closed_at': status_info['closed_at'],
|
| 335 |
-
'pr_url': pr_url,
|
| 336 |
-
'review_id': f"pr_{pr_number}"
|
| 337 |
-
}
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
def fetch_all_reviews_metadata(identifier, agent_name):
|
| 341 |
-
"""
|
| 342 |
-
Fetch PR reviews associated with a GitHub user or bot for the past LEADERBOARD_TIME_FRAME_DAYS.
|
| 343 |
-
Uses BigQuery to query GitHub Archive instead of GitHub API.
|
| 344 |
-
|
| 345 |
-
Args:
|
| 346 |
-
identifier: GitHub username or bot identifier (for BigQuery queries)
|
| 347 |
-
agent_name: Human-readable name of the agent (for display only)
|
| 348 |
-
|
| 349 |
-
Returns:
|
| 350 |
-
List of dictionaries containing minimal PR review metadata with PR status
|
| 351 |
-
"""
|
| 352 |
-
# Initialize BigQuery client
|
| 353 |
-
try:
|
| 354 |
-
client = get_bigquery_client()
|
| 355 |
-
except Exception as e:
|
| 356 |
-
print(f"β Failed to initialize BigQuery client: {str(e)}")
|
| 357 |
-
return []
|
| 358 |
-
|
| 359 |
-
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
| 360 |
-
current_time = datetime.now(timezone.utc)
|
| 361 |
-
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0) # 12:00 AM UTC today
|
| 362 |
-
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 363 |
-
|
| 364 |
-
print(f"\n{'='*80}")
|
| 365 |
-
print(f"Fetching reviews for: {agent_name} ({identifier})")
|
| 366 |
-
print(f"{'='*80}")
|
| 367 |
-
|
| 368 |
-
# Fetch review events from BigQuery
|
| 369 |
-
review_rows = fetch_reviews_from_bigquery(client, identifier, start_date, end_date)
|
| 370 |
-
|
| 371 |
-
if not review_rows:
|
| 372 |
-
print(f" No reviews found for {identifier}")
|
| 373 |
-
return []
|
| 374 |
-
|
| 375 |
-
# Extract unique PR URLs
|
| 376 |
-
pr_urls = list(set([row.pr_url for row in review_rows if row.pr_url]))
|
| 377 |
-
print(f"\nπ Found {len(review_rows)} review events across {len(pr_urls)} unique PRs")
|
| 378 |
-
|
| 379 |
-
# Fetch PR status from BigQuery
|
| 380 |
-
# Use extended end date to catch recent merges/closes
|
| 381 |
-
extended_end_date = current_time
|
| 382 |
-
status_map = fetch_pr_status_from_bigquery(client, pr_urls, start_date, extended_end_date)
|
| 383 |
-
|
| 384 |
-
# Extract metadata for each review
|
| 385 |
-
print(f"\nπ¦ Extracting metadata...")
|
| 386 |
-
metadata_list = []
|
| 387 |
-
|
| 388 |
-
# Deduplicate by PR URL (multiple reviews on same PR)
|
| 389 |
-
seen_prs = set()
|
| 390 |
-
for row in review_rows:
|
| 391 |
-
pr_url = row.pr_url
|
| 392 |
-
if pr_url in seen_prs:
|
| 393 |
-
continue
|
| 394 |
-
seen_prs.add(pr_url)
|
| 395 |
-
|
| 396 |
-
status_info = status_map.get(pr_url, {
|
| 397 |
-
'status': 'open',
|
| 398 |
-
'merged': False,
|
| 399 |
-
'closed_at': None
|
| 400 |
-
})
|
| 401 |
-
|
| 402 |
-
metadata = extract_review_metadata(row, status_info)
|
| 403 |
-
metadata_list.append(metadata)
|
| 404 |
-
|
| 405 |
-
print(f" β Extracted {len(metadata_list)} unique PR review records")
|
| 406 |
-
|
| 407 |
-
return metadata_list
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
def fetch_all_reviews_metadata_batch(agents):
|
| 411 |
-
"""
|
| 412 |
-
Fetch PR reviews for ALL agents in a single batch operation.
|
| 413 |
-
Uses only 2 BigQuery queries total (instead of 2*N queries for N agents).
|
| 414 |
-
|
| 415 |
-
Args:
|
| 416 |
-
agents: List of agent dictionaries with 'github_identifier' and 'name' fields
|
| 417 |
-
|
| 418 |
-
Returns:
|
| 419 |
-
Dictionary mapping agent identifier to list of review metadata:
|
| 420 |
-
{
|
| 421 |
-
'agent-identifier': [metadata_list],
|
| 422 |
-
...
|
| 423 |
-
}
|
| 424 |
-
"""
|
| 425 |
-
if not agents:
|
| 426 |
-
return {}
|
| 427 |
-
|
| 428 |
-
# Initialize BigQuery client
|
| 429 |
-
try:
|
| 430 |
-
client = get_bigquery_client()
|
| 431 |
-
except Exception as e:
|
| 432 |
-
print(f"β Failed to initialize BigQuery client: {str(e)}")
|
| 433 |
-
return {}
|
| 434 |
-
|
| 435 |
-
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
| 436 |
-
current_time = datetime.now(timezone.utc)
|
| 437 |
-
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 438 |
-
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 439 |
-
|
| 440 |
-
# Extract all identifiers
|
| 441 |
-
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 442 |
-
if not identifiers:
|
| 443 |
-
return {}
|
| 444 |
-
|
| 445 |
-
print(f"\nπ BATCH MODE: Fetching reviews for {len(identifiers)} agents in 2 queries")
|
| 446 |
-
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 447 |
-
|
| 448 |
-
# =========================================================================
|
| 449 |
-
# QUERY 1: Fetch ALL review events for ALL agents in one query
|
| 450 |
-
# =========================================================================
|
| 451 |
-
print(f"\nπ Query 1/2: Fetching ALL review events...")
|
| 452 |
-
|
| 453 |
-
# Generate list of table names
|
| 454 |
-
table_refs = []
|
| 455 |
-
current_date = start_date
|
| 456 |
-
while current_date < end_date:
|
| 457 |
-
table_name = f"githubarchive.day.{current_date.strftime('%Y%m%d')}"
|
| 458 |
-
table_refs.append(table_name)
|
| 459 |
-
current_date += timedelta(days=1)
|
| 460 |
-
|
| 461 |
-
# Build IN clause for all identifiers
|
| 462 |
-
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 463 |
-
|
| 464 |
-
# Build UNION ALL query for all daily tables
|
| 465 |
-
union_parts = []
|
| 466 |
-
for table_name in table_refs:
|
| 467 |
-
union_parts.append(f"""
|
| 468 |
-
SELECT
|
| 469 |
-
repo.name as repo_name,
|
| 470 |
-
actor.login as actor_login,
|
| 471 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as pr_url,
|
| 472 |
-
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number,
|
| 473 |
-
JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at') as reviewed_at,
|
| 474 |
-
created_at
|
| 475 |
-
FROM `{table_name}`
|
| 476 |
-
WHERE type = 'PullRequestReviewEvent'
|
| 477 |
-
AND actor.login IN ({identifier_list})
|
| 478 |
-
""")
|
| 479 |
-
|
| 480 |
-
query = " UNION ALL ".join(union_parts)
|
| 481 |
-
|
| 482 |
-
print(f" Querying {len(table_refs)} daily tables...")
|
| 483 |
-
|
| 484 |
-
try:
|
| 485 |
-
query_job = client.query(query)
|
| 486 |
-
all_review_rows = list(query_job.result())
|
| 487 |
-
print(f" β Found {len(all_review_rows)} total review events")
|
| 488 |
except Exception as e:
|
| 489 |
print(f" β BigQuery error: {str(e)}")
|
|
|
|
|
|
|
| 490 |
return {}
|
| 491 |
|
| 492 |
-
# Group reviews by agent
|
| 493 |
-
reviews_by_agent = defaultdict(list)
|
| 494 |
-
all_pr_urls = set()
|
| 495 |
-
for row in all_review_rows:
|
| 496 |
-
reviews_by_agent[row.actor_login].append(row)
|
| 497 |
-
if row.pr_url:
|
| 498 |
-
all_pr_urls.add(row.pr_url)
|
| 499 |
-
|
| 500 |
-
print(f" π Reviews found for {len(reviews_by_agent)} agents")
|
| 501 |
-
print(f" π {len(all_pr_urls)} unique PRs to check status for")
|
| 502 |
-
|
| 503 |
-
# =========================================================================
|
| 504 |
-
# QUERY 2: Fetch ALL PR statuses in one query
|
| 505 |
-
# =========================================================================
|
| 506 |
-
if all_pr_urls:
|
| 507 |
-
print(f"\nπ Query 2/2: Fetching ALL PR statuses...")
|
| 508 |
-
extended_end_date = current_time
|
| 509 |
-
status_map = fetch_pr_status_from_bigquery(client, list(all_pr_urls), start_date, extended_end_date)
|
| 510 |
-
else:
|
| 511 |
-
status_map = {}
|
| 512 |
-
|
| 513 |
-
# =========================================================================
|
| 514 |
-
# Post-process: Build metadata for each agent
|
| 515 |
-
# =========================================================================
|
| 516 |
-
print(f"\nπ¦ Processing metadata for each agent...")
|
| 517 |
-
results = {}
|
| 518 |
-
|
| 519 |
-
for agent in agents:
|
| 520 |
-
identifier = agent.get('github_identifier')
|
| 521 |
-
if not identifier or identifier not in reviews_by_agent:
|
| 522 |
-
results[identifier] = []
|
| 523 |
-
continue
|
| 524 |
-
|
| 525 |
-
review_rows = reviews_by_agent[identifier]
|
| 526 |
-
|
| 527 |
-
# Deduplicate by PR URL
|
| 528 |
-
metadata_list = []
|
| 529 |
-
seen_prs = set()
|
| 530 |
-
for row in review_rows:
|
| 531 |
-
pr_url = row.pr_url
|
| 532 |
-
if pr_url in seen_prs:
|
| 533 |
-
continue
|
| 534 |
-
seen_prs.add(pr_url)
|
| 535 |
-
|
| 536 |
-
status_info = status_map.get(pr_url, {
|
| 537 |
-
'status': 'open',
|
| 538 |
-
'merged': False,
|
| 539 |
-
'closed_at': None
|
| 540 |
-
})
|
| 541 |
-
|
| 542 |
-
metadata = extract_review_metadata(row, status_info)
|
| 543 |
-
metadata_list.append(metadata)
|
| 544 |
-
|
| 545 |
-
results[identifier] = metadata_list
|
| 546 |
-
print(f" β {agent.get('name', identifier)}: {len(metadata_list)} unique PRs")
|
| 547 |
-
|
| 548 |
-
return results
|
| 549 |
-
|
| 550 |
|
| 551 |
# =============================================================================
|
| 552 |
# HUGGINGFACE STORAGE FUNCTIONS
|
|
@@ -554,7 +278,7 @@ def fetch_all_reviews_metadata_batch(agents):
|
|
| 554 |
|
| 555 |
def group_metadata_by_date(metadata_list):
|
| 556 |
"""
|
| 557 |
-
Group review metadata by
|
| 558 |
Returns dict: {(year, month, day): [metadata_list]}
|
| 559 |
"""
|
| 560 |
grouped = defaultdict(list)
|
|
@@ -579,7 +303,7 @@ def save_review_metadata_to_hf(metadata_list, agent_identifier):
|
|
| 579 |
Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 580 |
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
|
| 581 |
|
| 582 |
-
This function
|
| 583 |
Uses batch upload to avoid rate limit (uploads entire folder in single commit).
|
| 584 |
|
| 585 |
Args:
|
|
@@ -595,56 +319,41 @@ def save_review_metadata_to_hf(metadata_list, agent_identifier):
|
|
| 595 |
|
| 596 |
api = HfApi()
|
| 597 |
|
| 598 |
-
# Group by
|
| 599 |
grouped = group_metadata_by_date(metadata_list)
|
| 600 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 601 |
# Create a temporary directory for batch upload
|
| 602 |
temp_dir = tempfile.mkdtemp()
|
| 603 |
agent_folder = os.path.join(temp_dir, agent_identifier)
|
| 604 |
os.makedirs(agent_folder, exist_ok=True)
|
| 605 |
|
| 606 |
try:
|
| 607 |
-
print(f"π¦ Preparing batch upload for {len(grouped)} daily files...")
|
| 608 |
|
| 609 |
# Process each daily file
|
| 610 |
for (review_year, month, day), day_metadata in grouped.items():
|
| 611 |
filename = f"{agent_identifier}/{review_year}.{month:02d}.{day:02d}.jsonl"
|
| 612 |
local_filename = os.path.join(agent_folder, f"{review_year}.{month:02d}.{day:02d}.jsonl")
|
| 613 |
|
| 614 |
-
#
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
repo_type="dataset",
|
| 621 |
-
token=token
|
| 622 |
-
)
|
| 623 |
-
existing_metadata = load_jsonl(file_path)
|
| 624 |
-
print(f" Found {len(existing_metadata)} existing reviews in {filename}")
|
| 625 |
-
except Exception:
|
| 626 |
-
print(f" Creating new file: {filename}")
|
| 627 |
-
|
| 628 |
-
# Merge and deduplicate by review_id
|
| 629 |
-
existing_by_id = {meta['review_id']: meta for meta in existing_metadata if meta.get('review_id')}
|
| 630 |
-
new_by_id = {meta['review_id']: meta for meta in day_metadata if meta.get('review_id')}
|
| 631 |
-
|
| 632 |
-
# Update with new data (new data overwrites old)
|
| 633 |
-
existing_by_id.update(new_by_id)
|
| 634 |
-
merged_metadata = list(existing_by_id.values())
|
| 635 |
-
|
| 636 |
-
# Save to temp directory
|
| 637 |
-
save_jsonl(local_filename, merged_metadata)
|
| 638 |
-
print(f" Prepared {len(merged_metadata)} reviews for {filename}")
|
| 639 |
|
| 640 |
# Upload entire folder in a single commit
|
| 641 |
-
print(f"π€ Uploading {len(grouped)} files in single batch commit...")
|
| 642 |
-
api.
|
| 643 |
folder_path=temp_dir,
|
| 644 |
repo_id=REVIEW_METADATA_REPO,
|
| 645 |
repo_type="dataset",
|
| 646 |
token=token,
|
| 647 |
-
commit_message=f"
|
| 648 |
)
|
| 649 |
print(f" β Batch upload complete for {agent_identifier}")
|
| 650 |
|
|
@@ -656,7 +365,7 @@ def save_review_metadata_to_hf(metadata_list, agent_identifier):
|
|
| 656 |
shutil.rmtree(temp_dir)
|
| 657 |
|
| 658 |
except Exception as e:
|
| 659 |
-
print(f"β Error saving review metadata: {str(e)}")
|
| 660 |
import traceback
|
| 661 |
traceback.print_exc()
|
| 662 |
return False
|
|
@@ -665,21 +374,21 @@ def save_review_metadata_to_hf(metadata_list, agent_identifier):
|
|
| 665 |
def load_agents_from_hf():
|
| 666 |
"""
|
| 667 |
Load all agent metadata JSON files from HuggingFace dataset.
|
| 668 |
-
|
| 669 |
The github_identifier is extracted from the filename (e.g., 'agent-name[bot].json' -> 'agent-name[bot]')
|
| 670 |
"""
|
| 671 |
try:
|
| 672 |
api = HfApi()
|
| 673 |
agents = []
|
| 674 |
-
|
| 675 |
# List all files in the repository
|
| 676 |
files = api.list_repo_files(repo_id=AGENTS_REPO, repo_type="dataset")
|
| 677 |
-
|
| 678 |
# Filter for JSON files only
|
| 679 |
json_files = [f for f in files if f.endswith('.json')]
|
| 680 |
-
|
| 681 |
print(f"Found {len(json_files)} agent files in {AGENTS_REPO}")
|
| 682 |
-
|
| 683 |
# Download and parse each JSON file
|
| 684 |
for json_file in json_files:
|
| 685 |
try:
|
|
@@ -688,23 +397,23 @@ def load_agents_from_hf():
|
|
| 688 |
filename=json_file,
|
| 689 |
repo_type="dataset"
|
| 690 |
)
|
| 691 |
-
|
| 692 |
with open(file_path, 'r') as f:
|
| 693 |
agent_data = json.load(f)
|
| 694 |
-
|
| 695 |
# Extract github_identifier from filename (remove .json extension)
|
| 696 |
github_identifier = json_file.replace('.json', '')
|
| 697 |
agent_data['github_identifier'] = github_identifier
|
| 698 |
-
|
| 699 |
agents.append(agent_data)
|
| 700 |
-
|
| 701 |
except Exception as e:
|
| 702 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 703 |
continue
|
| 704 |
-
|
| 705 |
print(f"β Loaded {len(agents)} agents from HuggingFace")
|
| 706 |
return agents
|
| 707 |
-
|
| 708 |
except Exception as e:
|
| 709 |
print(f"Could not load agents from HuggingFace: {str(e)}")
|
| 710 |
return []
|
|
@@ -717,60 +426,95 @@ def load_agents_from_hf():
|
|
| 717 |
def mine_all_agents():
|
| 718 |
"""
|
| 719 |
Mine review metadata for all agents within LEADERBOARD_TIME_FRAME_DAYS and save to HuggingFace.
|
| 720 |
-
Uses BigQuery
|
| 721 |
"""
|
| 722 |
# Load agent metadata from HuggingFace
|
| 723 |
agents = load_agents_from_hf()
|
| 724 |
if not agents:
|
| 725 |
print("No agents found in HuggingFace dataset")
|
| 726 |
return
|
| 727 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 728 |
print(f"\n{'='*80}")
|
| 729 |
-
print(f"Starting review metadata mining for {len(
|
| 730 |
print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 731 |
-
print(f"Data source: BigQuery + GitHub Archive (
|
| 732 |
print(f"{'='*80}\n")
|
| 733 |
-
|
| 734 |
-
#
|
| 735 |
try:
|
| 736 |
-
|
| 737 |
except Exception as e:
|
| 738 |
-
print(f"β
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 739 |
import traceback
|
| 740 |
traceback.print_exc()
|
| 741 |
return
|
| 742 |
-
|
| 743 |
# Save results for each agent
|
| 744 |
print(f"\n{'='*80}")
|
| 745 |
-
print(f"πΎ Saving results to HuggingFace...")
|
| 746 |
print(f"{'='*80}\n")
|
| 747 |
-
|
| 748 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 749 |
identifier = agent.get('github_identifier')
|
| 750 |
agent_name = agent.get('name', agent.get('agent_name', 'Unknown'))
|
| 751 |
-
|
| 752 |
if not identifier:
|
| 753 |
-
print(f"
|
|
|
|
| 754 |
continue
|
| 755 |
-
|
| 756 |
metadata = all_metadata.get(identifier, [])
|
| 757 |
-
|
|
|
|
|
|
|
| 758 |
try:
|
| 759 |
if metadata:
|
| 760 |
-
print(f"πΎ
|
| 761 |
-
save_review_metadata_to_hf(metadata, identifier)
|
| 762 |
-
|
|
|
|
|
|
|
| 763 |
else:
|
| 764 |
-
print(f" No reviews found
|
| 765 |
-
|
|
|
|
| 766 |
except Exception as e:
|
| 767 |
-
print(f"β Error saving {identifier}: {str(e)}")
|
| 768 |
import traceback
|
| 769 |
traceback.print_exc()
|
|
|
|
| 770 |
continue
|
| 771 |
-
|
| 772 |
print(f"\n{'='*80}")
|
| 773 |
-
print(f"β
Mining complete
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 774 |
print(f"{'='*80}\n")
|
| 775 |
|
| 776 |
|
|
@@ -779,4 +523,4 @@ def mine_all_agents():
|
|
| 779 |
# =============================================================================
|
| 780 |
|
| 781 |
if __name__ == "__main__":
|
| 782 |
-
mine_all_agents()
|
|
|
|
| 89 |
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
|
| 90 |
|
| 91 |
|
| 92 |
+
def generate_table_union_statements(start_date, end_date):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
"""
|
| 94 |
+
Generate UNION ALL statements for githubarchive.day tables in date range.
|
| 95 |
+
|
|
|
|
|
|
|
|
|
|
| 96 |
Args:
|
| 97 |
+
start_date: Start datetime
|
| 98 |
+
end_date: End datetime
|
| 99 |
+
|
|
|
|
|
|
|
| 100 |
Returns:
|
| 101 |
+
String with UNION ALL SELECT statements for all tables in range
|
| 102 |
"""
|
| 103 |
+
table_names = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
current_date = start_date
|
| 105 |
+
|
| 106 |
while current_date < end_date:
|
| 107 |
+
table_name = f"`githubarchive.day.{current_date.strftime('%Y%m%d')}`"
|
| 108 |
+
table_names.append(table_name)
|
| 109 |
current_date += timedelta(days=1)
|
| 110 |
+
|
| 111 |
+
# Create UNION ALL chain
|
| 112 |
+
union_parts = [f"SELECT * FROM {table}" for table in table_names]
|
| 113 |
+
return " UNION ALL ".join(union_parts)
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
# =============================================================================
|
| 117 |
+
# BIGQUERY FUNCTIONS
|
| 118 |
+
# =============================================================================
|
| 119 |
|
| 120 |
+
def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date):
|
| 121 |
"""
|
| 122 |
+
Fetch PR review metadata for ALL agents using ONE comprehensive BigQuery query.
|
| 123 |
+
|
| 124 |
+
This query combines:
|
| 125 |
+
1. Review events (PullRequestReviewEvent) for all agents
|
| 126 |
+
2. PR status (PullRequestEvent with action='closed')
|
| 127 |
+
|
| 128 |
Args:
|
| 129 |
client: BigQuery client instance
|
| 130 |
+
identifiers: List of GitHub usernames/bot identifiers
|
| 131 |
+
start_date: Start datetime (timezone-aware)
|
| 132 |
+
end_date: End datetime (timezone-aware)
|
| 133 |
+
|
| 134 |
Returns:
|
| 135 |
+
Dictionary mapping agent identifier to list of PR metadata:
|
| 136 |
{
|
| 137 |
+
'agent-identifier': [
|
| 138 |
+
{
|
| 139 |
+
'url': PR URL,
|
| 140 |
+
'reviewed_at': Review timestamp,
|
| 141 |
+
'merged_at': Merge timestamp (if merged, else None),
|
| 142 |
+
'closed_at': Close timestamp (if closed, else None)
|
| 143 |
+
},
|
| 144 |
+
...
|
| 145 |
+
],
|
| 146 |
+
...
|
| 147 |
}
|
| 148 |
"""
|
| 149 |
+
print(f"\nπ Querying BigQuery for ALL {len(identifiers)} agents in ONE QUERY")
|
| 150 |
+
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 151 |
+
|
| 152 |
+
# Generate table UNION statements for review period
|
| 153 |
+
review_tables = generate_table_union_statements(start_date, end_date)
|
| 154 |
+
|
| 155 |
+
# Generate table UNION statements for PR status (look back 1 year to catch all closures)
|
| 156 |
+
status_start_date = end_date - timedelta(days=365)
|
| 157 |
+
status_tables = generate_table_union_statements(status_start_date, end_date)
|
| 158 |
+
|
| 159 |
+
# Build identifier list for IN clause
|
| 160 |
+
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 161 |
+
|
| 162 |
+
# Build comprehensive query with CTEs
|
| 163 |
+
query = f"""
|
| 164 |
+
WITH review_events AS (
|
| 165 |
+
-- Get all review events for ALL agents
|
| 166 |
+
SELECT
|
| 167 |
+
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
|
| 168 |
+
COALESCE(
|
| 169 |
+
JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at'),
|
| 170 |
+
CAST(created_at AS STRING)
|
| 171 |
+
) as reviewed_at,
|
| 172 |
+
actor.login as reviewer,
|
| 173 |
+
repo.name as repo_name,
|
| 174 |
+
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.number') AS INT64) as pr_number
|
| 175 |
+
FROM (
|
| 176 |
+
{review_tables}
|
| 177 |
+
)
|
| 178 |
+
WHERE
|
| 179 |
+
type = 'PullRequestReviewEvent'
|
| 180 |
+
AND actor.login IN ({identifier_list})
|
| 181 |
+
),
|
| 182 |
+
|
| 183 |
+
pr_status AS (
|
| 184 |
+
-- Get merge/close status for those PRs
|
| 185 |
+
SELECT
|
| 186 |
+
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
|
| 187 |
+
CAST(JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged') AS BOOL) as is_merged,
|
| 188 |
+
JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged_at') as merged_at,
|
| 189 |
+
JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at,
|
| 190 |
+
created_at
|
| 191 |
+
FROM (
|
| 192 |
+
{status_tables}
|
| 193 |
+
)
|
| 194 |
+
WHERE
|
| 195 |
+
type = 'PullRequestEvent'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
AND JSON_EXTRACT_SCALAR(payload, '$.action') = 'closed'
|
| 197 |
+
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IN (
|
| 198 |
+
SELECT DISTINCT url FROM review_events
|
| 199 |
+
)
|
| 200 |
+
QUALIFY ROW_NUMBER() OVER (PARTITION BY url ORDER BY created_at DESC) = 1
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
-- Join review events with PR status
|
| 204 |
+
SELECT DISTINCT
|
| 205 |
+
re.reviewer,
|
| 206 |
+
re.url,
|
| 207 |
+
re.reviewed_at,
|
| 208 |
+
ps.merged_at,
|
| 209 |
+
ps.closed_at
|
| 210 |
+
FROM review_events re
|
| 211 |
+
LEFT JOIN pr_status ps ON re.url = ps.url
|
| 212 |
+
ORDER BY re.reviewer, re.reviewed_at DESC
|
| 213 |
+
"""
|
| 214 |
+
|
| 215 |
+
# Calculate number of days for reporting
|
| 216 |
+
review_days = (end_date - start_date).days
|
| 217 |
+
status_days = (end_date - status_start_date).days
|
| 218 |
+
|
| 219 |
+
print(f" Querying {review_days} days for reviews, {status_days} days for PR status...")
|
| 220 |
+
print(f" Agents: {', '.join(identifiers[:5])}{'...' if len(identifiers) > 5 else ''}")
|
| 221 |
+
|
| 222 |
try:
|
| 223 |
query_job = client.query(query)
|
| 224 |
results = list(query_job.result())
|
| 225 |
+
|
| 226 |
+
print(f" β Found {len(results)} total PR review records across all agents")
|
| 227 |
+
|
| 228 |
+
# Group results by agent
|
| 229 |
+
metadata_by_agent = defaultdict(list)
|
| 230 |
+
|
| 231 |
for row in results:
|
| 232 |
+
reviewer = row.reviewer
|
| 233 |
+
|
| 234 |
+
# Convert datetime objects to ISO strings
|
| 235 |
+
reviewed_at = row.reviewed_at
|
| 236 |
+
if hasattr(reviewed_at, 'isoformat'):
|
| 237 |
+
reviewed_at = reviewed_at.isoformat()
|
| 238 |
+
|
| 239 |
+
merged_at = row.merged_at
|
| 240 |
+
if hasattr(merged_at, 'isoformat'):
|
| 241 |
+
merged_at = merged_at.isoformat()
|
| 242 |
+
|
| 243 |
+
closed_at = row.closed_at
|
| 244 |
if hasattr(closed_at, 'isoformat'):
|
| 245 |
closed_at = closed_at.isoformat()
|
| 246 |
+
|
| 247 |
+
metadata_by_agent[reviewer].append({
|
| 248 |
+
'url': row.url,
|
| 249 |
+
'reviewed_at': reviewed_at,
|
| 250 |
+
'merged_at': merged_at,
|
| 251 |
+
'closed_at': closed_at,
|
| 252 |
+
})
|
| 253 |
+
|
| 254 |
+
# Print breakdown by agent
|
| 255 |
+
print(f"\n π Results breakdown by agent:")
|
| 256 |
+
for identifier in identifiers:
|
| 257 |
+
count = len(metadata_by_agent.get(identifier, []))
|
| 258 |
+
if count > 0:
|
| 259 |
+
metadata = metadata_by_agent[identifier]
|
| 260 |
+
merged_count = sum(1 for m in metadata if m['merged_at'] is not None)
|
| 261 |
+
closed_count = sum(1 for m in metadata if m['closed_at'] is not None and m['merged_at'] is None)
|
| 262 |
+
open_count = count - merged_count - closed_count
|
| 263 |
+
print(f" {identifier}: {count} PRs ({merged_count} merged, {closed_count} closed, {open_count} open)")
|
| 264 |
+
|
| 265 |
+
# Convert defaultdict to regular dict
|
| 266 |
+
return dict(metadata_by_agent)
|
| 267 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
except Exception as e:
|
| 269 |
print(f" β BigQuery error: {str(e)}")
|
| 270 |
+
import traceback
|
| 271 |
+
traceback.print_exc()
|
| 272 |
return {}
|
| 273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
# =============================================================================
|
| 276 |
# HUGGINGFACE STORAGE FUNCTIONS
|
|
|
|
| 278 |
|
| 279 |
def group_metadata_by_date(metadata_list):
|
| 280 |
"""
|
| 281 |
+
Group review metadata by date (year.month.day) for daily storage.
|
| 282 |
Returns dict: {(year, month, day): [metadata_list]}
|
| 283 |
"""
|
| 284 |
grouped = defaultdict(list)
|
|
|
|
| 303 |
Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 304 |
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
|
| 305 |
|
| 306 |
+
This function OVERWRITES existing files completely with fresh data from BigQuery.
|
| 307 |
Uses batch upload to avoid rate limit (uploads entire folder in single commit).
|
| 308 |
|
| 309 |
Args:
|
|
|
|
| 319 |
|
| 320 |
api = HfApi()
|
| 321 |
|
| 322 |
+
# Group by date (year, month, day)
|
| 323 |
grouped = group_metadata_by_date(metadata_list)
|
| 324 |
|
| 325 |
+
if not grouped:
|
| 326 |
+
print(f" No valid metadata to save for {agent_identifier}")
|
| 327 |
+
return False
|
| 328 |
+
|
| 329 |
# Create a temporary directory for batch upload
|
| 330 |
temp_dir = tempfile.mkdtemp()
|
| 331 |
agent_folder = os.path.join(temp_dir, agent_identifier)
|
| 332 |
os.makedirs(agent_folder, exist_ok=True)
|
| 333 |
|
| 334 |
try:
|
| 335 |
+
print(f" π¦ Preparing batch upload for {len(grouped)} daily files...")
|
| 336 |
|
| 337 |
# Process each daily file
|
| 338 |
for (review_year, month, day), day_metadata in grouped.items():
|
| 339 |
filename = f"{agent_identifier}/{review_year}.{month:02d}.{day:02d}.jsonl"
|
| 340 |
local_filename = os.path.join(agent_folder, f"{review_year}.{month:02d}.{day:02d}.jsonl")
|
| 341 |
|
| 342 |
+
# Sort by reviewed_at for better organization
|
| 343 |
+
day_metadata.sort(key=lambda x: x.get('reviewed_at', ''), reverse=True)
|
| 344 |
+
|
| 345 |
+
# Save to temp directory (complete overwrite, no merging)
|
| 346 |
+
save_jsonl(local_filename, day_metadata)
|
| 347 |
+
print(f" Prepared {len(day_metadata)} reviews for {filename}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
# Upload entire folder in a single commit
|
| 350 |
+
print(f" π€ Uploading {len(grouped)} files in single batch commit...")
|
| 351 |
+
api.upload_large_folder(
|
| 352 |
folder_path=temp_dir,
|
| 353 |
repo_id=REVIEW_METADATA_REPO,
|
| 354 |
repo_type="dataset",
|
| 355 |
token=token,
|
| 356 |
+
commit_message=f"Update: {agent_identifier} ({len(grouped)} daily files, {len(metadata_list)} total reviews)"
|
| 357 |
)
|
| 358 |
print(f" β Batch upload complete for {agent_identifier}")
|
| 359 |
|
|
|
|
| 365 |
shutil.rmtree(temp_dir)
|
| 366 |
|
| 367 |
except Exception as e:
|
| 368 |
+
print(f" β Error saving review metadata: {str(e)}")
|
| 369 |
import traceback
|
| 370 |
traceback.print_exc()
|
| 371 |
return False
|
|
|
|
| 374 |
def load_agents_from_hf():
|
| 375 |
"""
|
| 376 |
Load all agent metadata JSON files from HuggingFace dataset.
|
| 377 |
+
|
| 378 |
The github_identifier is extracted from the filename (e.g., 'agent-name[bot].json' -> 'agent-name[bot]')
|
| 379 |
"""
|
| 380 |
try:
|
| 381 |
api = HfApi()
|
| 382 |
agents = []
|
| 383 |
+
|
| 384 |
# List all files in the repository
|
| 385 |
files = api.list_repo_files(repo_id=AGENTS_REPO, repo_type="dataset")
|
| 386 |
+
|
| 387 |
# Filter for JSON files only
|
| 388 |
json_files = [f for f in files if f.endswith('.json')]
|
| 389 |
+
|
| 390 |
print(f"Found {len(json_files)} agent files in {AGENTS_REPO}")
|
| 391 |
+
|
| 392 |
# Download and parse each JSON file
|
| 393 |
for json_file in json_files:
|
| 394 |
try:
|
|
|
|
| 397 |
filename=json_file,
|
| 398 |
repo_type="dataset"
|
| 399 |
)
|
| 400 |
+
|
| 401 |
with open(file_path, 'r') as f:
|
| 402 |
agent_data = json.load(f)
|
| 403 |
+
|
| 404 |
# Extract github_identifier from filename (remove .json extension)
|
| 405 |
github_identifier = json_file.replace('.json', '')
|
| 406 |
agent_data['github_identifier'] = github_identifier
|
| 407 |
+
|
| 408 |
agents.append(agent_data)
|
| 409 |
+
|
| 410 |
except Exception as e:
|
| 411 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 412 |
continue
|
| 413 |
+
|
| 414 |
print(f"β Loaded {len(agents)} agents from HuggingFace")
|
| 415 |
return agents
|
| 416 |
+
|
| 417 |
except Exception as e:
|
| 418 |
print(f"Could not load agents from HuggingFace: {str(e)}")
|
| 419 |
return []
|
|
|
|
| 426 |
def mine_all_agents():
|
| 427 |
"""
|
| 428 |
Mine review metadata for all agents within LEADERBOARD_TIME_FRAME_DAYS and save to HuggingFace.
|
| 429 |
+
Uses ONE BigQuery query for ALL agents (most efficient approach).
|
| 430 |
"""
|
| 431 |
# Load agent metadata from HuggingFace
|
| 432 |
agents = load_agents_from_hf()
|
| 433 |
if not agents:
|
| 434 |
print("No agents found in HuggingFace dataset")
|
| 435 |
return
|
| 436 |
+
|
| 437 |
+
# Extract all identifiers
|
| 438 |
+
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 439 |
+
if not identifiers:
|
| 440 |
+
print("No valid agent identifiers found")
|
| 441 |
+
return
|
| 442 |
+
|
| 443 |
print(f"\n{'='*80}")
|
| 444 |
+
print(f"Starting review metadata mining for {len(identifiers)} agents")
|
| 445 |
print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 446 |
+
print(f"Data source: BigQuery + GitHub Archive (ONE QUERY FOR ALL AGENTS)")
|
| 447 |
print(f"{'='*80}\n")
|
| 448 |
+
|
| 449 |
+
# Initialize BigQuery client
|
| 450 |
try:
|
| 451 |
+
client = get_bigquery_client()
|
| 452 |
except Exception as e:
|
| 453 |
+
print(f"β Failed to initialize BigQuery client: {str(e)}")
|
| 454 |
+
return
|
| 455 |
+
|
| 456 |
+
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
| 457 |
+
current_time = datetime.now(timezone.utc)
|
| 458 |
+
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 459 |
+
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 460 |
+
|
| 461 |
+
try:
|
| 462 |
+
all_metadata = fetch_all_pr_metadata_single_query(
|
| 463 |
+
client, identifiers, start_date, end_date
|
| 464 |
+
)
|
| 465 |
+
except Exception as e:
|
| 466 |
+
print(f"β Error during BigQuery fetch: {str(e)}")
|
| 467 |
import traceback
|
| 468 |
traceback.print_exc()
|
| 469 |
return
|
| 470 |
+
|
| 471 |
# Save results for each agent
|
| 472 |
print(f"\n{'='*80}")
|
| 473 |
+
print(f"πΎ Saving results to HuggingFace for each agent...")
|
| 474 |
print(f"{'='*80}\n")
|
| 475 |
+
|
| 476 |
+
success_count = 0
|
| 477 |
+
error_count = 0
|
| 478 |
+
no_data_count = 0
|
| 479 |
+
|
| 480 |
+
for i, agent in enumerate(agents, 1):
|
| 481 |
identifier = agent.get('github_identifier')
|
| 482 |
agent_name = agent.get('name', agent.get('agent_name', 'Unknown'))
|
| 483 |
+
|
| 484 |
if not identifier:
|
| 485 |
+
print(f"[{i}/{len(agents)}] Skipping agent without identifier")
|
| 486 |
+
error_count += 1
|
| 487 |
continue
|
| 488 |
+
|
| 489 |
metadata = all_metadata.get(identifier, [])
|
| 490 |
+
|
| 491 |
+
print(f"[{i}/{len(agents)}] {agent_name} ({identifier}):")
|
| 492 |
+
|
| 493 |
try:
|
| 494 |
if metadata:
|
| 495 |
+
print(f" πΎ Saving {len(metadata)} review records...")
|
| 496 |
+
if save_review_metadata_to_hf(metadata, identifier):
|
| 497 |
+
success_count += 1
|
| 498 |
+
else:
|
| 499 |
+
error_count += 1
|
| 500 |
else:
|
| 501 |
+
print(f" No reviews found")
|
| 502 |
+
no_data_count += 1
|
| 503 |
+
|
| 504 |
except Exception as e:
|
| 505 |
+
print(f" β Error saving {identifier}: {str(e)}")
|
| 506 |
import traceback
|
| 507 |
traceback.print_exc()
|
| 508 |
+
error_count += 1
|
| 509 |
continue
|
| 510 |
+
|
| 511 |
print(f"\n{'='*80}")
|
| 512 |
+
print(f"β
Mining complete!")
|
| 513 |
+
print(f" Total agents: {len(agents)}")
|
| 514 |
+
print(f" Successfully saved: {success_count}")
|
| 515 |
+
print(f" No data (skipped): {no_data_count}")
|
| 516 |
+
print(f" Errors: {error_count}")
|
| 517 |
+
print(f" BigQuery queries executed: 1")
|
| 518 |
print(f"{'='*80}\n")
|
| 519 |
|
| 520 |
|
|
|
|
| 523 |
# =============================================================================
|
| 524 |
|
| 525 |
if __name__ == "__main__":
|
| 526 |
+
mine_all_agents()
|