Spaces:
Sleeping
Sleeping
zhimin-z
commited on
Commit
·
0d6aceb
1
Parent(s):
170e383
use wakko
Browse files- Dockerfile +0 -34
- app.py +125 -1297
- msr.py +344 -335
- requirements.txt +3 -5
Dockerfile
DELETED
|
@@ -1,34 +0,0 @@
|
|
| 1 |
-
# Use official Python runtime as base image
|
| 2 |
-
FROM python:3.12-slim
|
| 3 |
-
|
| 4 |
-
# Set working directory
|
| 5 |
-
WORKDIR /app
|
| 6 |
-
|
| 7 |
-
# Install system dependencies (if needed)
|
| 8 |
-
RUN apt-get update && apt-get install -y \
|
| 9 |
-
git \
|
| 10 |
-
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
-
|
| 12 |
-
# Copy requirements.txt
|
| 13 |
-
COPY requirements.txt .
|
| 14 |
-
|
| 15 |
-
# Install Python dependencies
|
| 16 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
| 17 |
-
|
| 18 |
-
# Copy application files
|
| 19 |
-
COPY .env .
|
| 20 |
-
COPY msr.py .
|
| 21 |
-
|
| 22 |
-
# Create a non-root user for security (optional but recommended)
|
| 23 |
-
RUN useradd -m -u 1000 appuser && chown -R appuser:appuser /app
|
| 24 |
-
USER appuser
|
| 25 |
-
|
| 26 |
-
# Expose port for Gradio web interface (default is 7860)
|
| 27 |
-
EXPOSE 7860
|
| 28 |
-
|
| 29 |
-
# Set environment variables
|
| 30 |
-
ENV GRADIO_SERVER_NAME=0.0.0.0
|
| 31 |
-
ENV GRADIO_SERVER_PORT=7860
|
| 32 |
-
|
| 33 |
-
# Run the Gradio app
|
| 34 |
-
CMD ["python", "msr.py"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -3,13 +3,10 @@ from gradio_leaderboard import Leaderboard, ColumnFilter
|
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import time
|
| 6 |
-
import tempfile
|
| 7 |
import requests
|
| 8 |
-
from datetime import datetime, timezone
|
| 9 |
-
from collections import defaultdict
|
| 10 |
from huggingface_hub import HfApi, hf_hub_download
|
| 11 |
from huggingface_hub.errors import HfHubHTTPError
|
| 12 |
-
from datasets import load_dataset, Dataset
|
| 13 |
import backoff
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
import pandas as pd
|
|
@@ -18,7 +15,6 @@ import plotly.graph_objects as go
|
|
| 18 |
from plotly.subplots import make_subplots
|
| 19 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 20 |
from apscheduler.triggers.cron import CronTrigger
|
| 21 |
-
from google.cloud import bigquery
|
| 22 |
|
| 23 |
# Load environment variables
|
| 24 |
load_dotenv()
|
|
@@ -28,10 +24,7 @@ load_dotenv()
|
|
| 28 |
# =============================================================================
|
| 29 |
|
| 30 |
AGENTS_REPO = "SWE-Arena/bot_metadata" # HuggingFace dataset for agent metadata
|
| 31 |
-
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata" # HuggingFace dataset for review metadata
|
| 32 |
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
|
| 33 |
-
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for constructing leaderboard
|
| 34 |
-
UPDATE_TIME_FRAME_DAYS = 30 # Time frame for mining new reviews
|
| 35 |
|
| 36 |
LEADERBOARD_COLUMNS = [
|
| 37 |
("Agent Name", "string"),
|
|
@@ -41,71 +34,6 @@ LEADERBOARD_COLUMNS = [
|
|
| 41 |
("Acceptance Rate (%)", "number"),
|
| 42 |
]
|
| 43 |
|
| 44 |
-
# =============================================================================
|
| 45 |
-
# JSONL FILE OPERATIONS
|
| 46 |
-
# =============================================================================
|
| 47 |
-
|
| 48 |
-
def load_jsonl(filename):
|
| 49 |
-
"""Load JSONL file and return list of dictionaries."""
|
| 50 |
-
if not os.path.exists(filename):
|
| 51 |
-
return []
|
| 52 |
-
|
| 53 |
-
data = []
|
| 54 |
-
with open(filename, 'r', encoding='utf-8') as f:
|
| 55 |
-
for line in f:
|
| 56 |
-
line = line.strip()
|
| 57 |
-
if line:
|
| 58 |
-
try:
|
| 59 |
-
entry = json.loads(line)
|
| 60 |
-
data.append(entry)
|
| 61 |
-
except json.JSONDecodeError as e:
|
| 62 |
-
print(f"Warning: Skipping invalid JSON line: {e}")
|
| 63 |
-
return data
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def save_jsonl(filename, data):
|
| 67 |
-
"""Save list of dictionaries to JSONL file."""
|
| 68 |
-
with open(filename, 'w', encoding='utf-8') as f:
|
| 69 |
-
for item in data:
|
| 70 |
-
f.write(json.dumps(item) + '\n')
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
def cache_to_dict(cache_list):
|
| 74 |
-
"""Convert list of cache entries to dictionary by identifier."""
|
| 75 |
-
return {entry['github_identifier']: entry for entry in cache_list}
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
def dict_to_cache(cache_dict):
|
| 79 |
-
"""Convert dictionary back to list of values."""
|
| 80 |
-
return list(cache_dict.values())
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
def normalize_date_format(date_string):
|
| 84 |
-
"""
|
| 85 |
-
Convert date strings to standardized ISO 8601 format with Z suffix.
|
| 86 |
-
Handles both old format (2025-10-15T23:23:47.983068) and new format (2025-10-15T23:23:47Z).
|
| 87 |
-
"""
|
| 88 |
-
if not date_string or date_string == 'N/A':
|
| 89 |
-
return 'N/A'
|
| 90 |
-
|
| 91 |
-
try:
|
| 92 |
-
# Replace space with 'T' for ISO format compatibility
|
| 93 |
-
date_string = date_string.replace(' ', 'T')
|
| 94 |
-
|
| 95 |
-
# Fix incomplete timezone offset (+00 or -00 -> +00:00 or -00:00)
|
| 96 |
-
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
|
| 97 |
-
date_string = date_string + ':00'
|
| 98 |
-
|
| 99 |
-
# Parse the date string (handles both with and without microseconds)
|
| 100 |
-
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
|
| 101 |
-
|
| 102 |
-
# Convert to standardized format
|
| 103 |
-
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
|
| 104 |
-
except Exception as e:
|
| 105 |
-
print(f"Warning: Could not parse date '{date_string}': {e}")
|
| 106 |
-
return date_string
|
| 107 |
-
|
| 108 |
-
|
| 109 |
# =============================================================================
|
| 110 |
# HUGGINGFACE API WRAPPERS WITH BACKOFF
|
| 111 |
# =============================================================================
|
|
@@ -125,7 +53,7 @@ def is_rate_limit_error(e):
|
|
| 125 |
max_value=3600,
|
| 126 |
giveup=lambda e: not is_rate_limit_error(e),
|
| 127 |
on_backoff=lambda details: print(
|
| 128 |
-
f"
|
| 129 |
)
|
| 130 |
)
|
| 131 |
def list_repo_files_with_backoff(api, **kwargs):
|
|
@@ -141,7 +69,7 @@ def list_repo_files_with_backoff(api, **kwargs):
|
|
| 141 |
max_value=3600,
|
| 142 |
giveup=lambda e: not is_rate_limit_error(e),
|
| 143 |
on_backoff=lambda details: print(
|
| 144 |
-
f"
|
| 145 |
)
|
| 146 |
)
|
| 147 |
def hf_hub_download_with_backoff(**kwargs):
|
|
@@ -149,337 +77,6 @@ def hf_hub_download_with_backoff(**kwargs):
|
|
| 149 |
return hf_hub_download(**kwargs)
|
| 150 |
|
| 151 |
|
| 152 |
-
@backoff.on_exception(
|
| 153 |
-
backoff.expo,
|
| 154 |
-
HfHubHTTPError,
|
| 155 |
-
max_tries=8,
|
| 156 |
-
base=300,
|
| 157 |
-
max_value=3600,
|
| 158 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 159 |
-
on_backoff=lambda details: print(
|
| 160 |
-
f"⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 161 |
-
)
|
| 162 |
-
)
|
| 163 |
-
def upload_file_with_backoff(api, **kwargs):
|
| 164 |
-
"""Wrapper for api.upload_file() with exponential backoff for rate limits."""
|
| 165 |
-
return api.upload_file(**kwargs)
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
@backoff.on_exception(
|
| 169 |
-
backoff.expo,
|
| 170 |
-
HfHubHTTPError,
|
| 171 |
-
max_tries=8,
|
| 172 |
-
base=300,
|
| 173 |
-
max_value=3600,
|
| 174 |
-
giveup=lambda e: not is_rate_limit_error(e),
|
| 175 |
-
on_backoff=lambda details: print(
|
| 176 |
-
f"⏳ Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 177 |
-
)
|
| 178 |
-
)
|
| 179 |
-
def upload_folder_with_backoff(api, **kwargs):
|
| 180 |
-
"""Wrapper for api.upload_folder() with exponential backoff for rate limits."""
|
| 181 |
-
return api.upload_folder(**kwargs)
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
# =============================================================================
|
| 185 |
-
# BIGQUERY FUNCTIONS
|
| 186 |
-
# =============================================================================
|
| 187 |
-
|
| 188 |
-
def get_bigquery_client():
|
| 189 |
-
"""
|
| 190 |
-
Initialize BigQuery client using credentials from environment variable.
|
| 191 |
-
|
| 192 |
-
Expects GOOGLE_APPLICATION_CREDENTIALS_JSON environment variable containing
|
| 193 |
-
the service account JSON credentials as a string.
|
| 194 |
-
"""
|
| 195 |
-
# Get the JSON content from environment variable
|
| 196 |
-
creds_json = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS_JSON')
|
| 197 |
-
|
| 198 |
-
if creds_json:
|
| 199 |
-
# Create a temporary file to store credentials
|
| 200 |
-
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file:
|
| 201 |
-
temp_file.write(creds_json)
|
| 202 |
-
temp_path = temp_file.name
|
| 203 |
-
|
| 204 |
-
# Set environment variable to point to temp file
|
| 205 |
-
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = temp_path
|
| 206 |
-
|
| 207 |
-
# Initialize BigQuery client
|
| 208 |
-
client = bigquery.Client()
|
| 209 |
-
|
| 210 |
-
# Clean up temp file
|
| 211 |
-
os.unlink(temp_path)
|
| 212 |
-
|
| 213 |
-
return client
|
| 214 |
-
else:
|
| 215 |
-
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
def generate_table_union_statements(start_date, end_date):
|
| 219 |
-
"""
|
| 220 |
-
Generate UNION ALL statements for githubarchive.month tables in date range.
|
| 221 |
-
Uses monthly tables instead of daily to drastically reduce query size.
|
| 222 |
-
|
| 223 |
-
Args:
|
| 224 |
-
start_date: Start datetime
|
| 225 |
-
end_date: End datetime
|
| 226 |
-
|
| 227 |
-
Returns:
|
| 228 |
-
String with UNION ALL SELECT statements for all monthly tables in range
|
| 229 |
-
"""
|
| 230 |
-
table_names = []
|
| 231 |
-
|
| 232 |
-
# Start from the beginning of start_date's month
|
| 233 |
-
current_date = start_date.replace(day=1)
|
| 234 |
-
|
| 235 |
-
# End at the beginning of end_date's month (inclusive)
|
| 236 |
-
end_month = end_date.replace(day=1)
|
| 237 |
-
|
| 238 |
-
while current_date <= end_month:
|
| 239 |
-
table_name = f"`githubarchive.month.{current_date.strftime('%Y%m')}`"
|
| 240 |
-
table_names.append(table_name)
|
| 241 |
-
|
| 242 |
-
# Move to next month
|
| 243 |
-
if current_date.month == 12:
|
| 244 |
-
current_date = current_date.replace(year=current_date.year + 1, month=1)
|
| 245 |
-
else:
|
| 246 |
-
current_date = current_date.replace(month=current_date.month + 1)
|
| 247 |
-
|
| 248 |
-
# Create UNION ALL chain
|
| 249 |
-
union_parts = [f"SELECT * FROM {table}" for table in table_names]
|
| 250 |
-
return " UNION ALL ".join(union_parts)
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
def fetch_all_pr_metadata_batched(client, identifiers, start_date, end_date, batch_size=100, upload_immediately=True):
|
| 254 |
-
"""
|
| 255 |
-
Fetch PR review metadata for ALL agents using BATCHED BigQuery queries.
|
| 256 |
-
Splits agents into smaller batches to avoid performance issues with large queries.
|
| 257 |
-
|
| 258 |
-
Args:
|
| 259 |
-
client: BigQuery client instance
|
| 260 |
-
identifiers: List of GitHub usernames/bot identifiers
|
| 261 |
-
start_date: Start datetime (timezone-aware)
|
| 262 |
-
end_date: End datetime (timezone-aware)
|
| 263 |
-
batch_size: Number of agents to process per batch (default: 100)
|
| 264 |
-
upload_immediately: If True, upload each batch to HuggingFace immediately after processing (default: True)
|
| 265 |
-
|
| 266 |
-
Returns:
|
| 267 |
-
Dictionary mapping agent identifier to list of PR metadata
|
| 268 |
-
"""
|
| 269 |
-
print(f"\n🔍 Using BATCHED approach: {len(identifiers)} agents in batches of {batch_size}")
|
| 270 |
-
|
| 271 |
-
# Log upload mode
|
| 272 |
-
if upload_immediately:
|
| 273 |
-
print(f" 📤 Upload mode: IMMEDIATE (upload after each batch)")
|
| 274 |
-
else:
|
| 275 |
-
print(f" 📤 Upload mode: DEFERRED (upload after all batches complete)")
|
| 276 |
-
|
| 277 |
-
# Split identifiers into batches
|
| 278 |
-
batches = [identifiers[i:i + batch_size] for i in range(0, len(identifiers), batch_size)]
|
| 279 |
-
total_batches = len(batches)
|
| 280 |
-
|
| 281 |
-
print(f" Total batches: {total_batches}")
|
| 282 |
-
|
| 283 |
-
# Collect results from all batches
|
| 284 |
-
all_metadata = {}
|
| 285 |
-
successful_batches = 0
|
| 286 |
-
failed_batches = 0
|
| 287 |
-
|
| 288 |
-
for batch_num, batch_identifiers in enumerate(batches, 1):
|
| 289 |
-
print(f"\n📦 Processing batch {batch_num}/{total_batches} ({len(batch_identifiers)} agents)...")
|
| 290 |
-
|
| 291 |
-
try:
|
| 292 |
-
# Query this batch - process each agent in the batch
|
| 293 |
-
batch_results = {}
|
| 294 |
-
for identifier in batch_identifiers:
|
| 295 |
-
review_rows = fetch_reviews_from_bigquery(client, identifier, start_date, end_date)
|
| 296 |
-
|
| 297 |
-
# Extract metadata
|
| 298 |
-
metadata_list = []
|
| 299 |
-
seen_prs = set()
|
| 300 |
-
for row in review_rows:
|
| 301 |
-
url = row.url
|
| 302 |
-
if url in seen_prs:
|
| 303 |
-
continue
|
| 304 |
-
seen_prs.add(url)
|
| 305 |
-
|
| 306 |
-
metadata = extract_review_metadata_from_bigquery(row)
|
| 307 |
-
metadata_list.append(metadata)
|
| 308 |
-
|
| 309 |
-
if metadata_list:
|
| 310 |
-
all_metadata[identifier] = metadata_list
|
| 311 |
-
batch_results[identifier] = metadata_list
|
| 312 |
-
|
| 313 |
-
successful_batches += 1
|
| 314 |
-
print(f" ✓ Batch {batch_num}/{total_batches} complete: {len(batch_identifiers)} agents processed")
|
| 315 |
-
|
| 316 |
-
# Upload immediately after this batch if enabled
|
| 317 |
-
if upload_immediately and batch_results:
|
| 318 |
-
print(f"\n 📤 Uploading batch {batch_num}/{total_batches} results to HuggingFace...")
|
| 319 |
-
upload_success = 0
|
| 320 |
-
upload_errors = 0
|
| 321 |
-
|
| 322 |
-
for identifier, metadata_list in batch_results.items():
|
| 323 |
-
if metadata_list:
|
| 324 |
-
if save_review_metadata_to_hf(metadata_list, identifier):
|
| 325 |
-
upload_success += 1
|
| 326 |
-
else:
|
| 327 |
-
upload_errors += 1
|
| 328 |
-
|
| 329 |
-
print(f" ✓ Batch {batch_num}/{total_batches} upload complete ({upload_success} agents uploaded, {upload_errors} errors)")
|
| 330 |
-
|
| 331 |
-
except Exception as e:
|
| 332 |
-
failed_batches += 1
|
| 333 |
-
print(f" ✗ Batch {batch_num}/{total_batches} failed: {str(e)}")
|
| 334 |
-
print(f" Continuing with remaining batches...")
|
| 335 |
-
continue
|
| 336 |
-
|
| 337 |
-
print(f"\n📊 Batching Summary:")
|
| 338 |
-
print(f" Total batches: {total_batches}")
|
| 339 |
-
print(f" Successful: {successful_batches}")
|
| 340 |
-
print(f" Failed: {failed_batches}")
|
| 341 |
-
print(f" Total agents with data: {len(all_metadata)}")
|
| 342 |
-
|
| 343 |
-
return all_metadata
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
def fetch_reviews_from_bigquery(client, identifier, start_date, end_date):
|
| 347 |
-
"""
|
| 348 |
-
Fetch PR review events from GitHub Archive for a SINGLE agent.
|
| 349 |
-
|
| 350 |
-
NOTE: This function is designed for querying a single agent at a time.
|
| 351 |
-
For querying multiple agents efficiently, use fetch_all_pr_metadata_batched() instead.
|
| 352 |
-
|
| 353 |
-
Queries githubarchive.month.YYYYMM tables for PullRequestReviewEvent where
|
| 354 |
-
actor.login matches the agent identifier, and joins with PR status.
|
| 355 |
-
|
| 356 |
-
Args:
|
| 357 |
-
client: BigQuery client instance
|
| 358 |
-
identifier: GitHub username or bot identifier (e.g., 'amazon-inspector-beta[bot]')
|
| 359 |
-
start_date: Start datetime (timezone-aware)
|
| 360 |
-
end_date: End datetime (timezone-aware)
|
| 361 |
-
|
| 362 |
-
Returns:
|
| 363 |
-
List of review event rows with PR information including merged_at and closed_at
|
| 364 |
-
"""
|
| 365 |
-
print(f"\n🔍 Querying BigQuery for reviews by {identifier}")
|
| 366 |
-
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 367 |
-
|
| 368 |
-
# Generate monthly table UNION statements for review period
|
| 369 |
-
review_union = generate_table_union_statements(start_date, end_date)
|
| 370 |
-
|
| 371 |
-
# Generate monthly table UNION statements for PR status (lookback)
|
| 372 |
-
status_start = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 373 |
-
status_union = generate_table_union_statements(status_start, end_date)
|
| 374 |
-
|
| 375 |
-
# Build comprehensive query with CTEs for PR status
|
| 376 |
-
query = f"""
|
| 377 |
-
WITH review_events AS (
|
| 378 |
-
SELECT
|
| 379 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
|
| 380 |
-
COALESCE(
|
| 381 |
-
JSON_EXTRACT_SCALAR(payload, '$.review.submitted_at'),
|
| 382 |
-
CAST(created_at AS STRING)
|
| 383 |
-
) as reviewed_at,
|
| 384 |
-
actor.login as reviewer,
|
| 385 |
-
created_at
|
| 386 |
-
FROM (
|
| 387 |
-
{review_union}
|
| 388 |
-
)
|
| 389 |
-
WHERE type = 'PullRequestReviewEvent'
|
| 390 |
-
AND actor.login = @identifier
|
| 391 |
-
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IS NOT NULL
|
| 392 |
-
),
|
| 393 |
-
pr_status AS (
|
| 394 |
-
SELECT
|
| 395 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') as url,
|
| 396 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.merged_at') as merged_at,
|
| 397 |
-
JSON_EXTRACT_SCALAR(payload, '$.pull_request.closed_at') as closed_at,
|
| 398 |
-
created_at
|
| 399 |
-
FROM (
|
| 400 |
-
{status_union}
|
| 401 |
-
)
|
| 402 |
-
WHERE type = 'PullRequestEvent'
|
| 403 |
-
AND JSON_EXTRACT_SCALAR(payload, '$.action') = 'closed'
|
| 404 |
-
AND JSON_EXTRACT_SCALAR(payload, '$.pull_request.html_url') IN (
|
| 405 |
-
SELECT DISTINCT url FROM review_events
|
| 406 |
-
)
|
| 407 |
-
QUALIFY ROW_NUMBER() OVER (PARTITION BY url ORDER BY created_at DESC) = 1
|
| 408 |
-
)
|
| 409 |
-
SELECT DISTINCT
|
| 410 |
-
re.url,
|
| 411 |
-
re.reviewed_at,
|
| 412 |
-
re.created_at,
|
| 413 |
-
ps.merged_at,
|
| 414 |
-
ps.closed_at
|
| 415 |
-
FROM review_events re
|
| 416 |
-
LEFT JOIN pr_status ps ON re.url = ps.url
|
| 417 |
-
ORDER BY re.reviewed_at DESC
|
| 418 |
-
"""
|
| 419 |
-
|
| 420 |
-
job_config = bigquery.QueryJobConfig(
|
| 421 |
-
query_parameters=[
|
| 422 |
-
bigquery.ScalarQueryParameter("identifier", "STRING", identifier)
|
| 423 |
-
]
|
| 424 |
-
)
|
| 425 |
-
|
| 426 |
-
# Calculate months for logging
|
| 427 |
-
review_months = ((end_date.year - start_date.year) * 12 + end_date.month - start_date.month + 1)
|
| 428 |
-
status_months = ((end_date.year - status_start.year) * 12 + end_date.month - status_start.month + 1)
|
| 429 |
-
print(f" Querying {review_months} monthly review tables and {status_months} monthly status tables...")
|
| 430 |
-
|
| 431 |
-
try:
|
| 432 |
-
query_job = client.query(query, job_config=job_config)
|
| 433 |
-
results = list(query_job.result())
|
| 434 |
-
|
| 435 |
-
print(f" ✓ Found {len(results)} review events")
|
| 436 |
-
return results
|
| 437 |
-
|
| 438 |
-
except Exception as e:
|
| 439 |
-
print(f" ✗ BigQuery error: {str(e)}")
|
| 440 |
-
return []
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
def extract_review_metadata_from_bigquery(review_row):
|
| 444 |
-
"""
|
| 445 |
-
Extract minimal PR review metadata from BigQuery row.
|
| 446 |
-
|
| 447 |
-
Args:
|
| 448 |
-
review_row: BigQuery row from PullRequestReviewEvent query
|
| 449 |
-
|
| 450 |
-
Returns:
|
| 451 |
-
Dictionary with review metadata containing:
|
| 452 |
-
- url: PR URL
|
| 453 |
-
- reviewed_at: Review timestamp
|
| 454 |
-
- merged_at: Merge timestamp (if merged, else None)
|
| 455 |
-
- closed_at: Close timestamp (if closed, else None)
|
| 456 |
-
"""
|
| 457 |
-
url = review_row.url
|
| 458 |
-
reviewed_at = review_row.reviewed_at or review_row.created_at
|
| 459 |
-
merged_at = getattr(review_row, 'merged_at', None)
|
| 460 |
-
closed_at = getattr(review_row, 'closed_at', None)
|
| 461 |
-
|
| 462 |
-
# Convert to ISO format if datetime and normalize
|
| 463 |
-
if hasattr(reviewed_at, 'isoformat'):
|
| 464 |
-
reviewed_at = reviewed_at.isoformat()
|
| 465 |
-
reviewed_at = normalize_date_format(reviewed_at) if reviewed_at else None
|
| 466 |
-
|
| 467 |
-
if merged_at and hasattr(merged_at, 'isoformat'):
|
| 468 |
-
merged_at = merged_at.isoformat()
|
| 469 |
-
merged_at = normalize_date_format(merged_at) if merged_at else None
|
| 470 |
-
|
| 471 |
-
if closed_at and hasattr(closed_at, 'isoformat'):
|
| 472 |
-
closed_at = closed_at.isoformat()
|
| 473 |
-
closed_at = normalize_date_format(closed_at) if closed_at else None
|
| 474 |
-
|
| 475 |
-
return {
|
| 476 |
-
'url': url,
|
| 477 |
-
'reviewed_at': reviewed_at,
|
| 478 |
-
'merged_at': merged_at,
|
| 479 |
-
'closed_at': closed_at
|
| 480 |
-
}
|
| 481 |
-
|
| 482 |
-
|
| 483 |
# =============================================================================
|
| 484 |
# GITHUB API OPERATIONS
|
| 485 |
# =============================================================================
|
|
@@ -574,550 +171,6 @@ def validate_github_username(identifier):
|
|
| 574 |
except Exception as e:
|
| 575 |
return False, f"Validation error: {str(e)}"
|
| 576 |
|
| 577 |
-
def extract_review_metadata(pr):
|
| 578 |
-
"""
|
| 579 |
-
Extract minimal PR review metadata for efficient storage.
|
| 580 |
-
Only keeps essential fields: url, reviewed_at, merged_at, closed_at.
|
| 581 |
-
Note: agent_name is not stored as it's inferred from the folder structure.
|
| 582 |
-
|
| 583 |
-
Status can be derived from the timestamps:
|
| 584 |
-
- merged_at: Timestamp if PR was merged, None otherwise
|
| 585 |
-
- closed_at: Timestamp if PR was closed (either merged or just closed), None otherwise
|
| 586 |
-
|
| 587 |
-
Merged PR = PR that was merged (merged_at is not None)
|
| 588 |
-
Rejected PR = PR that was closed without merging (closed_at is not None but merged_at is None)
|
| 589 |
-
Open PR = PR still open (both merged_at and closed_at are None)
|
| 590 |
-
"""
|
| 591 |
-
# Extract PR metadata from search results
|
| 592 |
-
# The GitHub search API returns PR data from /search/issues endpoint
|
| 593 |
-
url = pr.get('url')
|
| 594 |
-
created_at = pr.get('created_at')
|
| 595 |
-
closed_at = pr.get('closed_at')
|
| 596 |
-
|
| 597 |
-
# Check if PR has pull_request field (indicates it's a PR, not an issue)
|
| 598 |
-
pull_request_data = pr.get('pull_request', {})
|
| 599 |
-
merged_at = pull_request_data.get('merged_at') if pull_request_data else None
|
| 600 |
-
|
| 601 |
-
return {
|
| 602 |
-
'url': url,
|
| 603 |
-
'reviewed_at': created_at, # When the PR was created (agent reviewed it)
|
| 604 |
-
'merged_at': merged_at,
|
| 605 |
-
'closed_at': closed_at
|
| 606 |
-
}
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
def get_pr_status_from_metadata(review_meta):
|
| 610 |
-
"""
|
| 611 |
-
Derive PR status from merged_at and closed_at fields.
|
| 612 |
-
|
| 613 |
-
Args:
|
| 614 |
-
review_meta: Dictionary containing merged_at and closed_at fields
|
| 615 |
-
|
| 616 |
-
Returns:
|
| 617 |
-
str: 'merged', 'closed', or 'open'
|
| 618 |
-
"""
|
| 619 |
-
merged_at = review_meta.get('merged_at')
|
| 620 |
-
closed_at = review_meta.get('closed_at')
|
| 621 |
-
|
| 622 |
-
# If merged_at is set (not None and not False), PR is merged
|
| 623 |
-
if merged_at:
|
| 624 |
-
return 'merged'
|
| 625 |
-
# If closed_at is set but not merged, PR is closed without merging
|
| 626 |
-
elif closed_at:
|
| 627 |
-
return 'closed'
|
| 628 |
-
# Otherwise, PR is still open
|
| 629 |
-
else:
|
| 630 |
-
return 'open'
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
def calculate_review_stats_from_metadata(metadata_list):
|
| 634 |
-
"""
|
| 635 |
-
Calculate statistics from a list of review metadata (lightweight objects).
|
| 636 |
-
Works with minimal metadata: url, reviewed_at, merged_at, closed_at.
|
| 637 |
-
|
| 638 |
-
Returns a dictionary with comprehensive review metrics.
|
| 639 |
-
|
| 640 |
-
Acceptance Rate is calculated as:
|
| 641 |
-
merged PRs / (merged PRs + rejected PRs) * 100
|
| 642 |
-
|
| 643 |
-
Merged PRs = PRs that were merged (merged_at is not None)
|
| 644 |
-
Rejected PRs = PRs that were closed without merging (closed_at is not None but merged_at is None)
|
| 645 |
-
Pending PRs = PRs still open (both merged_at and closed_at are None) - excluded from acceptance rate
|
| 646 |
-
"""
|
| 647 |
-
total_reviews = len(metadata_list)
|
| 648 |
-
|
| 649 |
-
# Count merged PRs (merged_at is set)
|
| 650 |
-
merged_prs = sum(1 for review_meta in metadata_list
|
| 651 |
-
if get_pr_status_from_metadata(review_meta) == 'merged')
|
| 652 |
-
|
| 653 |
-
# Count rejected PRs (closed without merging)
|
| 654 |
-
rejected_prs = sum(1 for review_meta in metadata_list
|
| 655 |
-
if get_pr_status_from_metadata(review_meta) == 'closed')
|
| 656 |
-
|
| 657 |
-
# Count pending PRs (still open)
|
| 658 |
-
pending_prs = sum(1 for review_meta in metadata_list
|
| 659 |
-
if get_pr_status_from_metadata(review_meta) == 'open')
|
| 660 |
-
|
| 661 |
-
# Calculate acceptance rate (exclude pending PRs)
|
| 662 |
-
completed_prs = merged_prs + rejected_prs
|
| 663 |
-
acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0
|
| 664 |
-
|
| 665 |
-
return {
|
| 666 |
-
'total_reviews': total_reviews,
|
| 667 |
-
'merged_prs': merged_prs,
|
| 668 |
-
'pending_prs': pending_prs,
|
| 669 |
-
'acceptance_rate': round(acceptance_rate, 2),
|
| 670 |
-
}
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
def calculate_monthly_metrics_by_agent(top_n=None):
|
| 674 |
-
"""
|
| 675 |
-
Calculate monthly metrics for all agents (or top N agents) for visualization.
|
| 676 |
-
Loads data directly from SWE-Arena/review_metadata dataset.
|
| 677 |
-
|
| 678 |
-
Args:
|
| 679 |
-
top_n: If specified, only return metrics for the top N agents by total reviews.
|
| 680 |
-
Agents are ranked by their total review count across all months.
|
| 681 |
-
|
| 682 |
-
Returns:
|
| 683 |
-
dict: {
|
| 684 |
-
'agents': list of agent names,
|
| 685 |
-
'months': list of month labels (e.g., '2025-01'),
|
| 686 |
-
'data': {
|
| 687 |
-
agent_name: {
|
| 688 |
-
'acceptance_rates': list of acceptance rates by month,
|
| 689 |
-
'total_reviews': list of review counts by month,
|
| 690 |
-
'merged_prs': list of merged PR counts by month,
|
| 691 |
-
}
|
| 692 |
-
}
|
| 693 |
-
}
|
| 694 |
-
"""
|
| 695 |
-
# Load ALL agents from HuggingFace agents repo
|
| 696 |
-
agents = load_agents_from_hf()
|
| 697 |
-
|
| 698 |
-
# Create mapping from agent_identifier to agent_name
|
| 699 |
-
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
|
| 700 |
-
|
| 701 |
-
# Load all review metadata from review_metadata dataset
|
| 702 |
-
all_metadata = load_review_metadata()
|
| 703 |
-
|
| 704 |
-
if not all_metadata:
|
| 705 |
-
return {'agents': [], 'months': [], 'data': {}}
|
| 706 |
-
|
| 707 |
-
# Group by agent and month
|
| 708 |
-
agent_month_data = defaultdict(lambda: defaultdict(list))
|
| 709 |
-
|
| 710 |
-
for review_meta in all_metadata:
|
| 711 |
-
agent_identifier = review_meta.get('agent_identifier')
|
| 712 |
-
reviewed_at = review_meta.get('reviewed_at')
|
| 713 |
-
|
| 714 |
-
if not agent_identifier or not reviewed_at:
|
| 715 |
-
continue
|
| 716 |
-
|
| 717 |
-
# Get agent_name from identifier
|
| 718 |
-
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
|
| 719 |
-
|
| 720 |
-
try:
|
| 721 |
-
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
|
| 722 |
-
month_key = f"{dt.year}-{dt.month:02d}"
|
| 723 |
-
agent_month_data[agent_name][month_key].append(review_meta)
|
| 724 |
-
except Exception as e:
|
| 725 |
-
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
|
| 726 |
-
continue
|
| 727 |
-
|
| 728 |
-
# Get all unique months and sort them
|
| 729 |
-
all_months = set()
|
| 730 |
-
for agent_data in agent_month_data.values():
|
| 731 |
-
all_months.update(agent_data.keys())
|
| 732 |
-
months = sorted(list(all_months))
|
| 733 |
-
|
| 734 |
-
# Calculate metrics for each agent and month
|
| 735 |
-
result_data = {}
|
| 736 |
-
for agent_name, month_dict in agent_month_data.items():
|
| 737 |
-
acceptance_rates = []
|
| 738 |
-
total_reviews_list = []
|
| 739 |
-
merged_prs_list = []
|
| 740 |
-
|
| 741 |
-
for month in months:
|
| 742 |
-
reviews_in_month = month_dict.get(month, [])
|
| 743 |
-
|
| 744 |
-
# Count merged PRs (merged_at is set)
|
| 745 |
-
merged_count = sum(1 for review in reviews_in_month
|
| 746 |
-
if get_pr_status_from_metadata(review) == 'merged')
|
| 747 |
-
|
| 748 |
-
# Count rejected PRs (closed without merging)
|
| 749 |
-
rejected_count = sum(1 for review in reviews_in_month
|
| 750 |
-
if get_pr_status_from_metadata(review) == 'closed')
|
| 751 |
-
|
| 752 |
-
# Total reviews created in this month
|
| 753 |
-
total_count = len(reviews_in_month)
|
| 754 |
-
|
| 755 |
-
# Calculate acceptance rate (exclude pending PRs)
|
| 756 |
-
completed_count = merged_count + rejected_count
|
| 757 |
-
acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None
|
| 758 |
-
|
| 759 |
-
acceptance_rates.append(acceptance_rate)
|
| 760 |
-
total_reviews_list.append(total_count)
|
| 761 |
-
merged_prs_list.append(merged_count)
|
| 762 |
-
|
| 763 |
-
result_data[agent_name] = {
|
| 764 |
-
'acceptance_rates': acceptance_rates,
|
| 765 |
-
'total_reviews': total_reviews_list,
|
| 766 |
-
'merged_prs': merged_prs_list,
|
| 767 |
-
}
|
| 768 |
-
|
| 769 |
-
# Filter to top N agents if specified
|
| 770 |
-
agents_list = sorted(list(agent_month_data.keys()))
|
| 771 |
-
if top_n is not None and top_n > 0:
|
| 772 |
-
# Calculate total reviews for each agent across all months
|
| 773 |
-
agent_totals = []
|
| 774 |
-
for agent_name in agents_list:
|
| 775 |
-
total_reviews = sum(result_data[agent_name]['total_reviews'])
|
| 776 |
-
agent_totals.append((agent_name, total_reviews))
|
| 777 |
-
|
| 778 |
-
# Sort by total reviews (descending) and take top N
|
| 779 |
-
agent_totals.sort(key=lambda x: x[1], reverse=True)
|
| 780 |
-
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
|
| 781 |
-
|
| 782 |
-
# Filter result_data to only include top agents
|
| 783 |
-
result_data = {agent: result_data[agent] for agent in top_agents if agent in result_data}
|
| 784 |
-
agents_list = top_agents
|
| 785 |
-
|
| 786 |
-
return {
|
| 787 |
-
'agents': agents_list,
|
| 788 |
-
'months': months,
|
| 789 |
-
'data': result_data
|
| 790 |
-
}
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
# =============================================================================
|
| 794 |
-
# REVIEW METADATA STORAGE & RETRIEVAL
|
| 795 |
-
# =============================================================================
|
| 796 |
-
|
| 797 |
-
def group_metadata_by_date(metadata_list):
|
| 798 |
-
"""
|
| 799 |
-
Group review metadata by exact date (year.month.day) for efficient daily storage.
|
| 800 |
-
Returns dict: {(year, month, day): [metadata_list]}
|
| 801 |
-
"""
|
| 802 |
-
grouped = defaultdict(list)
|
| 803 |
-
|
| 804 |
-
for review_meta in metadata_list:
|
| 805 |
-
reviewed_at = review_meta.get('reviewed_at')
|
| 806 |
-
if not reviewed_at:
|
| 807 |
-
continue
|
| 808 |
-
|
| 809 |
-
try:
|
| 810 |
-
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
|
| 811 |
-
key = (dt.year, dt.month, dt.day)
|
| 812 |
-
grouped[key].append(review_meta)
|
| 813 |
-
except Exception as e:
|
| 814 |
-
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
|
| 815 |
-
|
| 816 |
-
return dict(grouped)
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
def save_review_metadata_to_hf(metadata_list, agent_identifier):
|
| 820 |
-
"""
|
| 821 |
-
Save review metadata to HuggingFace dataset, organized by [agent_identifier]/YYYY.MM.DD.jsonl.
|
| 822 |
-
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
|
| 823 |
-
|
| 824 |
-
This function APPENDS new metadata and DEDUPLICATES by URL.
|
| 825 |
-
Uses batch upload to avoid rate limit (uploads entire folder in single commit).
|
| 826 |
-
|
| 827 |
-
Args:
|
| 828 |
-
metadata_list: List of review metadata dictionaries
|
| 829 |
-
agent_identifier: GitHub identifier of the agent (used as folder name)
|
| 830 |
-
"""
|
| 831 |
-
import tempfile
|
| 832 |
-
import shutil
|
| 833 |
-
|
| 834 |
-
try:
|
| 835 |
-
token = get_hf_token()
|
| 836 |
-
if not token:
|
| 837 |
-
raise Exception("No HuggingFace token found")
|
| 838 |
-
|
| 839 |
-
api = HfApi()
|
| 840 |
-
|
| 841 |
-
# Group by exact date (year, month, day)
|
| 842 |
-
grouped = group_metadata_by_date(metadata_list)
|
| 843 |
-
|
| 844 |
-
# Create a temporary directory for batch upload
|
| 845 |
-
temp_dir = tempfile.mkdtemp()
|
| 846 |
-
agent_folder = os.path.join(temp_dir, agent_identifier)
|
| 847 |
-
os.makedirs(agent_folder, exist_ok=True)
|
| 848 |
-
|
| 849 |
-
try:
|
| 850 |
-
print(f"📦 Preparing batch upload for {len(grouped)} daily files...")
|
| 851 |
-
|
| 852 |
-
# Process each daily file
|
| 853 |
-
for (review_year, month, day), day_metadata in grouped.items():
|
| 854 |
-
filename = f"{agent_identifier}/{review_year}.{month:02d}.{day:02d}.jsonl"
|
| 855 |
-
local_filename = os.path.join(agent_folder, f"{review_year}.{month:02d}.{day:02d}.jsonl")
|
| 856 |
-
|
| 857 |
-
# Download existing file if it exists
|
| 858 |
-
existing_metadata = []
|
| 859 |
-
try:
|
| 860 |
-
file_path = hf_hub_download(
|
| 861 |
-
repo_id=REVIEW_METADATA_REPO,
|
| 862 |
-
filename=filename,
|
| 863 |
-
repo_type="dataset",
|
| 864 |
-
token=token
|
| 865 |
-
)
|
| 866 |
-
existing_metadata = load_jsonl(file_path)
|
| 867 |
-
print(f" Found {len(existing_metadata)} existing reviews in {filename}")
|
| 868 |
-
except Exception:
|
| 869 |
-
print(f" Creating new file: {filename}")
|
| 870 |
-
|
| 871 |
-
# Merge and deduplicate by URL
|
| 872 |
-
existing_by_url = {meta['url']: meta for meta in existing_metadata if meta.get('url')}
|
| 873 |
-
new_by_url = {meta['url']: meta for meta in day_metadata if meta.get('url')}
|
| 874 |
-
|
| 875 |
-
# Update with new data (new data overwrites old)
|
| 876 |
-
existing_by_url.update(new_by_url)
|
| 877 |
-
merged_metadata = list(existing_by_url.values())
|
| 878 |
-
|
| 879 |
-
# Save to temp directory
|
| 880 |
-
save_jsonl(local_filename, merged_metadata)
|
| 881 |
-
print(f" Prepared {len(merged_metadata)} reviews for {filename}")
|
| 882 |
-
|
| 883 |
-
# Upload entire folder using upload_folder (single commit per agent)
|
| 884 |
-
print(f"📤 Uploading {len(grouped)} files...")
|
| 885 |
-
upload_folder_with_backoff(
|
| 886 |
-
api=api,
|
| 887 |
-
folder_path=temp_dir,
|
| 888 |
-
repo_id=REVIEW_METADATA_REPO,
|
| 889 |
-
repo_type="dataset",
|
| 890 |
-
commit_message=f"Update review metadata for {agent_identifier}"
|
| 891 |
-
)
|
| 892 |
-
print(f" ✓ Batch upload complete for {agent_identifier}")
|
| 893 |
-
|
| 894 |
-
return True
|
| 895 |
-
|
| 896 |
-
finally:
|
| 897 |
-
# Always clean up temp directory
|
| 898 |
-
if os.path.exists(temp_dir):
|
| 899 |
-
shutil.rmtree(temp_dir)
|
| 900 |
-
|
| 901 |
-
except Exception as e:
|
| 902 |
-
print(f"✗ Error saving review metadata: {str(e)}")
|
| 903 |
-
import traceback
|
| 904 |
-
traceback.print_exc()
|
| 905 |
-
return False
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
def load_review_metadata():
|
| 909 |
-
"""
|
| 910 |
-
Load review metadata from the last LEADERBOARD_TIME_FRAME_DAYS.
|
| 911 |
-
|
| 912 |
-
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 913 |
-
|
| 914 |
-
Returns:
|
| 915 |
-
List of dictionaries with 'agent_identifier' added to each review metadata.
|
| 916 |
-
Only includes reviews from the last LEADERBOARD_TIME_FRAME_DAYS.
|
| 917 |
-
"""
|
| 918 |
-
# Calculate cutoff date based on LEADERBOARD_TIME_FRAME_DAYS
|
| 919 |
-
current_time = datetime.now(timezone.utc)
|
| 920 |
-
cutoff_date = current_time - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 921 |
-
|
| 922 |
-
try:
|
| 923 |
-
api = HfApi()
|
| 924 |
-
token = get_hf_token()
|
| 925 |
-
|
| 926 |
-
# List all files in the repository
|
| 927 |
-
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
|
| 928 |
-
|
| 929 |
-
# Filter for files matching the pattern: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 930 |
-
# AND within the time frame (parse date from filename)
|
| 931 |
-
time_frame_files = []
|
| 932 |
-
for f in files:
|
| 933 |
-
if f.endswith('.jsonl'):
|
| 934 |
-
parts = f.split('/')
|
| 935 |
-
if len(parts) == 2: # [agent_identifier]/YYYY.MM.DD.jsonl
|
| 936 |
-
filename = parts[1]
|
| 937 |
-
# Parse date from filename: YYYY.MM.DD.jsonl
|
| 938 |
-
try:
|
| 939 |
-
date_part = filename.replace('.jsonl', '') # Get YYYY.MM.DD
|
| 940 |
-
date_components = date_part.split('.')
|
| 941 |
-
if len(date_components) == 3:
|
| 942 |
-
file_year, file_month, file_day = map(int, date_components)
|
| 943 |
-
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 944 |
-
|
| 945 |
-
# Only include files within the time frame
|
| 946 |
-
if file_date >= cutoff_date:
|
| 947 |
-
time_frame_files.append(f)
|
| 948 |
-
except Exception:
|
| 949 |
-
# If we can't parse the date, skip this file
|
| 950 |
-
continue
|
| 951 |
-
|
| 952 |
-
print(f"📥 Loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days ({len(time_frame_files)} daily files across all agents)...")
|
| 953 |
-
|
| 954 |
-
all_metadata = []
|
| 955 |
-
agent_identifiers_found = set()
|
| 956 |
-
|
| 957 |
-
for filename in time_frame_files:
|
| 958 |
-
try:
|
| 959 |
-
# Extract agent_identifier from path (first part)
|
| 960 |
-
# Format: agent_identifier/YYYY.MM.DD.jsonl
|
| 961 |
-
parts = filename.split('/')
|
| 962 |
-
if len(parts) != 2:
|
| 963 |
-
print(f" Warning: Unexpected filename format: {filename}")
|
| 964 |
-
continue
|
| 965 |
-
|
| 966 |
-
agent_identifier = parts[0]
|
| 967 |
-
agent_identifiers_found.add(agent_identifier)
|
| 968 |
-
|
| 969 |
-
file_path = hf_hub_download_with_backoff(
|
| 970 |
-
repo_id=REVIEW_METADATA_REPO,
|
| 971 |
-
filename=filename,
|
| 972 |
-
repo_type="dataset",
|
| 973 |
-
token=token
|
| 974 |
-
)
|
| 975 |
-
day_metadata = load_jsonl(file_path)
|
| 976 |
-
|
| 977 |
-
# Add agent_identifier and filter by time frame (double-check)
|
| 978 |
-
filtered_count = 0
|
| 979 |
-
for review_meta in day_metadata:
|
| 980 |
-
# Validate review date is within time frame
|
| 981 |
-
reviewed_at = review_meta.get('reviewed_at')
|
| 982 |
-
if reviewed_at:
|
| 983 |
-
try:
|
| 984 |
-
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
|
| 985 |
-
if dt < cutoff_date:
|
| 986 |
-
continue # Skip reviews older than time frame
|
| 987 |
-
except Exception:
|
| 988 |
-
pass # Keep reviews with unparseable dates
|
| 989 |
-
|
| 990 |
-
review_meta['agent_identifier'] = agent_identifier
|
| 991 |
-
all_metadata.append(review_meta)
|
| 992 |
-
filtered_count += 1
|
| 993 |
-
|
| 994 |
-
print(f" ✓ Loaded {filtered_count} reviews from {filename}")
|
| 995 |
-
except Exception as e:
|
| 996 |
-
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 997 |
-
|
| 998 |
-
print(f"✓ Loaded {len(all_metadata)} total reviews from last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 999 |
-
|
| 1000 |
-
return all_metadata
|
| 1001 |
-
|
| 1002 |
-
except Exception as e:
|
| 1003 |
-
print(f"✗ Error loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days: {str(e)}")
|
| 1004 |
-
return []
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
def get_latest_review_date_for_agent(agent_identifier):
|
| 1008 |
-
"""
|
| 1009 |
-
Get the latest review creation date for an agent from stored metadata.
|
| 1010 |
-
Used for incremental updates - only fetch reviews newer than this date.
|
| 1011 |
-
|
| 1012 |
-
Structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 1013 |
-
|
| 1014 |
-
Args:
|
| 1015 |
-
agent_identifier: GitHub identifier of the agent
|
| 1016 |
-
|
| 1017 |
-
Returns:
|
| 1018 |
-
datetime or None if no existing reviews found.
|
| 1019 |
-
"""
|
| 1020 |
-
try:
|
| 1021 |
-
api = HfApi()
|
| 1022 |
-
token = get_hf_token()
|
| 1023 |
-
|
| 1024 |
-
# List all files in the repository
|
| 1025 |
-
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
|
| 1026 |
-
|
| 1027 |
-
# Filter for files in this agent's folder
|
| 1028 |
-
# New structure: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 1029 |
-
agent_pattern = f"{agent_identifier}/"
|
| 1030 |
-
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 1031 |
-
|
| 1032 |
-
if not agent_files:
|
| 1033 |
-
return None
|
| 1034 |
-
|
| 1035 |
-
# Find latest created_at across all files
|
| 1036 |
-
latest_date = None
|
| 1037 |
-
for filename in agent_files:
|
| 1038 |
-
try:
|
| 1039 |
-
file_path = hf_hub_download_with_backoff(
|
| 1040 |
-
repo_id=REVIEW_METADATA_REPO,
|
| 1041 |
-
filename=filename,
|
| 1042 |
-
repo_type="dataset",
|
| 1043 |
-
token=token
|
| 1044 |
-
)
|
| 1045 |
-
metadata = load_jsonl(file_path)
|
| 1046 |
-
|
| 1047 |
-
for review_meta in metadata:
|
| 1048 |
-
reviewed_at = review_meta.get("reviewed_at")
|
| 1049 |
-
if reviewed_at:
|
| 1050 |
-
try:
|
| 1051 |
-
dt = datetime.fromisoformat(reviewed_at.replace("Z", "+00:00"))
|
| 1052 |
-
if latest_date is None or dt > latest_date:
|
| 1053 |
-
latest_date = dt
|
| 1054 |
-
except Exception:
|
| 1055 |
-
continue
|
| 1056 |
-
except Exception:
|
| 1057 |
-
continue
|
| 1058 |
-
|
| 1059 |
-
return latest_date
|
| 1060 |
-
|
| 1061 |
-
except Exception:
|
| 1062 |
-
return None
|
| 1063 |
-
|
| 1064 |
-
|
| 1065 |
-
def get_daily_files_last_time_frame(agent_identifier):
|
| 1066 |
-
"""
|
| 1067 |
-
Get list of daily file paths for an agent from the configured time frame.
|
| 1068 |
-
|
| 1069 |
-
Args:
|
| 1070 |
-
agent_identifier: GitHub identifier of the agent
|
| 1071 |
-
|
| 1072 |
-
Returns:
|
| 1073 |
-
List of file paths in format: [agent_identifier]/YYYY.MM.DD.jsonl
|
| 1074 |
-
"""
|
| 1075 |
-
try:
|
| 1076 |
-
api = HfApi()
|
| 1077 |
-
token = get_hf_token()
|
| 1078 |
-
|
| 1079 |
-
# Calculate date range using configured time frame
|
| 1080 |
-
today = datetime.now(timezone.utc)
|
| 1081 |
-
cutoff_date = today - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1082 |
-
|
| 1083 |
-
# List all files in the repository
|
| 1084 |
-
files = list_repo_files_with_backoff(api=api, repo_id=REVIEW_METADATA_REPO, repo_type="dataset")
|
| 1085 |
-
|
| 1086 |
-
# Filter for files in this agent's folder
|
| 1087 |
-
agent_pattern = f"{agent_identifier}/"
|
| 1088 |
-
agent_files = [f for f in files if f.startswith(agent_pattern) and f.endswith('.jsonl')]
|
| 1089 |
-
|
| 1090 |
-
# Filter by date range (extract date from filename)
|
| 1091 |
-
recent_files = []
|
| 1092 |
-
for filename in agent_files:
|
| 1093 |
-
try:
|
| 1094 |
-
# Extract date from filename: YYYY.MM.DD.jsonl
|
| 1095 |
-
parts = filename.split('/')
|
| 1096 |
-
if len(parts) != 2:
|
| 1097 |
-
continue
|
| 1098 |
-
|
| 1099 |
-
date_part = parts[1].replace('.jsonl', '') # Get YYYY.MM.DD
|
| 1100 |
-
date_components = date_part.split('.')
|
| 1101 |
-
if len(date_components) != 3:
|
| 1102 |
-
continue
|
| 1103 |
-
|
| 1104 |
-
file_year, file_month, file_day = map(int, date_components)
|
| 1105 |
-
file_date = datetime(file_year, file_month, file_day, tzinfo=timezone.utc)
|
| 1106 |
-
|
| 1107 |
-
# Include if within configured time frame
|
| 1108 |
-
if cutoff_date <= file_date <= today:
|
| 1109 |
-
recent_files.append(filename)
|
| 1110 |
-
except Exception:
|
| 1111 |
-
continue
|
| 1112 |
-
|
| 1113 |
-
return recent_files
|
| 1114 |
-
|
| 1115 |
-
except Exception as e:
|
| 1116 |
-
print(f"Error getting daily files: {str(e)}")
|
| 1117 |
-
return []
|
| 1118 |
-
|
| 1119 |
-
|
| 1120 |
-
|
| 1121 |
|
| 1122 |
# =============================================================================
|
| 1123 |
# HUGGINGFACE DATASET OPERATIONS
|
|
@@ -1163,7 +216,7 @@ def load_agents_from_hf():
|
|
| 1163 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 1164 |
continue
|
| 1165 |
|
| 1166 |
-
print(f"
|
| 1167 |
return agents
|
| 1168 |
|
| 1169 |
except Exception as e:
|
|
@@ -1171,8 +224,6 @@ def load_agents_from_hf():
|
|
| 1171 |
return None
|
| 1172 |
|
| 1173 |
|
| 1174 |
-
|
| 1175 |
-
|
| 1176 |
def get_hf_token():
|
| 1177 |
"""Get HuggingFace token from environment variables."""
|
| 1178 |
token = os.getenv('HF_TOKEN')
|
|
@@ -1209,18 +260,18 @@ def upload_with_retry(api, path_or_fileobj, path_in_repo, repo_id, repo_type, to
|
|
| 1209 |
token=token
|
| 1210 |
)
|
| 1211 |
if attempt > 0:
|
| 1212 |
-
print(f"
|
| 1213 |
return True
|
| 1214 |
|
| 1215 |
except Exception as e:
|
| 1216 |
if attempt < max_retries - 1:
|
| 1217 |
wait_time = delay + random.uniform(0, 1.0)
|
| 1218 |
-
print(f"
|
| 1219 |
-
print(f"
|
| 1220 |
time.sleep(wait_time)
|
| 1221 |
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
|
| 1222 |
else:
|
| 1223 |
-
print(f"
|
| 1224 |
raise
|
| 1225 |
|
| 1226 |
|
|
@@ -1250,64 +301,7 @@ def save_agent_to_hf(data):
|
|
| 1250 |
repo_type="dataset",
|
| 1251 |
token=token
|
| 1252 |
)
|
| 1253 |
-
print(f"
|
| 1254 |
-
return True
|
| 1255 |
-
finally:
|
| 1256 |
-
# Always clean up local file, even if upload fails
|
| 1257 |
-
if os.path.exists(filename):
|
| 1258 |
-
os.remove(filename)
|
| 1259 |
-
|
| 1260 |
-
except Exception as e:
|
| 1261 |
-
print(f"✗ Error saving agent: {str(e)}")
|
| 1262 |
-
return False
|
| 1263 |
-
|
| 1264 |
-
|
| 1265 |
-
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
| 1266 |
-
"""
|
| 1267 |
-
Save leaderboard data and monthly metrics to HuggingFace dataset as swe-review.json.
|
| 1268 |
-
|
| 1269 |
-
Args:
|
| 1270 |
-
leaderboard_dict: Dictionary of agent stats from construct_leaderboard_from_metadata()
|
| 1271 |
-
monthly_metrics: Monthly metrics data from calculate_monthly_metrics_by_agent()
|
| 1272 |
-
|
| 1273 |
-
Returns:
|
| 1274 |
-
bool: True if successful, False otherwise
|
| 1275 |
-
"""
|
| 1276 |
-
try:
|
| 1277 |
-
api = HfApi()
|
| 1278 |
-
token = get_hf_token()
|
| 1279 |
-
|
| 1280 |
-
if not token:
|
| 1281 |
-
raise Exception("No HuggingFace token found. Please set HF_TOKEN in your Space settings.")
|
| 1282 |
-
|
| 1283 |
-
filename = "swe-review.json"
|
| 1284 |
-
|
| 1285 |
-
# Combine leaderboard and monthly metrics
|
| 1286 |
-
combined_data = {
|
| 1287 |
-
'last_updated': datetime.now(timezone.utc).isoformat(),
|
| 1288 |
-
'leaderboard': leaderboard_dict,
|
| 1289 |
-
'monthly_metrics': monthly_metrics,
|
| 1290 |
-
'metadata': {
|
| 1291 |
-
'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS,
|
| 1292 |
-
'update_time_frame_days': UPDATE_TIME_FRAME_DAYS
|
| 1293 |
-
}
|
| 1294 |
-
}
|
| 1295 |
-
|
| 1296 |
-
# Save locally first
|
| 1297 |
-
with open(filename, 'w') as f:
|
| 1298 |
-
json.dump(combined_data, f, indent=2)
|
| 1299 |
-
|
| 1300 |
-
try:
|
| 1301 |
-
# Upload to HuggingFace
|
| 1302 |
-
upload_with_retry(
|
| 1303 |
-
api=api,
|
| 1304 |
-
path_or_fileobj=filename,
|
| 1305 |
-
path_in_repo=filename,
|
| 1306 |
-
repo_id=LEADERBOARD_REPO,
|
| 1307 |
-
repo_type="dataset",
|
| 1308 |
-
token=token
|
| 1309 |
-
)
|
| 1310 |
-
print(f"✓ Saved leaderboard data to HuggingFace: {filename}")
|
| 1311 |
return True
|
| 1312 |
finally:
|
| 1313 |
# Always clean up local file, even if upload fails
|
|
@@ -1315,9 +309,7 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
|
| 1315 |
os.remove(filename)
|
| 1316 |
|
| 1317 |
except Exception as e:
|
| 1318 |
-
print(f"
|
| 1319 |
-
import traceback
|
| 1320 |
-
traceback.print_exc()
|
| 1321 |
return False
|
| 1322 |
|
| 1323 |
|
|
@@ -1346,205 +338,15 @@ def load_leaderboard_data_from_hf():
|
|
| 1346 |
data = json.load(f)
|
| 1347 |
|
| 1348 |
last_updated = data.get('last_updated', 'Unknown')
|
| 1349 |
-
print(f"
|
| 1350 |
|
| 1351 |
return data
|
| 1352 |
|
| 1353 |
except Exception as e:
|
| 1354 |
-
print(f"
|
| 1355 |
return None
|
| 1356 |
|
| 1357 |
|
| 1358 |
-
def save_leaderboard_and_metrics_to_hf():
|
| 1359 |
-
"""
|
| 1360 |
-
Creates a comprehensive JSON file with both leaderboard stats and monthly metrics.
|
| 1361 |
-
If the file exists, it will be overwritten.
|
| 1362 |
-
|
| 1363 |
-
Returns:
|
| 1364 |
-
bool: True if successful, False otherwise
|
| 1365 |
-
"""
|
| 1366 |
-
import io
|
| 1367 |
-
|
| 1368 |
-
try:
|
| 1369 |
-
token = get_hf_token()
|
| 1370 |
-
if not token:
|
| 1371 |
-
raise Exception("No HuggingFace token found")
|
| 1372 |
-
|
| 1373 |
-
api = HfApi(token=token)
|
| 1374 |
-
|
| 1375 |
-
print(f"\n{'='*80}")
|
| 1376 |
-
print(f"📊 Preparing leaderboard and metrics data for upload...")
|
| 1377 |
-
print(f"{'='*80}\n")
|
| 1378 |
-
|
| 1379 |
-
# Get leaderboard data from review metadata
|
| 1380 |
-
print(" Constructing leaderboard data from review metadata...")
|
| 1381 |
-
leaderboard_data = construct_leaderboard_from_metadata()
|
| 1382 |
-
|
| 1383 |
-
# Get monthly metrics data (all agents, not just top N)
|
| 1384 |
-
print(" Calculating monthly metrics from review metadata...")
|
| 1385 |
-
monthly_metrics = calculate_monthly_metrics_by_agent(top_n=None)
|
| 1386 |
-
|
| 1387 |
-
# Combine into a single structure
|
| 1388 |
-
combined_data = {
|
| 1389 |
-
"leaderboard": leaderboard_data,
|
| 1390 |
-
"monthly_metrics": monthly_metrics,
|
| 1391 |
-
"metadata": {
|
| 1392 |
-
"last_updated": datetime.now(timezone.utc).isoformat(),
|
| 1393 |
-
"time_frame_days": LEADERBOARD_TIME_FRAME_DAYS,
|
| 1394 |
-
"total_agents": len(leaderboard_data)
|
| 1395 |
-
}
|
| 1396 |
-
}
|
| 1397 |
-
|
| 1398 |
-
print(f" Leaderboard entries: {len(leaderboard_data)}")
|
| 1399 |
-
print(f" Monthly metrics for: {len(monthly_metrics['agents'])} agents")
|
| 1400 |
-
print(f" Time frame: {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 1401 |
-
|
| 1402 |
-
# Convert to JSON and create file-like object
|
| 1403 |
-
json_content = json.dumps(combined_data, indent=2)
|
| 1404 |
-
file_like_object = io.BytesIO(json_content.encode('utf-8'))
|
| 1405 |
-
|
| 1406 |
-
# Upload to HuggingFace (will overwrite if exists)
|
| 1407 |
-
print(f"\n🤗 Uploading to {LEADERBOARD_REPO}...")
|
| 1408 |
-
upload_file_with_backoff(
|
| 1409 |
-
api=api,
|
| 1410 |
-
path_or_fileobj=file_like_object,
|
| 1411 |
-
path_in_repo="swe-review.json",
|
| 1412 |
-
repo_id=LEADERBOARD_REPO,
|
| 1413 |
-
repo_type="dataset",
|
| 1414 |
-
token=token,
|
| 1415 |
-
commit_message=f"Update leaderboard data - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')} UTC"
|
| 1416 |
-
)
|
| 1417 |
-
|
| 1418 |
-
print(f" ✓ Successfully uploaded swe-review.json")
|
| 1419 |
-
print(f"{'='*80}\n")
|
| 1420 |
-
|
| 1421 |
-
return True
|
| 1422 |
-
|
| 1423 |
-
except Exception as e:
|
| 1424 |
-
print(f"✗ Error saving leaderboard and metrics: {str(e)}")
|
| 1425 |
-
import traceback
|
| 1426 |
-
traceback.print_exc()
|
| 1427 |
-
return False
|
| 1428 |
-
|
| 1429 |
-
|
| 1430 |
-
|
| 1431 |
-
# =============================================================================
|
| 1432 |
-
# DATA MANAGEMENT
|
| 1433 |
-
# =============================================================================
|
| 1434 |
-
|
| 1435 |
-
def mine_all_agents():
|
| 1436 |
-
"""
|
| 1437 |
-
Mine review metadata for all agents within UPDATE_TIME_FRAME_DAYS and save to HuggingFace.
|
| 1438 |
-
Uses BATCHED BigQuery queries for all agents (efficient approach).
|
| 1439 |
-
"""
|
| 1440 |
-
# Load agent metadata from HuggingFace
|
| 1441 |
-
agents = load_agents_from_hf()
|
| 1442 |
-
if not agents:
|
| 1443 |
-
print("No agents found in HuggingFace dataset")
|
| 1444 |
-
return
|
| 1445 |
-
|
| 1446 |
-
# Extract all identifiers
|
| 1447 |
-
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 1448 |
-
if not identifiers:
|
| 1449 |
-
print("No valid agent identifiers found")
|
| 1450 |
-
return
|
| 1451 |
-
|
| 1452 |
-
print(f"\n{'='*80}")
|
| 1453 |
-
print(f"Starting review metadata mining for {len(identifiers)} agents")
|
| 1454 |
-
print(f"Time frame: Last {UPDATE_TIME_FRAME_DAYS} days")
|
| 1455 |
-
print(f"Data source: BigQuery + GitHub Archive (BATCHED QUERIES)")
|
| 1456 |
-
print(f"{'='*80}\n")
|
| 1457 |
-
|
| 1458 |
-
# Initialize BigQuery client
|
| 1459 |
-
try:
|
| 1460 |
-
client = get_bigquery_client()
|
| 1461 |
-
except Exception as e:
|
| 1462 |
-
print(f"✗ Failed to initialize BigQuery client: {str(e)}")
|
| 1463 |
-
return
|
| 1464 |
-
|
| 1465 |
-
# Define time range: past UPDATE_TIME_FRAME_DAYS (excluding today)
|
| 1466 |
-
current_time = datetime.now(timezone.utc)
|
| 1467 |
-
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 1468 |
-
start_date = end_date - timedelta(days=UPDATE_TIME_FRAME_DAYS)
|
| 1469 |
-
|
| 1470 |
-
try:
|
| 1471 |
-
# Use batched approach for better performance
|
| 1472 |
-
# upload_immediately=True means each batch uploads to HuggingFace right after BigQuery completes
|
| 1473 |
-
all_metadata = fetch_all_pr_metadata_batched(
|
| 1474 |
-
client, identifiers, start_date, end_date, batch_size=100, upload_immediately=True
|
| 1475 |
-
)
|
| 1476 |
-
|
| 1477 |
-
# Calculate summary statistics
|
| 1478 |
-
total_prs = sum(len(metadata_list) for metadata_list in all_metadata.values())
|
| 1479 |
-
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
|
| 1480 |
-
|
| 1481 |
-
print(f"\n{'='*80}")
|
| 1482 |
-
print(f"✅ BigQuery mining and upload complete!")
|
| 1483 |
-
print(f" Total agents: {len(agents)}")
|
| 1484 |
-
print(f" Agents with data: {agents_with_data}")
|
| 1485 |
-
print(f" Total PRs found: {total_prs}")
|
| 1486 |
-
print(f"{'='*80}\n")
|
| 1487 |
-
|
| 1488 |
-
except Exception as e:
|
| 1489 |
-
print(f"✗ Error during BigQuery fetch: {str(e)}")
|
| 1490 |
-
import traceback
|
| 1491 |
-
traceback.print_exc()
|
| 1492 |
-
return
|
| 1493 |
-
|
| 1494 |
-
# After mining is complete, save leaderboard and metrics to HuggingFace
|
| 1495 |
-
print(f"📤 Uploading leaderboard and metrics data...")
|
| 1496 |
-
if save_leaderboard_and_metrics_to_hf():
|
| 1497 |
-
print(f"✓ Leaderboard and metrics successfully uploaded to {LEADERBOARD_REPO}")
|
| 1498 |
-
else:
|
| 1499 |
-
print(f"⚠️ Failed to upload leaderboard and metrics data")
|
| 1500 |
-
|
| 1501 |
-
|
| 1502 |
-
def construct_leaderboard_from_metadata():
|
| 1503 |
-
"""
|
| 1504 |
-
Construct leaderboard from stored review metadata instead of fetching all reviews.
|
| 1505 |
-
Much more memory-efficient and faster.
|
| 1506 |
-
|
| 1507 |
-
Returns dictionary of agent stats.
|
| 1508 |
-
"""
|
| 1509 |
-
print("📊 Constructing leaderboard from review metadata...")
|
| 1510 |
-
|
| 1511 |
-
# Load agents
|
| 1512 |
-
agents = load_agents_from_hf()
|
| 1513 |
-
if not agents:
|
| 1514 |
-
print("⚠️ No agents found")
|
| 1515 |
-
return {}
|
| 1516 |
-
|
| 1517 |
-
print(f"✓ Loaded {len(agents)} agents")
|
| 1518 |
-
|
| 1519 |
-
# Load all review metadata
|
| 1520 |
-
all_metadata = load_review_metadata()
|
| 1521 |
-
print(f"✓ Loaded {len(all_metadata)} review metadata entries")
|
| 1522 |
-
|
| 1523 |
-
cache_dict = {}
|
| 1524 |
-
|
| 1525 |
-
for agent in agents:
|
| 1526 |
-
identifier = agent.get('github_identifier')
|
| 1527 |
-
agent_name = agent.get('name', 'Unknown')
|
| 1528 |
-
|
| 1529 |
-
# Filter metadata for this agent
|
| 1530 |
-
bot_metadata = [review for review in all_metadata if review.get("agent_identifier") == identifier]
|
| 1531 |
-
|
| 1532 |
-
# Calculate stats
|
| 1533 |
-
stats = calculate_review_stats_from_metadata(bot_metadata)
|
| 1534 |
-
|
| 1535 |
-
cache_dict[identifier] = {
|
| 1536 |
-
'name': agent_name,
|
| 1537 |
-
'name': agent_name, # Store both for compatibility
|
| 1538 |
-
'website': agent.get('website', 'N/A'),
|
| 1539 |
-
'github_identifier': identifier,
|
| 1540 |
-
**stats
|
| 1541 |
-
}
|
| 1542 |
-
|
| 1543 |
-
print(f"✓ Constructed cache with {len(cache_dict)} agent entries")
|
| 1544 |
-
|
| 1545 |
-
return cache_dict
|
| 1546 |
-
|
| 1547 |
-
|
| 1548 |
# =============================================================================
|
| 1549 |
# UI FUNCTIONS
|
| 1550 |
# =============================================================================
|
|
@@ -1560,36 +362,47 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1560 |
Args:
|
| 1561 |
top_n: Number of top agents to show (default: 5)
|
| 1562 |
"""
|
| 1563 |
-
#
|
| 1564 |
saved_data = load_leaderboard_data_from_hf()
|
| 1565 |
|
| 1566 |
-
if saved_data
|
| 1567 |
-
|
| 1568 |
-
|
| 1569 |
-
|
| 1570 |
-
|
| 1571 |
-
|
| 1572 |
-
|
| 1573 |
-
|
| 1574 |
-
|
| 1575 |
-
|
| 1576 |
-
|
| 1577 |
-
|
| 1578 |
-
|
| 1579 |
-
|
| 1580 |
-
|
| 1581 |
-
|
| 1582 |
-
|
| 1583 |
-
|
| 1584 |
-
|
| 1585 |
-
|
| 1586 |
-
|
| 1587 |
-
|
| 1588 |
-
|
| 1589 |
-
|
| 1590 |
-
|
| 1591 |
-
|
| 1592 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1593 |
|
| 1594 |
if not metrics['agents'] or not metrics['months']:
|
| 1595 |
# Return an empty figure with a message
|
|
@@ -1712,24 +525,23 @@ def create_monthly_metrics_plot(top_n=5):
|
|
| 1712 |
def get_leaderboard_dataframe():
|
| 1713 |
"""
|
| 1714 |
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
|
| 1715 |
-
Falls back to constructing from metadata if saved data is not available.
|
| 1716 |
Returns formatted DataFrame sorted by total reviews.
|
| 1717 |
"""
|
| 1718 |
-
#
|
| 1719 |
saved_data = load_leaderboard_data_from_hf()
|
| 1720 |
|
| 1721 |
-
if saved_data
|
| 1722 |
-
|
| 1723 |
-
|
| 1724 |
-
|
| 1725 |
-
|
| 1726 |
-
print(f"📊 Saved data not available, constructing leaderboard from metadata...")
|
| 1727 |
-
cache_dict = construct_leaderboard_from_metadata()
|
| 1728 |
|
| 1729 |
-
|
|
|
|
|
|
|
| 1730 |
|
| 1731 |
if not cache_dict:
|
| 1732 |
-
print("
|
| 1733 |
# Return empty DataFrame with correct columns if no data
|
| 1734 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 1735 |
return pd.DataFrame(columns=column_names)
|
|
@@ -1754,8 +566,8 @@ def get_leaderboard_dataframe():
|
|
| 1754 |
data.get('acceptance_rate', 0.0),
|
| 1755 |
])
|
| 1756 |
|
| 1757 |
-
print(f"
|
| 1758 |
-
print(f"
|
| 1759 |
|
| 1760 |
# Create DataFrame
|
| 1761 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
|
@@ -1771,7 +583,7 @@ def get_leaderboard_dataframe():
|
|
| 1771 |
if "Total Reviews" in df.columns and not df.empty:
|
| 1772 |
df = df.sort_values(by="Total Reviews", ascending=False).reset_index(drop=True)
|
| 1773 |
|
| 1774 |
-
print(f"
|
| 1775 |
print("="*60 + "\n")
|
| 1776 |
|
| 1777 |
return df
|
|
@@ -1780,17 +592,17 @@ def get_leaderboard_dataframe():
|
|
| 1780 |
def submit_agent(identifier, agent_name, developer, website):
|
| 1781 |
"""
|
| 1782 |
Submit a new agent to the leaderboard.
|
| 1783 |
-
Validates input
|
| 1784 |
"""
|
| 1785 |
# Validate required fields
|
| 1786 |
if not identifier or not identifier.strip():
|
| 1787 |
-
return "
|
| 1788 |
if not agent_name or not agent_name.strip():
|
| 1789 |
-
return "
|
| 1790 |
if not developer or not developer.strip():
|
| 1791 |
-
return "
|
| 1792 |
if not website or not website.strip():
|
| 1793 |
-
return "
|
| 1794 |
|
| 1795 |
# Clean inputs
|
| 1796 |
identifier = identifier.strip()
|
|
@@ -1801,14 +613,14 @@ def submit_agent(identifier, agent_name, developer, website):
|
|
| 1801 |
# Validate GitHub identifier
|
| 1802 |
is_valid, message = validate_github_username(identifier)
|
| 1803 |
if not is_valid:
|
| 1804 |
-
return f"
|
| 1805 |
|
| 1806 |
# Check for duplicates by loading agents from HuggingFace
|
| 1807 |
agents = load_agents_from_hf()
|
| 1808 |
if agents:
|
| 1809 |
existing_names = {agent['github_identifier'] for agent in agents}
|
| 1810 |
if identifier in existing_names:
|
| 1811 |
-
return f"
|
| 1812 |
|
| 1813 |
# Create submission
|
| 1814 |
submission = {
|
|
@@ -1816,62 +628,78 @@ def submit_agent(identifier, agent_name, developer, website):
|
|
| 1816 |
'developer': developer,
|
| 1817 |
'github_identifier': identifier,
|
| 1818 |
'website': website,
|
|
|
|
| 1819 |
}
|
| 1820 |
|
| 1821 |
# Save to HuggingFace
|
| 1822 |
if not save_agent_to_hf(submission):
|
| 1823 |
-
return "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1824 |
|
| 1825 |
-
# Reconstruct and save leaderboard data with new agent
|
| 1826 |
try:
|
| 1827 |
-
|
| 1828 |
-
|
| 1829 |
-
|
| 1830 |
-
|
| 1831 |
-
|
|
|
|
|
|
|
| 1832 |
except Exception as e:
|
| 1833 |
-
print(f"
|
| 1834 |
|
| 1835 |
-
|
| 1836 |
-
return f"✅ Successfully submitted {agent_name}! Review data will be populated by the next daily incremental update.", get_leaderboard_dataframe()
|
| 1837 |
|
| 1838 |
|
| 1839 |
# =============================================================================
|
| 1840 |
# GRADIO APPLICATION
|
| 1841 |
# =============================================================================
|
| 1842 |
|
| 1843 |
-
print(f"\
|
| 1844 |
-
print(f"
|
| 1845 |
-
print(f"
|
| 1846 |
|
| 1847 |
-
# Start APScheduler for
|
| 1848 |
scheduler = BackgroundScheduler(timezone="UTC")
|
| 1849 |
scheduler.add_job(
|
| 1850 |
-
|
| 1851 |
-
trigger=CronTrigger(
|
| 1852 |
-
id='
|
| 1853 |
-
name='
|
| 1854 |
replace_existing=True
|
| 1855 |
)
|
| 1856 |
scheduler.start()
|
| 1857 |
print(f"\n{'='*80}")
|
| 1858 |
-
print(f"
|
| 1859 |
-
print(f"
|
| 1860 |
-
print(f"
|
| 1861 |
print(f"{'='*80}\n")
|
| 1862 |
|
| 1863 |
# Create Gradio interface
|
| 1864 |
with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as app:
|
| 1865 |
-
|
| 1866 |
-
|
| 1867 |
-
gr.Markdown("# 🏆 SWE Agent Review Leaderboard")
|
| 1868 |
gr.Markdown(f"Track and compare GitHub PR review acceptance statistics for SWE agents")
|
| 1869 |
-
|
| 1870 |
with gr.Tabs():
|
| 1871 |
|
| 1872 |
# Leaderboard Tab
|
| 1873 |
-
with gr.Tab("
|
| 1874 |
-
gr.Markdown(
|
| 1875 |
leaderboard_table = Leaderboard(
|
| 1876 |
value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]), # Empty initially
|
| 1877 |
datatype=LEADERBOARD_COLUMNS,
|
|
@@ -1897,7 +725,7 @@ with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as
|
|
| 1897 |
|
| 1898 |
# Monthly Metrics Section
|
| 1899 |
gr.Markdown("---") # Divider
|
| 1900 |
-
gr.Markdown("###
|
| 1901 |
gr.Markdown("*Shows acceptance rate trends and review volumes for the most active agents*")
|
| 1902 |
|
| 1903 |
monthly_metrics_plot = gr.Plot(label="Monthly Metrics")
|
|
@@ -1911,32 +739,32 @@ with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as
|
|
| 1911 |
|
| 1912 |
|
| 1913 |
# Submit Agent Tab
|
| 1914 |
-
with gr.Tab("
|
| 1915 |
-
|
| 1916 |
gr.Markdown("### Submit Your Agent")
|
| 1917 |
-
gr.Markdown("Fill in the details below to add your agent to the leaderboard.
|
| 1918 |
-
|
| 1919 |
with gr.Row():
|
| 1920 |
with gr.Column():
|
| 1921 |
github_input = gr.Textbox(
|
| 1922 |
label="GitHub Identifier*",
|
| 1923 |
-
placeholder="Your agent username (e.g.,
|
| 1924 |
)
|
| 1925 |
name_input = gr.Textbox(
|
| 1926 |
label="Agent Name*",
|
| 1927 |
placeholder="Your agent's display name"
|
| 1928 |
)
|
| 1929 |
-
|
| 1930 |
with gr.Column():
|
| 1931 |
developer_input = gr.Textbox(
|
| 1932 |
label="Developer*",
|
| 1933 |
placeholder="Your developer or team name"
|
| 1934 |
)
|
| 1935 |
website_input = gr.Textbox(
|
| 1936 |
-
label="Website",
|
| 1937 |
placeholder="https://your-agent-website.com"
|
| 1938 |
)
|
| 1939 |
-
|
| 1940 |
submit_button = gr.Button(
|
| 1941 |
"Submit Agent",
|
| 1942 |
variant="primary"
|
|
@@ -1945,7 +773,7 @@ with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as
|
|
| 1945 |
label="Submission Status",
|
| 1946 |
interactive=False
|
| 1947 |
)
|
| 1948 |
-
|
| 1949 |
# Event handler
|
| 1950 |
submit_button.click(
|
| 1951 |
fn=submit_agent,
|
|
@@ -1956,4 +784,4 @@ with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as
|
|
| 1956 |
|
| 1957 |
# Launch application
|
| 1958 |
if __name__ == "__main__":
|
| 1959 |
-
app.launch()
|
|
|
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import time
|
|
|
|
| 6 |
import requests
|
| 7 |
+
from datetime import datetime, timezone
|
|
|
|
| 8 |
from huggingface_hub import HfApi, hf_hub_download
|
| 9 |
from huggingface_hub.errors import HfHubHTTPError
|
|
|
|
| 10 |
import backoff
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
import pandas as pd
|
|
|
|
| 15 |
from plotly.subplots import make_subplots
|
| 16 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 17 |
from apscheduler.triggers.cron import CronTrigger
|
|
|
|
| 18 |
|
| 19 |
# Load environment variables
|
| 20 |
load_dotenv()
|
|
|
|
| 24 |
# =============================================================================
|
| 25 |
|
| 26 |
AGENTS_REPO = "SWE-Arena/bot_metadata" # HuggingFace dataset for agent metadata
|
|
|
|
| 27 |
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
|
|
|
|
|
|
|
| 28 |
|
| 29 |
LEADERBOARD_COLUMNS = [
|
| 30 |
("Agent Name", "string"),
|
|
|
|
| 34 |
("Acceptance Rate (%)", "number"),
|
| 35 |
]
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
# =============================================================================
|
| 38 |
# HUGGINGFACE API WRAPPERS WITH BACKOFF
|
| 39 |
# =============================================================================
|
|
|
|
| 53 |
max_value=3600,
|
| 54 |
giveup=lambda e: not is_rate_limit_error(e),
|
| 55 |
on_backoff=lambda details: print(
|
| 56 |
+
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 57 |
)
|
| 58 |
)
|
| 59 |
def list_repo_files_with_backoff(api, **kwargs):
|
|
|
|
| 69 |
max_value=3600,
|
| 70 |
giveup=lambda e: not is_rate_limit_error(e),
|
| 71 |
on_backoff=lambda details: print(
|
| 72 |
+
f"Rate limited. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 73 |
)
|
| 74 |
)
|
| 75 |
def hf_hub_download_with_backoff(**kwargs):
|
|
|
|
| 77 |
return hf_hub_download(**kwargs)
|
| 78 |
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
# =============================================================================
|
| 81 |
# GITHUB API OPERATIONS
|
| 82 |
# =============================================================================
|
|
|
|
| 171 |
except Exception as e:
|
| 172 |
return False, f"Validation error: {str(e)}"
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
# =============================================================================
|
| 176 |
# HUGGINGFACE DATASET OPERATIONS
|
|
|
|
| 216 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 217 |
continue
|
| 218 |
|
| 219 |
+
print(f"Loaded {len(agents)} agents from HuggingFace")
|
| 220 |
return agents
|
| 221 |
|
| 222 |
except Exception as e:
|
|
|
|
| 224 |
return None
|
| 225 |
|
| 226 |
|
|
|
|
|
|
|
| 227 |
def get_hf_token():
|
| 228 |
"""Get HuggingFace token from environment variables."""
|
| 229 |
token = os.getenv('HF_TOKEN')
|
|
|
|
| 260 |
token=token
|
| 261 |
)
|
| 262 |
if attempt > 0:
|
| 263 |
+
print(f" Upload succeeded on attempt {attempt + 1}/{max_retries}")
|
| 264 |
return True
|
| 265 |
|
| 266 |
except Exception as e:
|
| 267 |
if attempt < max_retries - 1:
|
| 268 |
wait_time = delay + random.uniform(0, 1.0)
|
| 269 |
+
print(f" Upload failed (attempt {attempt + 1}/{max_retries}): {str(e)}")
|
| 270 |
+
print(f" Retrying in {wait_time:.1f} seconds...")
|
| 271 |
time.sleep(wait_time)
|
| 272 |
delay = min(delay * 2, 60.0) # Exponential backoff, max 60s
|
| 273 |
else:
|
| 274 |
+
print(f" Upload failed after {max_retries} attempts: {str(e)}")
|
| 275 |
raise
|
| 276 |
|
| 277 |
|
|
|
|
| 301 |
repo_type="dataset",
|
| 302 |
token=token
|
| 303 |
)
|
| 304 |
+
print(f"Saved agent to HuggingFace: {filename}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
return True
|
| 306 |
finally:
|
| 307 |
# Always clean up local file, even if upload fails
|
|
|
|
| 309 |
os.remove(filename)
|
| 310 |
|
| 311 |
except Exception as e:
|
| 312 |
+
print(f"Error saving agent: {str(e)}")
|
|
|
|
|
|
|
| 313 |
return False
|
| 314 |
|
| 315 |
|
|
|
|
| 338 |
data = json.load(f)
|
| 339 |
|
| 340 |
last_updated = data.get('last_updated', 'Unknown')
|
| 341 |
+
print(f"Loaded leaderboard data from HuggingFace (last updated: {last_updated})")
|
| 342 |
|
| 343 |
return data
|
| 344 |
|
| 345 |
except Exception as e:
|
| 346 |
+
print(f"Could not load leaderboard data from HuggingFace: {str(e)}")
|
| 347 |
return None
|
| 348 |
|
| 349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
# =============================================================================
|
| 351 |
# UI FUNCTIONS
|
| 352 |
# =============================================================================
|
|
|
|
| 362 |
Args:
|
| 363 |
top_n: Number of top agents to show (default: 5)
|
| 364 |
"""
|
| 365 |
+
# Load from saved dataset
|
| 366 |
saved_data = load_leaderboard_data_from_hf()
|
| 367 |
|
| 368 |
+
if not saved_data or 'monthly_metrics' not in saved_data:
|
| 369 |
+
# Return an empty figure with a message
|
| 370 |
+
fig = go.Figure()
|
| 371 |
+
fig.add_annotation(
|
| 372 |
+
text="No data available for visualization",
|
| 373 |
+
xref="paper", yref="paper",
|
| 374 |
+
x=0.5, y=0.5, showarrow=False,
|
| 375 |
+
font=dict(size=16)
|
| 376 |
+
)
|
| 377 |
+
fig.update_layout(
|
| 378 |
+
title=None,
|
| 379 |
+
xaxis_title=None,
|
| 380 |
+
height=500
|
| 381 |
+
)
|
| 382 |
+
return fig
|
| 383 |
+
|
| 384 |
+
metrics = saved_data['monthly_metrics']
|
| 385 |
+
print(f"Loaded monthly metrics from saved dataset")
|
| 386 |
+
|
| 387 |
+
# Apply top_n filter if specified
|
| 388 |
+
if top_n is not None and top_n > 0 and metrics.get('agents'):
|
| 389 |
+
# Calculate total reviews for each agent
|
| 390 |
+
agent_totals = []
|
| 391 |
+
for agent_name in metrics['agents']:
|
| 392 |
+
agent_data = metrics['data'].get(agent_name, {})
|
| 393 |
+
total_reviews = sum(agent_data.get('total_reviews', []))
|
| 394 |
+
agent_totals.append((agent_name, total_reviews))
|
| 395 |
+
|
| 396 |
+
# Sort by total reviews and take top N
|
| 397 |
+
agent_totals.sort(key=lambda x: x[1], reverse=True)
|
| 398 |
+
top_agents = [agent_name for agent_name, _ in agent_totals[:top_n]]
|
| 399 |
+
|
| 400 |
+
# Filter metrics to only include top agents
|
| 401 |
+
metrics = {
|
| 402 |
+
'agents': top_agents,
|
| 403 |
+
'months': metrics['months'],
|
| 404 |
+
'data': {agent: metrics['data'][agent] for agent in top_agents if agent in metrics['data']}
|
| 405 |
+
}
|
| 406 |
|
| 407 |
if not metrics['agents'] or not metrics['months']:
|
| 408 |
# Return an empty figure with a message
|
|
|
|
| 525 |
def get_leaderboard_dataframe():
|
| 526 |
"""
|
| 527 |
Load leaderboard from saved dataset and convert to pandas DataFrame for display.
|
|
|
|
| 528 |
Returns formatted DataFrame sorted by total reviews.
|
| 529 |
"""
|
| 530 |
+
# Load from saved dataset
|
| 531 |
saved_data = load_leaderboard_data_from_hf()
|
| 532 |
|
| 533 |
+
if not saved_data or 'leaderboard' not in saved_data:
|
| 534 |
+
print(f"No leaderboard data available")
|
| 535 |
+
# Return empty DataFrame with correct columns if no data
|
| 536 |
+
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 537 |
+
return pd.DataFrame(columns=column_names)
|
|
|
|
|
|
|
| 538 |
|
| 539 |
+
cache_dict = saved_data['leaderboard']
|
| 540 |
+
print(f"Loaded leaderboard from saved dataset (last updated: {saved_data.get('last_updated', 'Unknown')})")
|
| 541 |
+
print(f"Cache dict size: {len(cache_dict)}")
|
| 542 |
|
| 543 |
if not cache_dict:
|
| 544 |
+
print("WARNING: cache_dict is empty!")
|
| 545 |
# Return empty DataFrame with correct columns if no data
|
| 546 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
| 547 |
return pd.DataFrame(columns=column_names)
|
|
|
|
| 566 |
data.get('acceptance_rate', 0.0),
|
| 567 |
])
|
| 568 |
|
| 569 |
+
print(f"Filtered out {filtered_count} agents with 0 reviews")
|
| 570 |
+
print(f"Leaderboard will show {len(rows)} agents")
|
| 571 |
|
| 572 |
# Create DataFrame
|
| 573 |
column_names = [col[0] for col in LEADERBOARD_COLUMNS]
|
|
|
|
| 583 |
if "Total Reviews" in df.columns and not df.empty:
|
| 584 |
df = df.sort_values(by="Total Reviews", ascending=False).reset_index(drop=True)
|
| 585 |
|
| 586 |
+
print(f"Final DataFrame shape: {df.shape}")
|
| 587 |
print("="*60 + "\n")
|
| 588 |
|
| 589 |
return df
|
|
|
|
| 592 |
def submit_agent(identifier, agent_name, developer, website):
|
| 593 |
"""
|
| 594 |
Submit a new agent to the leaderboard.
|
| 595 |
+
Validates input and saves submission.
|
| 596 |
"""
|
| 597 |
# Validate required fields
|
| 598 |
if not identifier or not identifier.strip():
|
| 599 |
+
return "ERROR: GitHub identifier is required", get_leaderboard_dataframe()
|
| 600 |
if not agent_name or not agent_name.strip():
|
| 601 |
+
return "ERROR: Agent name is required", get_leaderboard_dataframe()
|
| 602 |
if not developer or not developer.strip():
|
| 603 |
+
return "ERROR: Developer name is required", get_leaderboard_dataframe()
|
| 604 |
if not website or not website.strip():
|
| 605 |
+
return "ERROR: Website URL is required", get_leaderboard_dataframe()
|
| 606 |
|
| 607 |
# Clean inputs
|
| 608 |
identifier = identifier.strip()
|
|
|
|
| 613 |
# Validate GitHub identifier
|
| 614 |
is_valid, message = validate_github_username(identifier)
|
| 615 |
if not is_valid:
|
| 616 |
+
return f"ERROR: {message}", get_leaderboard_dataframe()
|
| 617 |
|
| 618 |
# Check for duplicates by loading agents from HuggingFace
|
| 619 |
agents = load_agents_from_hf()
|
| 620 |
if agents:
|
| 621 |
existing_names = {agent['github_identifier'] for agent in agents}
|
| 622 |
if identifier in existing_names:
|
| 623 |
+
return f"WARNING: Agent with identifier '{identifier}' already exists", get_leaderboard_dataframe()
|
| 624 |
|
| 625 |
# Create submission
|
| 626 |
submission = {
|
|
|
|
| 628 |
'developer': developer,
|
| 629 |
'github_identifier': identifier,
|
| 630 |
'website': website,
|
| 631 |
+
'status': 'public'
|
| 632 |
}
|
| 633 |
|
| 634 |
# Save to HuggingFace
|
| 635 |
if not save_agent_to_hf(submission):
|
| 636 |
+
return "ERROR: Failed to save submission", get_leaderboard_dataframe()
|
| 637 |
+
|
| 638 |
+
# Return success message - data will be populated by backend updates
|
| 639 |
+
return f"SUCCESS: Successfully submitted {agent_name}! Review data will be populated by the backend system.", get_leaderboard_dataframe()
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
# =============================================================================
|
| 643 |
+
# DATA RELOAD FUNCTION
|
| 644 |
+
# =============================================================================
|
| 645 |
+
|
| 646 |
+
def reload_leaderboard_data():
|
| 647 |
+
"""
|
| 648 |
+
Reload leaderboard data from HuggingFace.
|
| 649 |
+
This function is called by the scheduler on a daily basis.
|
| 650 |
+
"""
|
| 651 |
+
print(f"\n{'='*80}")
|
| 652 |
+
print(f"Reloading leaderboard data from HuggingFace...")
|
| 653 |
+
print(f"{'='*80}\n")
|
| 654 |
|
|
|
|
| 655 |
try:
|
| 656 |
+
data = load_leaderboard_data_from_hf()
|
| 657 |
+
if data:
|
| 658 |
+
print(f"Successfully reloaded leaderboard data")
|
| 659 |
+
print(f" Last updated: {data.get('last_updated', 'Unknown')}")
|
| 660 |
+
print(f" Agents: {len(data.get('leaderboard', {}))}")
|
| 661 |
+
else:
|
| 662 |
+
print(f"No data available")
|
| 663 |
except Exception as e:
|
| 664 |
+
print(f"Error reloading leaderboard data: {str(e)}")
|
| 665 |
|
| 666 |
+
print(f"{'='*80}\n")
|
|
|
|
| 667 |
|
| 668 |
|
| 669 |
# =============================================================================
|
| 670 |
# GRADIO APPLICATION
|
| 671 |
# =============================================================================
|
| 672 |
|
| 673 |
+
print(f"\nStarting SWE Agent PR Leaderboard")
|
| 674 |
+
print(f" Data source: {LEADERBOARD_REPO}")
|
| 675 |
+
print(f" Reload frequency: Daily at 12:00 AM UTC\n")
|
| 676 |
|
| 677 |
+
# Start APScheduler for daily data reload at 12:00 AM UTC
|
| 678 |
scheduler = BackgroundScheduler(timezone="UTC")
|
| 679 |
scheduler.add_job(
|
| 680 |
+
reload_leaderboard_data,
|
| 681 |
+
trigger=CronTrigger(hour=0, minute=0), # 12:00 AM UTC daily
|
| 682 |
+
id='daily_data_reload',
|
| 683 |
+
name='Daily Data Reload',
|
| 684 |
replace_existing=True
|
| 685 |
)
|
| 686 |
scheduler.start()
|
| 687 |
print(f"\n{'='*80}")
|
| 688 |
+
print(f"Scheduler initialized successfully")
|
| 689 |
+
print(f"Reload schedule: Daily at 12:00 AM UTC")
|
| 690 |
+
print(f"On startup: Loads cached data from HuggingFace on demand")
|
| 691 |
print(f"{'='*80}\n")
|
| 692 |
|
| 693 |
# Create Gradio interface
|
| 694 |
with gr.Blocks(title="SWE Agent Review Leaderboard", theme=gr.themes.Soft()) as app:
|
| 695 |
+
gr.Markdown("# SWE Agent Review Leaderboard")
|
|
|
|
|
|
|
| 696 |
gr.Markdown(f"Track and compare GitHub PR review acceptance statistics for SWE agents")
|
| 697 |
+
|
| 698 |
with gr.Tabs():
|
| 699 |
|
| 700 |
# Leaderboard Tab
|
| 701 |
+
with gr.Tab("Leaderboard"):
|
| 702 |
+
gr.Markdown("*Statistics are based on agent review activity tracked by the system*")
|
| 703 |
leaderboard_table = Leaderboard(
|
| 704 |
value=pd.DataFrame(columns=[col[0] for col in LEADERBOARD_COLUMNS]), # Empty initially
|
| 705 |
datatype=LEADERBOARD_COLUMNS,
|
|
|
|
| 725 |
|
| 726 |
# Monthly Metrics Section
|
| 727 |
gr.Markdown("---") # Divider
|
| 728 |
+
gr.Markdown("### Monthly Performance - Top 5 Agents")
|
| 729 |
gr.Markdown("*Shows acceptance rate trends and review volumes for the most active agents*")
|
| 730 |
|
| 731 |
monthly_metrics_plot = gr.Plot(label="Monthly Metrics")
|
|
|
|
| 739 |
|
| 740 |
|
| 741 |
# Submit Agent Tab
|
| 742 |
+
with gr.Tab("Submit Agent"):
|
| 743 |
+
|
| 744 |
gr.Markdown("### Submit Your Agent")
|
| 745 |
+
gr.Markdown("Fill in the details below to add your agent to the leaderboard.")
|
| 746 |
+
|
| 747 |
with gr.Row():
|
| 748 |
with gr.Column():
|
| 749 |
github_input = gr.Textbox(
|
| 750 |
label="GitHub Identifier*",
|
| 751 |
+
placeholder="Your agent username (e.g., claude[bot])"
|
| 752 |
)
|
| 753 |
name_input = gr.Textbox(
|
| 754 |
label="Agent Name*",
|
| 755 |
placeholder="Your agent's display name"
|
| 756 |
)
|
| 757 |
+
|
| 758 |
with gr.Column():
|
| 759 |
developer_input = gr.Textbox(
|
| 760 |
label="Developer*",
|
| 761 |
placeholder="Your developer or team name"
|
| 762 |
)
|
| 763 |
website_input = gr.Textbox(
|
| 764 |
+
label="Website*",
|
| 765 |
placeholder="https://your-agent-website.com"
|
| 766 |
)
|
| 767 |
+
|
| 768 |
submit_button = gr.Button(
|
| 769 |
"Submit Agent",
|
| 770 |
variant="primary"
|
|
|
|
| 773 |
label="Submission Status",
|
| 774 |
interactive=False
|
| 775 |
)
|
| 776 |
+
|
| 777 |
# Event handler
|
| 778 |
submit_button.click(
|
| 779 |
fn=submit_agent,
|
|
|
|
| 784 |
|
| 785 |
# Launch application
|
| 786 |
if __name__ == "__main__":
|
| 787 |
+
app.launch()
|
msr.py
CHANGED
|
@@ -1,18 +1,25 @@
|
|
| 1 |
"""
|
| 2 |
Minimalist Review Metadata Mining Script
|
| 3 |
-
Mines PR review metadata from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import json
|
| 7 |
import os
|
|
|
|
| 8 |
import tempfile
|
| 9 |
from datetime import datetime, timezone, timedelta
|
| 10 |
from collections import defaultdict
|
| 11 |
from huggingface_hub import HfApi, hf_hub_download
|
| 12 |
from huggingface_hub.errors import HfHubHTTPError
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
-
|
| 15 |
import backoff
|
|
|
|
| 16 |
|
| 17 |
# Load environment variables
|
| 18 |
load_dotenv()
|
|
@@ -25,6 +32,13 @@ AGENTS_REPO = "SWE-Arena/bot_metadata"
|
|
| 25 |
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata"
|
| 26 |
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
|
| 27 |
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for leaderboard
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# =============================================================================
|
| 30 |
# UTILITY FUNCTIONS
|
|
@@ -98,250 +112,173 @@ def get_hf_token():
|
|
| 98 |
|
| 99 |
|
| 100 |
# =============================================================================
|
| 101 |
-
# HUGGINGFACE API WRAPPERS WITH BACKOFF
|
| 102 |
# =============================================================================
|
| 103 |
|
| 104 |
-
def
|
| 105 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 106 |
if isinstance(e, HfHubHTTPError):
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
return False
|
| 109 |
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
@backoff.on_exception(
|
| 112 |
backoff.expo,
|
| 113 |
-
HfHubHTTPError,
|
| 114 |
max_tries=8,
|
| 115 |
base=300,
|
| 116 |
max_value=3600,
|
| 117 |
-
giveup=lambda e: not
|
| 118 |
on_backoff=lambda details: print(
|
| 119 |
-
f"
|
| 120 |
)
|
| 121 |
)
|
| 122 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 123 |
-
"""Wrapper for api.list_repo_files() with exponential backoff for
|
| 124 |
return api.list_repo_files(**kwargs)
|
| 125 |
|
| 126 |
|
| 127 |
@backoff.on_exception(
|
| 128 |
backoff.expo,
|
| 129 |
-
HfHubHTTPError,
|
| 130 |
max_tries=8,
|
| 131 |
base=300,
|
| 132 |
max_value=3600,
|
| 133 |
-
giveup=lambda e: not
|
| 134 |
on_backoff=lambda details: print(
|
| 135 |
-
f"
|
| 136 |
)
|
| 137 |
)
|
| 138 |
def hf_hub_download_with_backoff(**kwargs):
|
| 139 |
-
"""Wrapper for hf_hub_download() with exponential backoff for
|
| 140 |
return hf_hub_download(**kwargs)
|
| 141 |
|
| 142 |
|
| 143 |
@backoff.on_exception(
|
| 144 |
backoff.expo,
|
| 145 |
-
HfHubHTTPError,
|
| 146 |
max_tries=8,
|
| 147 |
base=300,
|
| 148 |
max_value=3600,
|
| 149 |
-
giveup=lambda e: not
|
| 150 |
on_backoff=lambda details: print(
|
| 151 |
-
f"
|
| 152 |
)
|
| 153 |
)
|
| 154 |
def upload_file_with_backoff(api, **kwargs):
|
| 155 |
-
"""Wrapper for api.upload_file() with exponential backoff for
|
| 156 |
return api.upload_file(**kwargs)
|
| 157 |
|
| 158 |
|
| 159 |
@backoff.on_exception(
|
| 160 |
backoff.expo,
|
| 161 |
-
HfHubHTTPError,
|
| 162 |
max_tries=8,
|
| 163 |
base=300,
|
| 164 |
max_value=3600,
|
| 165 |
-
giveup=lambda e: not
|
| 166 |
on_backoff=lambda details: print(
|
| 167 |
-
f"
|
| 168 |
)
|
| 169 |
)
|
| 170 |
def upload_folder_with_backoff(api, **kwargs):
|
| 171 |
-
"""Wrapper for api.upload_folder() with exponential backoff for
|
| 172 |
return api.upload_folder(**kwargs)
|
| 173 |
|
| 174 |
|
| 175 |
-
def
|
| 176 |
"""
|
| 177 |
-
Initialize
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
"""
|
| 182 |
-
|
| 183 |
-
creds_json = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS_JSON')
|
| 184 |
-
|
| 185 |
-
if creds_json:
|
| 186 |
-
# Create a temporary file to store credentials
|
| 187 |
-
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as temp_file:
|
| 188 |
-
temp_file.write(creds_json)
|
| 189 |
-
temp_path = temp_file.name
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
|
|
|
| 193 |
|
| 194 |
-
|
| 195 |
-
client = bigquery.Client()
|
| 196 |
|
| 197 |
-
# Clean up temp file
|
| 198 |
-
os.unlink(temp_path)
|
| 199 |
|
| 200 |
-
|
| 201 |
-
else:
|
| 202 |
-
raise ValueError("GOOGLE_APPLICATION_CREDENTIALS_JSON not found in environment")
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
def generate_table_union_statements(start_date, end_date):
|
| 206 |
"""
|
| 207 |
-
Generate
|
| 208 |
-
Uses monthly tables instead of daily to drastically reduce query size.
|
| 209 |
|
| 210 |
Args:
|
| 211 |
start_date: Start datetime
|
| 212 |
end_date: End datetime
|
|
|
|
| 213 |
|
| 214 |
Returns:
|
| 215 |
-
|
| 216 |
"""
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
# Start from the beginning of start_date's month
|
| 220 |
-
current_date = start_date.replace(day=1)
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
|
| 225 |
-
while current_date <=
|
| 226 |
-
|
| 227 |
-
|
|
|
|
| 228 |
|
| 229 |
-
# Move to next
|
| 230 |
-
|
| 231 |
-
current_date = current_date.replace(year=current_date.year + 1, month=1)
|
| 232 |
-
else:
|
| 233 |
-
current_date = current_date.replace(month=current_date.month + 1)
|
| 234 |
|
| 235 |
-
|
| 236 |
-
union_parts = [f"SELECT * FROM {table}" for table in table_names]
|
| 237 |
-
return " UNION ALL ".join(union_parts)
|
| 238 |
|
| 239 |
|
| 240 |
# =============================================================================
|
| 241 |
-
#
|
| 242 |
# =============================================================================
|
| 243 |
|
| 244 |
-
def
|
| 245 |
-
"""
|
| 246 |
-
Fetch PR review metadata for ALL agents using BATCHED BigQuery queries.
|
| 247 |
-
Splits agents into smaller batches to avoid performance issues with large queries.
|
| 248 |
-
|
| 249 |
-
Args:
|
| 250 |
-
client: BigQuery client instance
|
| 251 |
-
identifiers: List of GitHub usernames/bot identifiers
|
| 252 |
-
start_date: Start datetime (timezone-aware)
|
| 253 |
-
end_date: End datetime (timezone-aware)
|
| 254 |
-
batch_size: Number of agents to process per batch (default: 100)
|
| 255 |
-
upload_immediately: If True, upload each batch to HuggingFace immediately after processing (default: True)
|
| 256 |
-
|
| 257 |
-
Returns:
|
| 258 |
-
Dictionary mapping agent identifier to list of PR metadata (same format as single query)
|
| 259 |
"""
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
# Log upload mode
|
| 263 |
-
if upload_immediately:
|
| 264 |
-
print(f" 📤 Upload mode: IMMEDIATE (upload after each batch)")
|
| 265 |
-
else:
|
| 266 |
-
print(f" 📤 Upload mode: DEFERRED (upload after all batches complete)")
|
| 267 |
|
| 268 |
-
# Split identifiers into batches
|
| 269 |
-
batches = [identifiers[i:i + batch_size] for i in range(0, len(identifiers), batch_size)]
|
| 270 |
-
total_batches = len(batches)
|
| 271 |
-
|
| 272 |
-
print(f" Total batches: {total_batches}")
|
| 273 |
-
|
| 274 |
-
# Collect results from all batches
|
| 275 |
-
all_metadata = {}
|
| 276 |
-
successful_batches = 0
|
| 277 |
-
failed_batches = 0
|
| 278 |
-
|
| 279 |
-
for batch_num, batch_identifiers in enumerate(batches, 1):
|
| 280 |
-
print(f"\n📦 Processing batch {batch_num}/{total_batches} ({len(batch_identifiers)} agents)...")
|
| 281 |
-
|
| 282 |
-
try:
|
| 283 |
-
# Query this batch
|
| 284 |
-
batch_results = fetch_all_pr_metadata_single_query(
|
| 285 |
-
client, batch_identifiers, start_date, end_date
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
# Merge results
|
| 289 |
-
for identifier, metadata_list in batch_results.items():
|
| 290 |
-
if identifier in all_metadata:
|
| 291 |
-
all_metadata[identifier].extend(metadata_list)
|
| 292 |
-
else:
|
| 293 |
-
all_metadata[identifier] = metadata_list
|
| 294 |
-
|
| 295 |
-
successful_batches += 1
|
| 296 |
-
print(f" ✓ Batch {batch_num}/{total_batches} complete: {len(batch_results)} agents processed")
|
| 297 |
-
|
| 298 |
-
# Upload immediately after this batch if enabled
|
| 299 |
-
if upload_immediately and batch_results:
|
| 300 |
-
print(f"\n 📤 Uploading batch {batch_num}/{total_batches} results to HuggingFace...")
|
| 301 |
-
upload_success = 0
|
| 302 |
-
upload_errors = 0
|
| 303 |
-
|
| 304 |
-
for identifier, metadata_list in batch_results.items():
|
| 305 |
-
if metadata_list:
|
| 306 |
-
if save_review_metadata_to_hf(metadata_list, identifier):
|
| 307 |
-
upload_success += 1
|
| 308 |
-
else:
|
| 309 |
-
upload_errors += 1
|
| 310 |
-
|
| 311 |
-
print(f" ✓ Batch {batch_num}/{total_batches} upload complete ({upload_success} agents uploaded, {upload_errors} errors)")
|
| 312 |
-
|
| 313 |
-
except Exception as e:
|
| 314 |
-
failed_batches += 1
|
| 315 |
-
print(f" ✗ Batch {batch_num}/{total_batches} failed: {str(e)}")
|
| 316 |
-
print(f" Continuing with remaining batches...")
|
| 317 |
-
continue
|
| 318 |
-
|
| 319 |
-
print(f"\n📊 Batching Summary:")
|
| 320 |
-
print(f" Total batches: {total_batches}")
|
| 321 |
-
print(f" Successful: {successful_batches}")
|
| 322 |
-
print(f" Failed: {failed_batches}")
|
| 323 |
-
print(f" Total agents with data: {len(all_metadata)}")
|
| 324 |
-
|
| 325 |
-
return all_metadata
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date):
|
| 329 |
-
"""
|
| 330 |
-
Fetch PR review metadata for a BATCH of agents using ONE comprehensive BigQuery query.
|
| 331 |
-
|
| 332 |
-
NOTE: This function is designed for smaller batches (~100 agents).
|
| 333 |
-
For large numbers of agents, use fetch_all_pr_metadata_batched() instead.
|
| 334 |
-
|
| 335 |
This query combines:
|
| 336 |
1. Review events (PullRequestReviewEvent) for all agents
|
| 337 |
2. PR status (PullRequestEvent with action='closed')
|
| 338 |
-
|
| 339 |
Args:
|
| 340 |
-
|
| 341 |
identifiers: List of GitHub usernames/bot identifiers
|
| 342 |
start_date: Start datetime (timezone-aware)
|
| 343 |
end_date: End datetime (timezone-aware)
|
| 344 |
-
|
| 345 |
Returns:
|
| 346 |
Dictionary mapping agent identifier to list of PR metadata:
|
| 347 |
{
|
|
@@ -357,97 +294,89 @@ def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date
|
|
| 357 |
...
|
| 358 |
}
|
| 359 |
"""
|
| 360 |
-
print(f"
|
| 361 |
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 362 |
-
|
| 363 |
-
# Generate
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
# Generate
|
| 367 |
status_start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 368 |
-
|
| 369 |
-
|
| 370 |
# Build identifier list for IN clause
|
| 371 |
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 372 |
-
|
| 373 |
-
# Build comprehensive query with CTEs
|
| 374 |
query = f"""
|
| 375 |
WITH review_events AS (
|
| 376 |
-- Get all review events for ALL agents
|
| 377 |
SELECT
|
| 378 |
-
|
| 379 |
COALESCE(
|
| 380 |
-
|
| 381 |
-
CAST(created_at AS
|
| 382 |
) as reviewed_at,
|
| 383 |
-
actor
|
| 384 |
-
repo
|
| 385 |
-
CAST(
|
| 386 |
-
FROM (
|
| 387 |
-
{review_tables}
|
| 388 |
-
)
|
| 389 |
WHERE
|
| 390 |
type = 'PullRequestReviewEvent'
|
| 391 |
-
AND actor
|
| 392 |
-
AND
|
| 393 |
|
| 394 |
UNION ALL
|
| 395 |
|
| 396 |
-- Get PR comments (IssueCommentEvent on PRs)
|
| 397 |
SELECT
|
| 398 |
-
|
| 399 |
-
CAST(created_at AS
|
| 400 |
-
actor
|
| 401 |
-
repo
|
| 402 |
-
CAST(
|
| 403 |
-
FROM (
|
| 404 |
-
{review_tables}
|
| 405 |
-
)
|
| 406 |
WHERE
|
| 407 |
type = 'IssueCommentEvent'
|
| 408 |
-
AND actor
|
| 409 |
-
AND
|
| 410 |
-
AND
|
| 411 |
|
| 412 |
UNION ALL
|
| 413 |
|
| 414 |
-- Get review comments (PullRequestReviewCommentEvent)
|
| 415 |
SELECT
|
| 416 |
-
|
| 417 |
-
CAST(created_at AS
|
| 418 |
-
actor
|
| 419 |
-
repo
|
| 420 |
-
CAST(
|
| 421 |
-
FROM (
|
| 422 |
-
{review_tables}
|
| 423 |
-
)
|
| 424 |
WHERE
|
| 425 |
type = 'PullRequestReviewCommentEvent'
|
| 426 |
-
AND actor
|
| 427 |
-
AND
|
| 428 |
),
|
| 429 |
-
|
| 430 |
pr_status AS (
|
| 431 |
-- Get merge/close status for those PRs
|
| 432 |
SELECT
|
| 433 |
-
|
| 434 |
-
CAST(
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
created_at
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
)
|
| 441 |
WHERE
|
| 442 |
type = 'PullRequestEvent'
|
| 443 |
-
AND
|
| 444 |
-
AND
|
| 445 |
-
AND
|
| 446 |
SELECT DISTINCT url FROM review_events
|
| 447 |
)
|
| 448 |
-
QUALIFY ROW_NUMBER() OVER (PARTITION BY url ORDER BY created_at DESC) = 1
|
| 449 |
)
|
| 450 |
-
|
| 451 |
-- Join review events with PR status
|
| 452 |
SELECT DISTINCT
|
| 453 |
re.reviewer,
|
|
@@ -456,54 +385,42 @@ def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date
|
|
| 456 |
ps.merged_at,
|
| 457 |
ps.closed_at
|
| 458 |
FROM review_events re
|
| 459 |
-
LEFT JOIN pr_status ps ON re.url = ps.url
|
| 460 |
ORDER BY re.reviewer, re.reviewed_at DESC
|
| 461 |
"""
|
| 462 |
-
|
| 463 |
# Calculate number of days for reporting
|
| 464 |
review_days = (end_date - start_date).days
|
| 465 |
status_days = (end_date - status_start_date).days
|
| 466 |
-
|
| 467 |
print(f" Querying {review_days} days for reviews, {status_days} days for PR status...")
|
| 468 |
print(f" Agents: {', '.join(identifiers[:5])}{'...' if len(identifiers) > 5 else ''}")
|
| 469 |
-
|
| 470 |
try:
|
| 471 |
-
|
| 472 |
-
results =
|
| 473 |
-
|
| 474 |
-
print(f" ✓ Found {len(results)} total PR review records across all agents")
|
| 475 |
-
|
| 476 |
-
# Group results by agent
|
| 477 |
-
metadata_by_agent = defaultdict(list)
|
| 478 |
-
|
| 479 |
-
for row in results:
|
| 480 |
-
reviewer = row.reviewer
|
| 481 |
|
| 482 |
-
|
| 483 |
-
reviewed_at = row.reviewed_at
|
| 484 |
-
if hasattr(reviewed_at, 'isoformat'):
|
| 485 |
-
reviewed_at = reviewed_at.isoformat()
|
| 486 |
-
reviewed_at = normalize_date_format(reviewed_at) if reviewed_at else None
|
| 487 |
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
merged_at = merged_at.isoformat()
|
| 491 |
-
merged_at = normalize_date_format(merged_at) if merged_at else None
|
| 492 |
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
|
|
|
|
|
|
| 497 |
|
| 498 |
metadata_by_agent[reviewer].append({
|
| 499 |
-
'url':
|
| 500 |
'reviewed_at': reviewed_at,
|
| 501 |
'merged_at': merged_at,
|
| 502 |
'closed_at': closed_at,
|
| 503 |
})
|
| 504 |
-
|
| 505 |
# Print breakdown by agent
|
| 506 |
-
print(f"
|
| 507 |
for identifier in identifiers:
|
| 508 |
count = len(metadata_by_agent.get(identifier, []))
|
| 509 |
if count > 0:
|
|
@@ -512,19 +429,19 @@ def fetch_all_pr_metadata_single_query(client, identifiers, start_date, end_date
|
|
| 512 |
closed_count = sum(1 for m in metadata if m['closed_at'] is not None and m['merged_at'] is None)
|
| 513 |
open_count = count - merged_count - closed_count
|
| 514 |
print(f" {identifier}: {count} PRs ({merged_count} merged, {closed_count} closed, {open_count} open)")
|
| 515 |
-
|
| 516 |
# Convert defaultdict to regular dict
|
| 517 |
return dict(metadata_by_agent)
|
| 518 |
-
|
| 519 |
except Exception as e:
|
| 520 |
-
print(f"
|
| 521 |
import traceback
|
| 522 |
traceback.print_exc()
|
| 523 |
return {}
|
| 524 |
|
| 525 |
|
| 526 |
# =============================================================================
|
| 527 |
-
# HUGGINGFACE STORAGE FUNCTIONS
|
| 528 |
# =============================================================================
|
| 529 |
|
| 530 |
def group_metadata_by_date(metadata_list):
|
|
@@ -549,20 +466,57 @@ def group_metadata_by_date(metadata_list):
|
|
| 549 |
return dict(grouped)
|
| 550 |
|
| 551 |
|
| 552 |
-
def
|
| 553 |
"""
|
| 554 |
-
|
| 555 |
-
Each file is stored in the agent's folder and named YYYY.MM.DD.jsonl for that day's reviews.
|
| 556 |
-
|
| 557 |
-
This function OVERWRITES existing files completely with fresh data from BigQuery.
|
| 558 |
-
Uses batch upload to avoid rate limit (uploads entire folder in single commit).
|
| 559 |
|
| 560 |
Args:
|
| 561 |
-
|
| 562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
"""
|
| 564 |
-
|
|
|
|
| 565 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 566 |
try:
|
| 567 |
token = get_hf_token()
|
| 568 |
if not token:
|
|
@@ -570,56 +524,103 @@ def save_review_metadata_to_hf(metadata_list, agent_identifier):
|
|
| 570 |
|
| 571 |
api = HfApi(token=token)
|
| 572 |
|
| 573 |
-
|
| 574 |
-
|
|
|
|
| 575 |
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
|
|
|
|
|
|
| 579 |
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
|
| 585 |
-
|
| 586 |
-
print(f" 📦 Preparing batch upload for {len(grouped)} daily files...")
|
| 587 |
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
|
| 593 |
-
|
| 594 |
-
|
| 595 |
|
| 596 |
-
|
| 597 |
-
save_jsonl(local_filename, day_metadata)
|
| 598 |
-
print(f" Prepared {len(day_metadata)} reviews for {filename}")
|
| 599 |
|
| 600 |
-
#
|
| 601 |
-
|
| 602 |
-
upload_folder_with_backoff(
|
| 603 |
-
api=api,
|
| 604 |
-
folder_path=temp_dir,
|
| 605 |
-
repo_id=REVIEW_METADATA_REPO,
|
| 606 |
-
repo_type="dataset",
|
| 607 |
-
commit_message=f"Update review metadata for {agent_identifier}"
|
| 608 |
-
)
|
| 609 |
-
print(f" ✓ Batch upload complete for {agent_identifier}")
|
| 610 |
|
| 611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 617 |
|
| 618 |
except Exception as e:
|
| 619 |
-
print(f"
|
| 620 |
import traceback
|
| 621 |
traceback.print_exc()
|
| 622 |
-
return
|
| 623 |
|
| 624 |
|
| 625 |
def load_agents_from_hf():
|
|
@@ -666,7 +667,7 @@ def load_agents_from_hf():
|
|
| 666 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 667 |
continue
|
| 668 |
|
| 669 |
-
print(f"
|
| 670 |
return agents
|
| 671 |
|
| 672 |
except Exception as e:
|
|
@@ -713,7 +714,7 @@ def load_review_metadata():
|
|
| 713 |
except Exception:
|
| 714 |
continue
|
| 715 |
|
| 716 |
-
print(f"
|
| 717 |
|
| 718 |
all_metadata = []
|
| 719 |
|
|
@@ -742,11 +743,11 @@ def load_review_metadata():
|
|
| 742 |
except Exception as e:
|
| 743 |
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 744 |
|
| 745 |
-
print(f"
|
| 746 |
return all_metadata
|
| 747 |
|
| 748 |
except Exception as e:
|
| 749 |
-
print(f"
|
| 750 |
return []
|
| 751 |
|
| 752 |
|
|
@@ -908,19 +909,19 @@ def construct_leaderboard_from_metadata():
|
|
| 908 |
Returns:
|
| 909 |
Dictionary of agent stats.
|
| 910 |
"""
|
| 911 |
-
print("
|
| 912 |
|
| 913 |
# Load agents
|
| 914 |
agents = load_agents_from_hf()
|
| 915 |
if not agents:
|
| 916 |
-
print("
|
| 917 |
return {}
|
| 918 |
|
| 919 |
-
print(f"
|
| 920 |
|
| 921 |
# Load all review metadata
|
| 922 |
all_metadata = load_review_metadata()
|
| 923 |
-
print(f"
|
| 924 |
|
| 925 |
cache_dict = {}
|
| 926 |
|
|
@@ -935,14 +936,13 @@ def construct_leaderboard_from_metadata():
|
|
| 935 |
stats = calculate_review_stats_from_metadata(bot_metadata)
|
| 936 |
|
| 937 |
cache_dict[identifier] = {
|
| 938 |
-
'name': agent_name,
|
| 939 |
'name': agent_name,
|
| 940 |
'website': agent.get('website', 'N/A'),
|
| 941 |
'github_identifier': identifier,
|
| 942 |
**stats
|
| 943 |
}
|
| 944 |
|
| 945 |
-
print(f"
|
| 946 |
|
| 947 |
return cache_dict
|
| 948 |
|
|
@@ -981,7 +981,8 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
|
| 981 |
json.dump(combined_data, f, indent=2)
|
| 982 |
|
| 983 |
try:
|
| 984 |
-
# Upload to HuggingFace
|
|
|
|
| 985 |
upload_file_with_backoff(
|
| 986 |
api=api,
|
| 987 |
path_or_fileobj=filename,
|
|
@@ -989,7 +990,8 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
|
| 989 |
repo_id=LEADERBOARD_REPO,
|
| 990 |
repo_type="dataset"
|
| 991 |
)
|
| 992 |
-
print(
|
|
|
|
| 993 |
return True
|
| 994 |
finally:
|
| 995 |
# Always clean up local file
|
|
@@ -997,7 +999,8 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
|
| 997 |
os.remove(filename)
|
| 998 |
|
| 999 |
except Exception as e:
|
| 1000 |
-
print(f"
|
|
|
|
| 1001 |
import traceback
|
| 1002 |
traceback.print_exc()
|
| 1003 |
return False
|
|
@@ -1010,43 +1013,42 @@ def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
|
|
| 1010 |
def mine_all_agents():
|
| 1011 |
"""
|
| 1012 |
Mine review metadata for all agents within LEADERBOARD_TIME_FRAME_DAYS and save to HuggingFace.
|
| 1013 |
-
Uses ONE
|
| 1014 |
"""
|
| 1015 |
# Load agent metadata from HuggingFace
|
| 1016 |
agents = load_agents_from_hf()
|
| 1017 |
if not agents:
|
| 1018 |
print("No agents found in HuggingFace dataset")
|
| 1019 |
return
|
| 1020 |
-
|
| 1021 |
# Extract all identifiers
|
| 1022 |
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 1023 |
if not identifiers:
|
| 1024 |
print("No valid agent identifiers found")
|
| 1025 |
return
|
| 1026 |
-
|
| 1027 |
-
print(f"
|
| 1028 |
print(f"Starting review metadata mining for {len(identifiers)} agents")
|
| 1029 |
print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 1030 |
-
print(f"Data source:
|
| 1031 |
-
print(f"{'='*80}
|
| 1032 |
-
|
| 1033 |
-
# Initialize
|
| 1034 |
try:
|
| 1035 |
-
|
| 1036 |
except Exception as e:
|
| 1037 |
-
print(f"
|
| 1038 |
return
|
| 1039 |
-
|
| 1040 |
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
| 1041 |
current_time = datetime.now(timezone.utc)
|
| 1042 |
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 1043 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1044 |
-
|
| 1045 |
try:
|
| 1046 |
-
# Use
|
| 1047 |
-
|
| 1048 |
-
|
| 1049 |
-
client, identifiers, start_date, end_date, batch_size=100, upload_immediately=True
|
| 1050 |
)
|
| 1051 |
|
| 1052 |
# Calculate summary statistics
|
|
@@ -1054,21 +1056,27 @@ def mine_all_agents():
|
|
| 1054 |
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
|
| 1055 |
|
| 1056 |
print(f"\n{'='*80}")
|
| 1057 |
-
print(f"
|
| 1058 |
print(f" Total agents: {len(agents)}")
|
| 1059 |
print(f" Agents with data: {agents_with_data}")
|
| 1060 |
print(f" Total PRs found: {total_prs}")
|
| 1061 |
-
print(f"{'='*80}
|
| 1062 |
|
| 1063 |
except Exception as e:
|
| 1064 |
-
print(f"
|
| 1065 |
import traceback
|
| 1066 |
traceback.print_exc()
|
| 1067 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1068 |
|
| 1069 |
# Construct and save leaderboard data
|
| 1070 |
-
print(f"
|
| 1071 |
-
print(f"
|
| 1072 |
print(f"{'='*80}\n")
|
| 1073 |
|
| 1074 |
try:
|
|
@@ -1076,22 +1084,23 @@ def mine_all_agents():
|
|
| 1076 |
leaderboard_dict = construct_leaderboard_from_metadata()
|
| 1077 |
|
| 1078 |
# Calculate monthly metrics
|
| 1079 |
-
print(f"
|
| 1080 |
monthly_metrics = calculate_monthly_metrics_by_agent()
|
| 1081 |
|
| 1082 |
# Save to HuggingFace
|
| 1083 |
-
print(f"
|
| 1084 |
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
|
| 1085 |
|
| 1086 |
print(f"\n{'='*80}")
|
| 1087 |
-
print(f"
|
|
|
|
| 1088 |
print(f" Leaderboard entries: {len(leaderboard_dict)}")
|
| 1089 |
print(f" Monthly data points: {len(monthly_metrics.get('months', []))} months")
|
| 1090 |
print(f" Saved to: {LEADERBOARD_REPO}/swe-review.json")
|
| 1091 |
-
print(f"{'='*80}
|
| 1092 |
|
| 1093 |
except Exception as e:
|
| 1094 |
-
print(f"
|
| 1095 |
import traceback
|
| 1096 |
traceback.print_exc()
|
| 1097 |
|
|
@@ -1101,4 +1110,4 @@ def mine_all_agents():
|
|
| 1101 |
# =============================================================================
|
| 1102 |
|
| 1103 |
if __name__ == "__main__":
|
| 1104 |
-
mine_all_agents()
|
|
|
|
| 1 |
"""
|
| 2 |
Minimalist Review Metadata Mining Script
|
| 3 |
+
Mines PR review metadata from local GHArchive data via DuckDB and saves to HuggingFace dataset.
|
| 4 |
+
|
| 5 |
+
Changes from previous version:
|
| 6 |
+
1. Single SQL query for all agents (no batching)
|
| 7 |
+
2. Batch upload with time gaps and comprehensive retry logic
|
| 8 |
+
3. Handles both rate limit and timeout errors with exponential backoff
|
| 9 |
"""
|
| 10 |
|
| 11 |
import json
|
| 12 |
import os
|
| 13 |
+
import time
|
| 14 |
import tempfile
|
| 15 |
from datetime import datetime, timezone, timedelta
|
| 16 |
from collections import defaultdict
|
| 17 |
from huggingface_hub import HfApi, hf_hub_download
|
| 18 |
from huggingface_hub.errors import HfHubHTTPError
|
| 19 |
from dotenv import load_dotenv
|
| 20 |
+
import duckdb
|
| 21 |
import backoff
|
| 22 |
+
import requests.exceptions
|
| 23 |
|
| 24 |
# Load environment variables
|
| 25 |
load_dotenv()
|
|
|
|
| 32 |
REVIEW_METADATA_REPO = "SWE-Arena/review_metadata"
|
| 33 |
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata" # HuggingFace dataset for leaderboard data
|
| 34 |
LEADERBOARD_TIME_FRAME_DAYS = 180 # Time frame for leaderboard
|
| 35 |
+
GHARCHIVE_DATA_DIR = "../gharchive/data" # Local GHArchive data directory
|
| 36 |
+
|
| 37 |
+
# Upload configuration
|
| 38 |
+
UPLOAD_DELAY_SECONDS = 2 # Delay between individual file uploads to avoid rate limits
|
| 39 |
+
MAX_RETRIES = 5 # Maximum number of retries for each upload
|
| 40 |
+
INITIAL_BACKOFF = 60 # Initial backoff time in seconds (1 minute)
|
| 41 |
+
MAX_BACKOFF = 3600 # Maximum backoff time in seconds (60 minutes)
|
| 42 |
|
| 43 |
# =============================================================================
|
| 44 |
# UTILITY FUNCTIONS
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
# =============================================================================
|
| 115 |
+
# HUGGINGFACE API WRAPPERS WITH ENHANCED BACKOFF
|
| 116 |
# =============================================================================
|
| 117 |
|
| 118 |
+
def is_retryable_error(e):
|
| 119 |
+
"""
|
| 120 |
+
Check if exception is retryable (rate limit or timeout error).
|
| 121 |
+
"""
|
| 122 |
+
# Check for rate limit error (429)
|
| 123 |
if isinstance(e, HfHubHTTPError):
|
| 124 |
+
if e.response.status_code == 429:
|
| 125 |
+
return True
|
| 126 |
+
|
| 127 |
+
# Check for timeout errors
|
| 128 |
+
if isinstance(e, (requests.exceptions.Timeout,
|
| 129 |
+
requests.exceptions.ReadTimeout,
|
| 130 |
+
requests.exceptions.ConnectTimeout)):
|
| 131 |
+
return True
|
| 132 |
+
|
| 133 |
+
# Check if it's a timeout error wrapped in HfHubHTTPError
|
| 134 |
+
if isinstance(e, Exception):
|
| 135 |
+
error_str = str(e).lower()
|
| 136 |
+
if 'timeout' in error_str or 'timed out' in error_str:
|
| 137 |
+
return True
|
| 138 |
+
|
| 139 |
return False
|
| 140 |
|
| 141 |
|
| 142 |
+
def get_error_type(e):
|
| 143 |
+
"""Get human-readable error type for logging."""
|
| 144 |
+
if isinstance(e, HfHubHTTPError):
|
| 145 |
+
if e.response.status_code == 429:
|
| 146 |
+
return "Rate limit"
|
| 147 |
+
if isinstance(e, (requests.exceptions.Timeout,
|
| 148 |
+
requests.exceptions.ReadTimeout,
|
| 149 |
+
requests.exceptions.ConnectTimeout)):
|
| 150 |
+
return "Timeout"
|
| 151 |
+
if 'timeout' in str(e).lower():
|
| 152 |
+
return "Timeout"
|
| 153 |
+
return "Unknown"
|
| 154 |
+
|
| 155 |
+
|
| 156 |
@backoff.on_exception(
|
| 157 |
backoff.expo,
|
| 158 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
| 159 |
max_tries=8,
|
| 160 |
base=300,
|
| 161 |
max_value=3600,
|
| 162 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 163 |
on_backoff=lambda details: print(
|
| 164 |
+
f" {get_error_type(details['exception'])} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 165 |
)
|
| 166 |
)
|
| 167 |
def list_repo_files_with_backoff(api, **kwargs):
|
| 168 |
+
"""Wrapper for api.list_repo_files() with exponential backoff for retryable errors."""
|
| 169 |
return api.list_repo_files(**kwargs)
|
| 170 |
|
| 171 |
|
| 172 |
@backoff.on_exception(
|
| 173 |
backoff.expo,
|
| 174 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
| 175 |
max_tries=8,
|
| 176 |
base=300,
|
| 177 |
max_value=3600,
|
| 178 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 179 |
on_backoff=lambda details: print(
|
| 180 |
+
f" {get_error_type(details['exception'])} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 181 |
)
|
| 182 |
)
|
| 183 |
def hf_hub_download_with_backoff(**kwargs):
|
| 184 |
+
"""Wrapper for hf_hub_download() with exponential backoff for retryable errors."""
|
| 185 |
return hf_hub_download(**kwargs)
|
| 186 |
|
| 187 |
|
| 188 |
@backoff.on_exception(
|
| 189 |
backoff.expo,
|
| 190 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
| 191 |
max_tries=8,
|
| 192 |
base=300,
|
| 193 |
max_value=3600,
|
| 194 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 195 |
on_backoff=lambda details: print(
|
| 196 |
+
f" {get_error_type(details['exception'])} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 197 |
)
|
| 198 |
)
|
| 199 |
def upload_file_with_backoff(api, **kwargs):
|
| 200 |
+
"""Wrapper for api.upload_file() with exponential backoff for retryable errors."""
|
| 201 |
return api.upload_file(**kwargs)
|
| 202 |
|
| 203 |
|
| 204 |
@backoff.on_exception(
|
| 205 |
backoff.expo,
|
| 206 |
+
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
|
| 207 |
max_tries=8,
|
| 208 |
base=300,
|
| 209 |
max_value=3600,
|
| 210 |
+
giveup=lambda e: not is_retryable_error(e),
|
| 211 |
on_backoff=lambda details: print(
|
| 212 |
+
f" {get_error_type(details['exception'])} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/8..."
|
| 213 |
)
|
| 214 |
)
|
| 215 |
def upload_folder_with_backoff(api, **kwargs):
|
| 216 |
+
"""Wrapper for api.upload_folder() with exponential backoff for retryable errors."""
|
| 217 |
return api.upload_folder(**kwargs)
|
| 218 |
|
| 219 |
|
| 220 |
+
def get_duckdb_connection():
|
| 221 |
"""
|
| 222 |
+
Initialize DuckDB connection with JSON support.
|
| 223 |
|
| 224 |
+
Returns:
|
| 225 |
+
DuckDB connection object
|
| 226 |
"""
|
| 227 |
+
conn = duckdb.connect(':memory:')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
+
# Enable JSON extension if needed
|
| 230 |
+
conn.execute("INSTALL json;")
|
| 231 |
+
conn.execute("LOAD json;")
|
| 232 |
|
| 233 |
+
return conn
|
|
|
|
| 234 |
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_DIR):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
"""
|
| 238 |
+
Generate file path patterns for GHArchive data in date range.
|
|
|
|
| 239 |
|
| 240 |
Args:
|
| 241 |
start_date: Start datetime
|
| 242 |
end_date: End datetime
|
| 243 |
+
data_dir: Directory containing GHArchive data files
|
| 244 |
|
| 245 |
Returns:
|
| 246 |
+
List of file path patterns (one per day)
|
| 247 |
"""
|
| 248 |
+
file_patterns = []
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
+
current_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 251 |
+
end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 252 |
|
| 253 |
+
while current_date <= end_day:
|
| 254 |
+
# Pattern for all hours in this day: 2024-11-15-*.json.gz
|
| 255 |
+
pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-*.json.gz")
|
| 256 |
+
file_patterns.append(pattern)
|
| 257 |
|
| 258 |
+
# Move to next day
|
| 259 |
+
current_date += timedelta(days=1)
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
+
return file_patterns
|
|
|
|
|
|
|
| 262 |
|
| 263 |
|
| 264 |
# =============================================================================
|
| 265 |
+
# DUCKDB QUERY FUNCTIONS
|
| 266 |
# =============================================================================
|
| 267 |
|
| 268 |
+
def fetch_all_pr_metadata_single_query(conn, identifiers, start_date, end_date):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
"""
|
| 270 |
+
Fetch PR review metadata for ALL agents using ONE comprehensive DuckDB query.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
This query combines:
|
| 273 |
1. Review events (PullRequestReviewEvent) for all agents
|
| 274 |
2. PR status (PullRequestEvent with action='closed')
|
| 275 |
+
|
| 276 |
Args:
|
| 277 |
+
conn: DuckDB connection instance
|
| 278 |
identifiers: List of GitHub usernames/bot identifiers
|
| 279 |
start_date: Start datetime (timezone-aware)
|
| 280 |
end_date: End datetime (timezone-aware)
|
| 281 |
+
|
| 282 |
Returns:
|
| 283 |
Dictionary mapping agent identifier to list of PR metadata:
|
| 284 |
{
|
|
|
|
| 294 |
...
|
| 295 |
}
|
| 296 |
"""
|
| 297 |
+
print(f"Querying DuckDB for ALL {len(identifiers)} agents in ONE QUERY")
|
| 298 |
print(f" Time range: {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}")
|
| 299 |
+
|
| 300 |
+
# Generate file path patterns for review period
|
| 301 |
+
review_patterns = generate_file_path_patterns(start_date, end_date)
|
| 302 |
+
|
| 303 |
+
# Generate file path patterns for PR status (use same lookback as reviews)
|
| 304 |
status_start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 305 |
+
status_patterns = generate_file_path_patterns(status_start_date, end_date)
|
| 306 |
+
|
| 307 |
# Build identifier list for IN clause
|
| 308 |
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
|
| 309 |
+
|
| 310 |
+
# Build comprehensive query with CTEs using parameterized file lists
|
| 311 |
query = f"""
|
| 312 |
WITH review_events AS (
|
| 313 |
-- Get all review events for ALL agents
|
| 314 |
SELECT
|
| 315 |
+
json_extract_string(payload, '$.pull_request.html_url') as url,
|
| 316 |
COALESCE(
|
| 317 |
+
json_extract_string(payload, '$.review.submitted_at'),
|
| 318 |
+
CAST(created_at AS VARCHAR)
|
| 319 |
) as reviewed_at,
|
| 320 |
+
json_extract_string(actor, '$.login') as reviewer,
|
| 321 |
+
json_extract_string(repo, '$.name') as repo_name,
|
| 322 |
+
CAST(json_extract_string(payload, '$.pull_request.number') AS INTEGER) as pr_number
|
| 323 |
+
FROM read_json_auto($review_patterns, ignore_errors=true, union_by_name=true)
|
|
|
|
|
|
|
| 324 |
WHERE
|
| 325 |
type = 'PullRequestReviewEvent'
|
| 326 |
+
AND json_extract_string(actor, '$.login') IN ({identifier_list})
|
| 327 |
+
AND json_extract_string(payload, '$.pull_request.html_url') IS NOT NULL
|
| 328 |
|
| 329 |
UNION ALL
|
| 330 |
|
| 331 |
-- Get PR comments (IssueCommentEvent on PRs)
|
| 332 |
SELECT
|
| 333 |
+
json_extract_string(payload, '$.issue.html_url') as url,
|
| 334 |
+
CAST(created_at AS VARCHAR) as reviewed_at,
|
| 335 |
+
json_extract_string(actor, '$.login') as reviewer,
|
| 336 |
+
json_extract_string(repo, '$.name') as repo_name,
|
| 337 |
+
CAST(json_extract_string(payload, '$.issue.number') AS INTEGER) as pr_number
|
| 338 |
+
FROM read_json_auto($review_patterns, ignore_errors=true, union_by_name=true)
|
|
|
|
|
|
|
| 339 |
WHERE
|
| 340 |
type = 'IssueCommentEvent'
|
| 341 |
+
AND json_extract_string(actor, '$.login') IN ({identifier_list})
|
| 342 |
+
AND json_extract_string(payload, '$.issue.pull_request.url') IS NOT NULL
|
| 343 |
+
AND json_extract_string(payload, '$.issue.html_url') IS NOT NULL
|
| 344 |
|
| 345 |
UNION ALL
|
| 346 |
|
| 347 |
-- Get review comments (PullRequestReviewCommentEvent)
|
| 348 |
SELECT
|
| 349 |
+
json_extract_string(payload, '$.pull_request.html_url') as url,
|
| 350 |
+
CAST(created_at AS VARCHAR) as reviewed_at,
|
| 351 |
+
json_extract_string(actor, '$.login') as reviewer,
|
| 352 |
+
json_extract_string(repo, '$.name') as repo_name,
|
| 353 |
+
CAST(json_extract_string(payload, '$.pull_request.number') AS INTEGER) as pr_number
|
| 354 |
+
FROM read_json_auto($review_patterns, ignore_errors=true, union_by_name=true)
|
|
|
|
|
|
|
| 355 |
WHERE
|
| 356 |
type = 'PullRequestReviewCommentEvent'
|
| 357 |
+
AND json_extract_string(actor, '$.login') IN ({identifier_list})
|
| 358 |
+
AND json_extract_string(payload, '$.pull_request.html_url') IS NOT NULL
|
| 359 |
),
|
| 360 |
+
|
| 361 |
pr_status AS (
|
| 362 |
-- Get merge/close status for those PRs
|
| 363 |
SELECT
|
| 364 |
+
json_extract_string(payload, '$.pull_request.html_url') as url,
|
| 365 |
+
CAST(json_extract_string(payload, '$.pull_request.merged') AS BOOLEAN) as is_merged,
|
| 366 |
+
json_extract_string(payload, '$.pull_request.merged_at') as merged_at,
|
| 367 |
+
json_extract_string(payload, '$.pull_request.closed_at') as closed_at,
|
| 368 |
+
created_at,
|
| 369 |
+
ROW_NUMBER() OVER (PARTITION BY json_extract_string(payload, '$.pull_request.html_url') ORDER BY created_at DESC) as rn
|
| 370 |
+
FROM read_json_auto($status_patterns, ignore_errors=true, union_by_name=true)
|
|
|
|
| 371 |
WHERE
|
| 372 |
type = 'PullRequestEvent'
|
| 373 |
+
AND json_extract_string(payload, '$.action') = 'closed'
|
| 374 |
+
AND json_extract_string(payload, '$.pull_request.html_url') IS NOT NULL
|
| 375 |
+
AND json_extract_string(payload, '$.pull_request.html_url') IN (
|
| 376 |
SELECT DISTINCT url FROM review_events
|
| 377 |
)
|
|
|
|
| 378 |
)
|
| 379 |
+
|
| 380 |
-- Join review events with PR status
|
| 381 |
SELECT DISTINCT
|
| 382 |
re.reviewer,
|
|
|
|
| 385 |
ps.merged_at,
|
| 386 |
ps.closed_at
|
| 387 |
FROM review_events re
|
| 388 |
+
LEFT JOIN (SELECT * FROM pr_status WHERE rn = 1) ps ON re.url = ps.url
|
| 389 |
ORDER BY re.reviewer, re.reviewed_at DESC
|
| 390 |
"""
|
| 391 |
+
|
| 392 |
# Calculate number of days for reporting
|
| 393 |
review_days = (end_date - start_date).days
|
| 394 |
status_days = (end_date - status_start_date).days
|
| 395 |
+
|
| 396 |
print(f" Querying {review_days} days for reviews, {status_days} days for PR status...")
|
| 397 |
print(f" Agents: {', '.join(identifiers[:5])}{'...' if len(identifiers) > 5 else ''}")
|
| 398 |
+
|
| 399 |
try:
|
| 400 |
+
# Execute query with parameters
|
| 401 |
+
results = conn.execute(query, {'review_patterns': review_patterns, 'status_patterns': status_patterns}).fetchall()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
+
print(f" Found {len(results)} total PR review records across all agents")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
|
| 405 |
+
# Group results by agent
|
| 406 |
+
metadata_by_agent = defaultdict(list)
|
|
|
|
|
|
|
| 407 |
|
| 408 |
+
for row in results:
|
| 409 |
+
reviewer = row[0]
|
| 410 |
+
url = row[1]
|
| 411 |
+
reviewed_at = normalize_date_format(row[2]) if row[2] else None
|
| 412 |
+
merged_at = normalize_date_format(row[3]) if row[3] else None
|
| 413 |
+
closed_at = normalize_date_format(row[4]) if row[4] else None
|
| 414 |
|
| 415 |
metadata_by_agent[reviewer].append({
|
| 416 |
+
'url': url,
|
| 417 |
'reviewed_at': reviewed_at,
|
| 418 |
'merged_at': merged_at,
|
| 419 |
'closed_at': closed_at,
|
| 420 |
})
|
| 421 |
+
|
| 422 |
# Print breakdown by agent
|
| 423 |
+
print(f"Results breakdown by agent:")
|
| 424 |
for identifier in identifiers:
|
| 425 |
count = len(metadata_by_agent.get(identifier, []))
|
| 426 |
if count > 0:
|
|
|
|
| 429 |
closed_count = sum(1 for m in metadata if m['closed_at'] is not None and m['merged_at'] is None)
|
| 430 |
open_count = count - merged_count - closed_count
|
| 431 |
print(f" {identifier}: {count} PRs ({merged_count} merged, {closed_count} closed, {open_count} open)")
|
| 432 |
+
|
| 433 |
# Convert defaultdict to regular dict
|
| 434 |
return dict(metadata_by_agent)
|
| 435 |
+
|
| 436 |
except Exception as e:
|
| 437 |
+
print(f" DuckDB error: {str(e)}")
|
| 438 |
import traceback
|
| 439 |
traceback.print_exc()
|
| 440 |
return {}
|
| 441 |
|
| 442 |
|
| 443 |
# =============================================================================
|
| 444 |
+
# HUGGINGFACE STORAGE FUNCTIONS WITH BATCH UPLOAD
|
| 445 |
# =============================================================================
|
| 446 |
|
| 447 |
def group_metadata_by_date(metadata_list):
|
|
|
|
| 466 |
return dict(grouped)
|
| 467 |
|
| 468 |
|
| 469 |
+
def upload_single_file_with_retry(api, local_path, repo_path, repo_id, repo_type, commit_message, max_retries=MAX_RETRIES):
|
| 470 |
"""
|
| 471 |
+
Upload a single file with exponential backoff retry logic.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
|
| 473 |
Args:
|
| 474 |
+
api: HfApi instance
|
| 475 |
+
local_path: Local file path
|
| 476 |
+
repo_path: Path in repository
|
| 477 |
+
repo_id: Repository ID
|
| 478 |
+
repo_type: Repository type (e.g., "dataset")
|
| 479 |
+
commit_message: Commit message
|
| 480 |
+
max_retries: Maximum number of retries
|
| 481 |
+
|
| 482 |
+
Returns:
|
| 483 |
+
bool: True if successful, False otherwise
|
| 484 |
+
"""
|
| 485 |
+
for attempt in range(max_retries):
|
| 486 |
+
try:
|
| 487 |
+
upload_file_with_backoff(
|
| 488 |
+
api=api,
|
| 489 |
+
path_or_fileobj=local_path,
|
| 490 |
+
path_in_repo=repo_path,
|
| 491 |
+
repo_id=repo_id,
|
| 492 |
+
repo_type=repo_type,
|
| 493 |
+
commit_message=commit_message
|
| 494 |
+
)
|
| 495 |
+
return True
|
| 496 |
+
except Exception as e:
|
| 497 |
+
error_type = get_error_type(e)
|
| 498 |
+
if attempt < max_retries - 1:
|
| 499 |
+
# Calculate exponential backoff
|
| 500 |
+
wait_time = min(INITIAL_BACKOFF * (2 ** attempt), MAX_BACKOFF)
|
| 501 |
+
print(f" {error_type} error on attempt {attempt + 1}/{max_retries}. Retrying in {wait_time}s...")
|
| 502 |
+
time.sleep(wait_time)
|
| 503 |
+
else:
|
| 504 |
+
print(f" Failed after {max_retries} attempts: {str(e)}")
|
| 505 |
+
return False
|
| 506 |
+
return False
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
def batch_upload_review_metadata(all_metadata):
|
| 510 |
"""
|
| 511 |
+
Upload review metadata for all agents with time gaps between uploads.
|
| 512 |
+
Each agent's data is uploaded as separate daily files with retry logic.
|
| 513 |
|
| 514 |
+
Args:
|
| 515 |
+
all_metadata: Dictionary mapping agent identifier to list of PR metadata
|
| 516 |
+
|
| 517 |
+
Returns:
|
| 518 |
+
tuple: (success_count, error_count)
|
| 519 |
+
"""
|
| 520 |
try:
|
| 521 |
token = get_hf_token()
|
| 522 |
if not token:
|
|
|
|
| 524 |
|
| 525 |
api = HfApi(token=token)
|
| 526 |
|
| 527 |
+
success_count = 0
|
| 528 |
+
error_count = 0
|
| 529 |
+
total_files = 0
|
| 530 |
|
| 531 |
+
# First, calculate total number of files to upload
|
| 532 |
+
for agent_identifier, metadata_list in all_metadata.items():
|
| 533 |
+
if metadata_list:
|
| 534 |
+
grouped = group_metadata_by_date(metadata_list)
|
| 535 |
+
total_files += len(grouped)
|
| 536 |
|
| 537 |
+
print(f"\n{'='*80}")
|
| 538 |
+
print(f"Starting batch upload: {len(all_metadata)} agents, {total_files} total files")
|
| 539 |
+
print(f"Upload delay: {UPLOAD_DELAY_SECONDS}s between files")
|
| 540 |
+
print(f"{'='*80}\n")
|
| 541 |
|
| 542 |
+
file_count = 0
|
|
|
|
| 543 |
|
| 544 |
+
for agent_idx, (agent_identifier, metadata_list) in enumerate(all_metadata.items(), 1):
|
| 545 |
+
if not metadata_list:
|
| 546 |
+
print(f"[{agent_idx}/{len(all_metadata)}] Skipping {agent_identifier} (no data)")
|
| 547 |
+
continue
|
| 548 |
|
| 549 |
+
# Group by date
|
| 550 |
+
grouped = group_metadata_by_date(metadata_list)
|
| 551 |
|
| 552 |
+
print(f"[{agent_idx}/{len(all_metadata)}] Uploading {len(grouped)} files for {agent_identifier}...")
|
|
|
|
|
|
|
| 553 |
|
| 554 |
+
# Create temporary files for this agent
|
| 555 |
+
agent_temp_dir = tempfile.mkdtemp()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 556 |
|
| 557 |
+
try:
|
| 558 |
+
# Prepare all files locally
|
| 559 |
+
local_files = []
|
| 560 |
+
for (review_year, month, day), day_metadata in grouped.items():
|
| 561 |
+
filename = f"{review_year}.{month:02d}.{day:02d}.jsonl"
|
| 562 |
+
local_path = os.path.join(agent_temp_dir, filename)
|
| 563 |
+
repo_path = f"{agent_identifier}/{filename}"
|
| 564 |
+
|
| 565 |
+
# Sort by reviewed_at for better organization
|
| 566 |
+
day_metadata.sort(key=lambda x: x.get('reviewed_at', ''), reverse=True)
|
| 567 |
+
|
| 568 |
+
# Save to temp file
|
| 569 |
+
save_jsonl(local_path, day_metadata)
|
| 570 |
+
local_files.append((local_path, repo_path, len(day_metadata)))
|
| 571 |
+
|
| 572 |
+
# Upload each file with delay
|
| 573 |
+
agent_success = 0
|
| 574 |
+
agent_error = 0
|
| 575 |
+
|
| 576 |
+
for file_idx, (local_path, repo_path, review_count) in enumerate(local_files, 1):
|
| 577 |
+
file_count += 1
|
| 578 |
+
|
| 579 |
+
print(f" [{file_count}/{total_files}] Uploading {repo_path} ({review_count} reviews)...", end='')
|
| 580 |
+
|
| 581 |
+
if upload_single_file_with_retry(
|
| 582 |
+
api=api,
|
| 583 |
+
local_path=local_path,
|
| 584 |
+
repo_path=repo_path,
|
| 585 |
+
repo_id=REVIEW_METADATA_REPO,
|
| 586 |
+
repo_type="dataset",
|
| 587 |
+
commit_message=f"Update {repo_path}",
|
| 588 |
+
max_retries=MAX_RETRIES
|
| 589 |
+
):
|
| 590 |
+
print(" ")
|
| 591 |
+
agent_success += 1
|
| 592 |
+
success_count += 1
|
| 593 |
+
else:
|
| 594 |
+
print(" ")
|
| 595 |
+
agent_error += 1
|
| 596 |
+
error_count += 1
|
| 597 |
+
|
| 598 |
+
# Add delay between uploads (except for last file)
|
| 599 |
+
if file_idx < len(local_files):
|
| 600 |
+
time.sleep(UPLOAD_DELAY_SECONDS)
|
| 601 |
+
|
| 602 |
+
print(f" Agent {agent_identifier}: {agent_success} uploaded, {agent_error} errors\n")
|
| 603 |
+
|
| 604 |
+
finally:
|
| 605 |
+
# Clean up temp directory
|
| 606 |
+
if os.path.exists(agent_temp_dir):
|
| 607 |
+
import shutil
|
| 608 |
+
shutil.rmtree(agent_temp_dir)
|
| 609 |
|
| 610 |
+
print(f"\n{'='*80}")
|
| 611 |
+
print(f"Batch upload complete!")
|
| 612 |
+
print(f" Total files: {total_files}")
|
| 613 |
+
print(f" Successful: {success_count}")
|
| 614 |
+
print(f" Errors: {error_count}")
|
| 615 |
+
print(f"{'='*80}\n")
|
| 616 |
+
|
| 617 |
+
return success_count, error_count
|
| 618 |
|
| 619 |
except Exception as e:
|
| 620 |
+
print(f"Error during batch upload: {str(e)}")
|
| 621 |
import traceback
|
| 622 |
traceback.print_exc()
|
| 623 |
+
return 0, total_files if 'total_files' in locals() else 0
|
| 624 |
|
| 625 |
|
| 626 |
def load_agents_from_hf():
|
|
|
|
| 667 |
print(f"Warning: Could not load {json_file}: {str(e)}")
|
| 668 |
continue
|
| 669 |
|
| 670 |
+
print(f"Loaded {len(agents)} agents from HuggingFace")
|
| 671 |
return agents
|
| 672 |
|
| 673 |
except Exception as e:
|
|
|
|
| 714 |
except Exception:
|
| 715 |
continue
|
| 716 |
|
| 717 |
+
print(f"Loading review metadata from last {LEADERBOARD_TIME_FRAME_DAYS} days ({len(time_frame_files)} daily files)...")
|
| 718 |
|
| 719 |
all_metadata = []
|
| 720 |
|
|
|
|
| 743 |
except Exception as e:
|
| 744 |
print(f" Warning: Could not load {filename}: {str(e)}")
|
| 745 |
|
| 746 |
+
print(f"Loaded {len(all_metadata)} total reviews from last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 747 |
return all_metadata
|
| 748 |
|
| 749 |
except Exception as e:
|
| 750 |
+
print(f"Error loading review metadata: {str(e)}")
|
| 751 |
return []
|
| 752 |
|
| 753 |
|
|
|
|
| 909 |
Returns:
|
| 910 |
Dictionary of agent stats.
|
| 911 |
"""
|
| 912 |
+
print("Constructing leaderboard from review metadata...")
|
| 913 |
|
| 914 |
# Load agents
|
| 915 |
agents = load_agents_from_hf()
|
| 916 |
if not agents:
|
| 917 |
+
print("No agents found")
|
| 918 |
return {}
|
| 919 |
|
| 920 |
+
print(f"Loaded {len(agents)} agents")
|
| 921 |
|
| 922 |
# Load all review metadata
|
| 923 |
all_metadata = load_review_metadata()
|
| 924 |
+
print(f"Loaded {len(all_metadata)} review metadata entries")
|
| 925 |
|
| 926 |
cache_dict = {}
|
| 927 |
|
|
|
|
| 936 |
stats = calculate_review_stats_from_metadata(bot_metadata)
|
| 937 |
|
| 938 |
cache_dict[identifier] = {
|
|
|
|
| 939 |
'name': agent_name,
|
| 940 |
'website': agent.get('website', 'N/A'),
|
| 941 |
'github_identifier': identifier,
|
| 942 |
**stats
|
| 943 |
}
|
| 944 |
|
| 945 |
+
print(f"Constructed cache with {len(cache_dict)} agent entries")
|
| 946 |
|
| 947 |
return cache_dict
|
| 948 |
|
|
|
|
| 981 |
json.dump(combined_data, f, indent=2)
|
| 982 |
|
| 983 |
try:
|
| 984 |
+
# Upload to HuggingFace with retry logic
|
| 985 |
+
print(f"Uploading leaderboard data...", end='')
|
| 986 |
upload_file_with_backoff(
|
| 987 |
api=api,
|
| 988 |
path_or_fileobj=filename,
|
|
|
|
| 990 |
repo_id=LEADERBOARD_REPO,
|
| 991 |
repo_type="dataset"
|
| 992 |
)
|
| 993 |
+
print(" ")
|
| 994 |
+
print(f"Saved leaderboard data to HuggingFace: {filename}")
|
| 995 |
return True
|
| 996 |
finally:
|
| 997 |
# Always clean up local file
|
|
|
|
| 999 |
os.remove(filename)
|
| 1000 |
|
| 1001 |
except Exception as e:
|
| 1002 |
+
print(f" ")
|
| 1003 |
+
print(f"Error saving leaderboard data: {str(e)}")
|
| 1004 |
import traceback
|
| 1005 |
traceback.print_exc()
|
| 1006 |
return False
|
|
|
|
| 1013 |
def mine_all_agents():
|
| 1014 |
"""
|
| 1015 |
Mine review metadata for all agents within LEADERBOARD_TIME_FRAME_DAYS and save to HuggingFace.
|
| 1016 |
+
Uses ONE DuckDB query for ALL agents, then batch uploads with time gaps.
|
| 1017 |
"""
|
| 1018 |
# Load agent metadata from HuggingFace
|
| 1019 |
agents = load_agents_from_hf()
|
| 1020 |
if not agents:
|
| 1021 |
print("No agents found in HuggingFace dataset")
|
| 1022 |
return
|
| 1023 |
+
|
| 1024 |
# Extract all identifiers
|
| 1025 |
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
|
| 1026 |
if not identifiers:
|
| 1027 |
print("No valid agent identifiers found")
|
| 1028 |
return
|
| 1029 |
+
|
| 1030 |
+
print(f"{'='*80}")
|
| 1031 |
print(f"Starting review metadata mining for {len(identifiers)} agents")
|
| 1032 |
print(f"Time frame: Last {LEADERBOARD_TIME_FRAME_DAYS} days")
|
| 1033 |
+
print(f"Data source: DuckDB + Local GHArchive (SINGLE QUERY)")
|
| 1034 |
+
print(f"{'='*80}")
|
| 1035 |
+
|
| 1036 |
+
# Initialize DuckDB connection
|
| 1037 |
try:
|
| 1038 |
+
conn = get_duckdb_connection()
|
| 1039 |
except Exception as e:
|
| 1040 |
+
print(f"Failed to initialize DuckDB connection: {str(e)}")
|
| 1041 |
return
|
| 1042 |
+
|
| 1043 |
# Define time range: past LEADERBOARD_TIME_FRAME_DAYS (excluding today)
|
| 1044 |
current_time = datetime.now(timezone.utc)
|
| 1045 |
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
|
| 1046 |
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
|
| 1047 |
+
|
| 1048 |
try:
|
| 1049 |
+
# Use single query for all agents
|
| 1050 |
+
all_metadata = fetch_all_pr_metadata_single_query(
|
| 1051 |
+
conn, identifiers, start_date, end_date
|
|
|
|
| 1052 |
)
|
| 1053 |
|
| 1054 |
# Calculate summary statistics
|
|
|
|
| 1056 |
agents_with_data = sum(1 for metadata_list in all_metadata.values() if metadata_list)
|
| 1057 |
|
| 1058 |
print(f"\n{'='*80}")
|
| 1059 |
+
print(f"DuckDB query complete!")
|
| 1060 |
print(f" Total agents: {len(agents)}")
|
| 1061 |
print(f" Agents with data: {agents_with_data}")
|
| 1062 |
print(f" Total PRs found: {total_prs}")
|
| 1063 |
+
print(f"{'='*80}")
|
| 1064 |
|
| 1065 |
except Exception as e:
|
| 1066 |
+
print(f"Error during DuckDB fetch: {str(e)}")
|
| 1067 |
import traceback
|
| 1068 |
traceback.print_exc()
|
| 1069 |
return
|
| 1070 |
+
finally:
|
| 1071 |
+
# Close DuckDB connection
|
| 1072 |
+
conn.close()
|
| 1073 |
+
|
| 1074 |
+
# Batch upload review metadata with time gaps
|
| 1075 |
+
success_count, error_count = batch_upload_review_metadata(all_metadata)
|
| 1076 |
|
| 1077 |
# Construct and save leaderboard data
|
| 1078 |
+
print(f"{'='*80}")
|
| 1079 |
+
print(f"Constructing and saving leaderboard data...")
|
| 1080 |
print(f"{'='*80}\n")
|
| 1081 |
|
| 1082 |
try:
|
|
|
|
| 1084 |
leaderboard_dict = construct_leaderboard_from_metadata()
|
| 1085 |
|
| 1086 |
# Calculate monthly metrics
|
| 1087 |
+
print(f"Calculating monthly metrics...")
|
| 1088 |
monthly_metrics = calculate_monthly_metrics_by_agent()
|
| 1089 |
|
| 1090 |
# Save to HuggingFace
|
| 1091 |
+
print(f"Saving leaderboard data to HuggingFace...")
|
| 1092 |
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
|
| 1093 |
|
| 1094 |
print(f"\n{'='*80}")
|
| 1095 |
+
print(f"ALL TASKS COMPLETE!")
|
| 1096 |
+
print(f" Review metadata: {success_count} files uploaded, {error_count} errors")
|
| 1097 |
print(f" Leaderboard entries: {len(leaderboard_dict)}")
|
| 1098 |
print(f" Monthly data points: {len(monthly_metrics.get('months', []))} months")
|
| 1099 |
print(f" Saved to: {LEADERBOARD_REPO}/swe-review.json")
|
| 1100 |
+
print(f"{'='*80}")
|
| 1101 |
|
| 1102 |
except Exception as e:
|
| 1103 |
+
print(f"Failed to construct/save leaderboard data: {str(e)}")
|
| 1104 |
import traceback
|
| 1105 |
traceback.print_exc()
|
| 1106 |
|
|
|
|
| 1110 |
# =============================================================================
|
| 1111 |
|
| 1112 |
if __name__ == "__main__":
|
| 1113 |
+
mine_all_agents()
|
requirements.txt
CHANGED
|
@@ -1,12 +1,10 @@
|
|
| 1 |
APScheduler
|
| 2 |
backoff
|
| 3 |
-
|
| 4 |
-
db-dtypes
|
| 5 |
-
google-cloud-bigquery
|
| 6 |
gradio
|
| 7 |
gradio_leaderboard
|
| 8 |
huggingface_hub
|
| 9 |
pandas
|
| 10 |
plotly
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 1 |
APScheduler
|
| 2 |
backoff
|
| 3 |
+
duckdb
|
|
|
|
|
|
|
| 4 |
gradio
|
| 5 |
gradio_leaderboard
|
| 6 |
huggingface_hub
|
| 7 |
pandas
|
| 8 |
plotly
|
| 9 |
+
python-dotenv
|
| 10 |
+
requests
|