Spaces:
Sleeping
Sleeping
File size: 27,048 Bytes
3dcd27a 0d6aceb 3dcd27a 73d682a 3dcd27a f1f4f5c 3dcd27a 0d6aceb f1f4f5c 73d682a 0d6aceb 73d682a 3dcd27a 3671a40 f5d00b4 0d6aceb f5d00b4 43cd77a 73d682a f5d00b4 73d682a 0d6aceb f5d00b4 73d682a f5d00b4 3dcd27a dcdb282 f5d00b4 dcdb282 f5d00b4 dcdb282 3d31827 3bf98ae 73d682a f5d00b4 73d682a 324acea 73d682a ddf12d3 73d682a f5d00b4 73d682a 0118014 73d682a f1f4f5c f5d00b4 f1f4f5c 0d6aceb f5d00b4 f1f4f5c 0d6aceb f1f4f5c 0d6aceb 4925ef7 87c2ab6 0d6aceb f1f4f5c c109720 f1f4f5c f5d00b4 f1f4f5c 0d6aceb 4925ef7 87c2ab6 0d6aceb f1f4f5c c109720 f1f4f5c f5d00b4 f1f4f5c 0d6aceb 4925ef7 87c2ab6 0d6aceb f1f4f5c c109720 f1f4f5c f5d00b4 f1f4f5c dd5c0c7 0d6aceb 4925ef7 dd5c0c7 0d6aceb dd5c0c7 c109720 dd5c0c7 f5d00b4 dd5c0c7 0d6aceb 3bf98ae f5d00b4 3bf98ae d34dfc3 3dcd27a f5d00b4 9a4a0ec 0d6aceb 74e2c25 0d6aceb f5d00b4 0d6aceb c1b8cab 0d658c0 0d6aceb 0d658c0 0d6aceb c1b8cab 0d658c0 0d6aceb 0d658c0 c1b8cab f5d00b4 c1b8cab 0d6aceb 3d31827 3dcd27a c0eda81 f5d00b4 c0eda81 3dcd27a f5d00b4 313696f f5d00b4 0fd77fe f5d00b4 0d6aceb 3d31827 0d6aceb c0eda81 0d6aceb 3d31827 f5d00b4 3d31827 f5d00b4 0d6aceb f5d00b4 0d6aceb f5d00b4 0d6aceb f5d00b4 0d6aceb f5d00b4 0d6aceb f5d00b4 c3011cc f5d00b4 d34dfc3 f5d00b4 43cd77a f5d00b4 0d6aceb f5d00b4 3d31827 3dcd27a f5d00b4 3dcd27a f5d00b4 3dcd27a d454e42 f1f4f5c 3dcd27a d454e42 3dcd27a f1f4f5c 3dcd27a d454e42 3dcd27a aa66e07 3d31827 aa66e07 3dcd27a d454e42 3dcd27a 0118014 3dcd27a d454e42 bfe5f98 3dcd27a d454e42 3dcd27a f5d00b4 d454e42 f5d00b4 d454e42 f5d00b4 d454e42 f5d00b4 d454e42 4f8012e f5d00b4 d454e42 4f8012e d454e42 4f8012e d454e42 4f8012e d454e42 4f8012e d454e42 4f8012e d454e42 4f8012e f5d00b4 d454e42 0118014 d454e42 4f8012e 3671a40 d454e42 f5d00b4 d454e42 f1f4f5c d454e42 0d6aceb d454e42 3dcd27a f5d00b4 3dcd27a f5d00b4 3dcd27a f670436 73d682a 0118014 73d682a f670436 73d682a 3dcd27a 0118014 3dcd27a 0d6aceb c0eda81 0118014 c0eda81 0d6aceb f670436 0d6aceb 3d31827 0d6aceb 3d31827 0d6aceb c0eda81 0d6aceb c0eda81 0d6aceb c0eda81 f5d00b4 0d6aceb c0eda81 0fd77fe c0eda81 0d6aceb 3d31827 0d6aceb f670436 d454e42 4f8012e d454e42 0118014 d454e42 3dcd27a 73d682a f5d00b4 73d682a 863c3c0 73d682a 0118014 73d682a 9f10112 73d682a 3dcd27a 73d682a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
import json
import os
import time
from datetime import datetime, timezone, timedelta
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
from dotenv import load_dotenv
import duckdb
import backoff
import requests
import requests.exceptions
from apscheduler.schedulers.blocking import BlockingScheduler
from apscheduler.triggers.cron import CronTrigger
import logging
# Load environment variables
load_dotenv()
# =============================================================================
# CONFIGURATION
# =============================================================================
AGENTS_REPO = "SWE-Arena/bot_metadata"
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata"
LEADERBOARD_TIME_FRAME_DAYS = 180
GHARCHIVE_DATA_DIR = "../gharchive/data"
DUCKDB_CACHE_FILE = "cache.duckdb"
# OPTIMIZED DUCKDB CONFIGURATION
DUCKDB_THREADS = 8
DUCKDB_MEMORY_LIMIT = "64GB"
# Streaming batch configuration
BATCH_SIZE_DAYS = 7 # Process 1 week at a time (~168 hourly files)
# At this size: ~7 days × 24 files × ~100MB per file = ~16GB uncompressed per batch
# Download configuration
DOWNLOAD_WORKERS = 4
DOWNLOAD_RETRY_DELAY = 2
MAX_RETRIES = 5
# Upload configuration
UPLOAD_DELAY_SECONDS = 5
UPLOAD_INITIAL_BACKOFF = 60
UPLOAD_MAX_BACKOFF = 3600
# Scheduler configuration
SCHEDULE_ENABLED = False
SCHEDULE_DAY_OF_MONTH = 22
SCHEDULE_HOUR = 0
SCHEDULE_MINUTE = 0
SCHEDULE_TIMEZONE = 'UTC'
# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================
def load_jsonl(filename):
"""Load JSONL file and return list of dictionaries."""
if not os.path.exists(filename):
return []
data = []
with open(filename, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
try:
data.append(json.loads(line))
except json.JSONDecodeError as e:
print(f"Warning: Skipping invalid JSON line: {e}")
return data
def save_jsonl(filename, data):
"""Save list of dictionaries to JSONL file."""
with open(filename, 'w', encoding='utf-8') as f:
for item in data:
f.write(json.dumps(item) + '\n')
def normalize_date_format(date_string):
"""Convert date strings or datetime objects to standardized ISO 8601 format with Z suffix."""
if not date_string or date_string == 'N/A':
return 'N/A'
try:
import re
if isinstance(date_string, datetime):
return date_string.strftime('%Y-%m-%dT%H:%M:%SZ')
date_string = re.sub(r'\s+', ' ', date_string.strip())
date_string = date_string.replace(' ', 'T')
if len(date_string) >= 3:
if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
date_string = date_string + ':00'
dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
except Exception as e:
print(f"Warning: Could not parse date '{date_string}': {e}")
return date_string
def get_hf_token():
"""Get HuggingFace token from environment variables."""
token = os.getenv('HF_TOKEN')
if not token:
print("Warning: HF_TOKEN not found in environment variables")
return token
# =============================================================================
# GHARCHIVE DOWNLOAD FUNCTIONS
# =============================================================================
def download_file(url):
"""Download a GHArchive file with retry logic."""
filename = url.split("/")[-1]
filepath = os.path.join(GHARCHIVE_DATA_DIR, filename)
if os.path.exists(filepath):
return True
for attempt in range(MAX_RETRIES):
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
with open(filepath, "wb") as f:
f.write(response.content)
return True
except Exception as e:
wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
print(f" ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
time.sleep(wait_time)
return False
def download_all_gharchive_data():
"""Download all GHArchive data files for the last LEADERBOARD_TIME_FRAME_DAYS."""
os.makedirs(GHARCHIVE_DATA_DIR, exist_ok=True)
end_date = datetime.now()
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
urls = []
current_date = start_date
while current_date <= end_date:
date_str = current_date.strftime("%Y-%m-%d")
for hour in range(24):
url = f"https://data.gharchive.org/{date_str}-{hour}.json.gz"
urls.append(url)
current_date += timedelta(days=1)
downloads_processed = 0
try:
with ThreadPoolExecutor(max_workers=DOWNLOAD_WORKERS) as executor:
futures = [executor.submit(download_file, url) for url in urls]
for future in as_completed(futures):
downloads_processed += 1
print(f"Download complete: {downloads_processed} files")
return True
except Exception as e:
print(f"Error during download: {str(e)}")
import traceback
traceback.print_exc()
return False
# =============================================================================
# HUGGINGFACE API WRAPPERS
# =============================================================================
def is_retryable_error(e):
"""Check if exception is retryable (rate limit or timeout error)."""
if isinstance(e, HfHubHTTPError):
if e.response.status_code == 429:
return True
if isinstance(e, (requests.exceptions.Timeout,
requests.exceptions.ReadTimeout,
requests.exceptions.ConnectTimeout)):
return True
if isinstance(e, Exception):
error_str = str(e).lower()
if 'timeout' in error_str or 'timed out' in error_str:
return True
return False
@backoff.on_exception(
backoff.expo,
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_retryable_error(e),
on_backoff=lambda details: print(
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def list_repo_files_with_backoff(api, **kwargs):
"""Wrapper for api.list_repo_files() with exponential backoff."""
return api.list_repo_files(**kwargs)
@backoff.on_exception(
backoff.expo,
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_retryable_error(e),
on_backoff=lambda details: print(
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def hf_hub_download_with_backoff(**kwargs):
"""Wrapper for hf_hub_download() with exponential backoff."""
return hf_hub_download(**kwargs)
@backoff.on_exception(
backoff.expo,
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_retryable_error(e),
on_backoff=lambda details: print(
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def upload_file_with_backoff(api, **kwargs):
"""Wrapper for api.upload_file() with exponential backoff."""
return api.upload_file(**kwargs)
@backoff.on_exception(
backoff.expo,
(HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
max_tries=MAX_RETRIES,
base=300,
max_value=3600,
giveup=lambda e: not is_retryable_error(e),
on_backoff=lambda details: print(
f" {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
)
)
def upload_folder_with_backoff(api, **kwargs):
"""Wrapper for api.upload_folder() with exponential backoff."""
return api.upload_folder(**kwargs)
def get_duckdb_connection():
"""
Initialize DuckDB connection with OPTIMIZED memory settings.
Uses persistent database and reduced memory footprint.
"""
conn = duckdb.connect(DUCKDB_CACHE_FILE)
# OPTIMIZED SETTINGS
conn.execute(f"SET threads TO {DUCKDB_THREADS};")
conn.execute("SET preserve_insertion_order = false;")
conn.execute("SET enable_object_cache = true;")
conn.execute("SET temp_directory = '/tmp/duckdb_temp';")
conn.execute(f"SET memory_limit = '{DUCKDB_MEMORY_LIMIT}';")
conn.execute(f"SET max_memory = '{DUCKDB_MEMORY_LIMIT}';")
return conn
def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_DIR):
"""Generate file path patterns for GHArchive data in date range (only existing files)."""
file_patterns = []
missing_dates = set()
current_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
while current_date <= end_day:
date_has_files = False
for hour in range(24):
pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-{hour}.json.gz")
if os.path.exists(pattern):
file_patterns.append(pattern)
date_has_files = True
if not date_has_files:
missing_dates.add(current_date.strftime('%Y-%m-%d'))
current_date += timedelta(days=1)
if missing_dates:
print(f" ⚠ Skipping {len(missing_dates)} date(s) with no data")
return file_patterns
# =============================================================================
# STREAMING BATCH PROCESSING FOR REVIEW METADATA
# =============================================================================
def fetch_all_review_metadata_streaming(conn, identifiers, start_date, end_date):
"""
OPTIMIZED: Fetch review metadata using streaming batch processing.
Processes GHArchive files in BATCH_SIZE_DAYS chunks to limit memory usage.
Instead of loading 180 days (4,344 files) at once, processes 7 days at a time.
This prevents OOM errors by:
1. Only keeping ~168 hourly files in memory per batch (vs 4,344)
2. Incrementally building the results dictionary
3. Allowing DuckDB to garbage collect after each batch
Args:
conn: DuckDB connection instance
identifiers: List of GitHub usernames/bot identifiers
start_date: Start datetime (timezone-aware)
end_date: End datetime (timezone-aware)
Returns:
Dictionary mapping agent identifier to list of review metadata
"""
identifier_list = ', '.join([f"'{id}'" for id in identifiers])
metadata_by_agent = defaultdict(list)
# Calculate total batches
total_days = (end_date - start_date).days
total_batches = (total_days // BATCH_SIZE_DAYS) + 1
# Process in configurable batches
current_date = start_date
batch_num = 0
total_reviews = 0
print(f" Streaming {total_batches} batches of {BATCH_SIZE_DAYS}-day intervals...")
while current_date <= end_date:
batch_num += 1
batch_end = min(current_date + timedelta(days=BATCH_SIZE_DAYS - 1), end_date)
# Get file patterns for THIS BATCH ONLY
file_patterns = generate_file_path_patterns(current_date, batch_end)
if not file_patterns:
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} - NO DATA")
current_date = batch_end + timedelta(days=1)
continue
# Progress indicator
print(f" Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} ({len(file_patterns)} files)... ", end="", flush=True)
# Build file patterns SQL for THIS BATCH
file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']'
# SIMPLIFIED query for review metadata
# Focuses on PullRequestReviewEvent and tracks PR status
query = f"""
WITH review_events AS (
SELECT
payload.pull_request.html_url as pr_url,
actor.login as reviewer,
COALESCE(payload.review.submitted_at, created_at) as reviewed_at
FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
WHERE
type = 'PullRequestReviewEvent'
AND payload.pull_request.html_url IS NOT NULL
AND actor.login IN ({identifier_list})
),
pr_status AS (
SELECT
payload.pull_request.html_url as pr_url,
payload.pull_request.merged as is_merged,
payload.pull_request.merged_at as merged_at,
payload.pull_request.closed_at as closed_at,
ROW_NUMBER() OVER (PARTITION BY payload.pull_request.html_url ORDER BY created_at DESC) as rn
FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
WHERE
type = 'PullRequestEvent'
AND payload.action = 'closed'
AND payload.pull_request.html_url IS NOT NULL
AND payload.pull_request.html_url IN (SELECT DISTINCT pr_url FROM review_events)
)
SELECT
re.reviewer,
re.pr_url as url,
re.reviewed_at,
ps.merged_at,
ps.closed_at
FROM review_events re
LEFT JOIN (SELECT * FROM pr_status WHERE rn = 1) ps ON re.pr_url = ps.pr_url
ORDER BY re.reviewer, re.reviewed_at DESC
"""
try:
results = conn.execute(query).fetchall()
batch_reviews = 0
# Add results to accumulating dictionary
for row in results:
reviewer = row[0]
url = row[1]
reviewed_at = normalize_date_format(row[2]) if row[2] else None
merged_at = normalize_date_format(row[3]) if row[3] else None
closed_at = normalize_date_format(row[4]) if row[4] else None
if not url or not reviewed_at:
continue
review_metadata = {
'url': url,
'reviewed_at': reviewed_at,
'merged_at': merged_at,
'closed_at': closed_at,
}
metadata_by_agent[reviewer].append(review_metadata)
batch_reviews += 1
total_reviews += 1
print(f"✓ {batch_reviews} reviews found")
except Exception as e:
print(f"\n ✗ Batch {batch_num} error: {str(e)}")
import traceback
traceback.print_exc()
# Move to next batch
current_date = batch_end + timedelta(days=1)
# Final summary
agents_with_data = sum(1 for reviews in metadata_by_agent.values() if reviews)
print(f"\n ✓ Complete: {total_reviews} reviews found for {agents_with_data}/{len(identifiers)} agents")
return dict(metadata_by_agent)
# =============================================================================
# HUGGINGFACE STORAGE FUNCTIONS
# =============================================================================
def load_agents_from_hf():
"""Load all agent metadata JSON files from HuggingFace dataset."""
try:
api = HfApi()
agents = []
files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
json_files = [f for f in files if f.endswith('.json')]
for json_file in json_files:
try:
file_path = hf_hub_download_with_backoff(
repo_id=AGENTS_REPO,
filename=json_file,
repo_type="dataset"
)
with open(file_path, 'r') as f:
agent_data = json.load(f)
if agent_data.get('status') != 'public':
continue
github_identifier = json_file.replace('.json', '')
agent_data['github_identifier'] = github_identifier
agents.append(agent_data)
except Exception as e:
print(f"Error loading {json_file}: {str(e)}")
continue
print(f"Download complete: {len(agents)} agents")
return agents
except Exception as e:
print(f"Could not load agents from HuggingFace: {str(e)}")
return []
# =============================================================================
# STATISTICS CALCULATION
# =============================================================================
def get_pr_status_from_metadata(review_meta):
"""Derive PR status from merged_at and closed_at fields."""
merged_at = review_meta.get('merged_at')
closed_at = review_meta.get('closed_at')
if merged_at:
return 'merged'
elif closed_at:
return 'closed'
else:
return 'open'
def calculate_review_stats_from_metadata(metadata_list):
"""Calculate statistics from a list of review metadata."""
total_reviews = len(metadata_list)
merged_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'merged')
rejected_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'closed')
pending_prs = sum(1 for review_meta in metadata_list
if get_pr_status_from_metadata(review_meta) == 'open')
# Calculate acceptance rate (exclude pending PRs)
completed_prs = merged_prs + rejected_prs
acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0
return {
'total_reviews': total_reviews,
'merged_prs': merged_prs,
'pending_prs': pending_prs,
'acceptance_rate': round(acceptance_rate, 2),
}
def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
"""Calculate monthly metrics for all agents for visualization."""
identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}
if not all_metadata_dict:
return {'agents': [], 'months': [], 'data': {}}
agent_month_data = defaultdict(lambda: defaultdict(list))
for agent_identifier, metadata_list in all_metadata_dict.items():
for review_meta in metadata_list:
reviewed_at = review_meta.get('reviewed_at')
if not reviewed_at:
continue
agent_name = identifier_to_name.get(agent_identifier, agent_identifier)
try:
dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
month_key = f"{dt.year}-{dt.month:02d}"
agent_month_data[agent_name][month_key].append(review_meta)
except Exception as e:
print(f"Warning: Could not parse date '{reviewed_at}': {e}")
continue
all_months = set()
for agent_data in agent_month_data.values():
all_months.update(agent_data.keys())
months = sorted(list(all_months))
result_data = {}
for agent_name, month_dict in agent_month_data.items():
acceptance_rates = []
total_reviews_list = []
merged_prs_list = []
for month in months:
reviews_in_month = month_dict.get(month, [])
merged_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'merged')
rejected_count = sum(1 for review in reviews_in_month
if get_pr_status_from_metadata(review) == 'closed')
total_count = len(reviews_in_month)
completed_count = merged_count + rejected_count
acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None
acceptance_rates.append(acceptance_rate)
total_reviews_list.append(total_count)
merged_prs_list.append(merged_count)
result_data[agent_name] = {
'acceptance_rates': acceptance_rates,
'total_reviews': total_reviews_list,
'merged_prs': merged_prs_list,
}
agents_list = sorted(list(agent_month_data.keys()))
return {
'agents': agents_list,
'months': months,
'data': result_data
}
def construct_leaderboard_from_metadata(all_metadata_dict, agents):
"""Construct leaderboard from in-memory review metadata."""
if not agents:
print("Error: No agents found")
return {}
cache_dict = {}
for agent in agents:
identifier = agent.get('github_identifier')
agent_name = agent.get('name', 'Unknown')
bot_metadata = all_metadata_dict.get(identifier, [])
stats = calculate_review_stats_from_metadata(bot_metadata)
cache_dict[identifier] = {
'name': agent_name,
'website': agent.get('website', 'N/A'),
'github_identifier': identifier,
**stats
}
return cache_dict
def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
"""Save leaderboard data and monthly metrics to HuggingFace dataset."""
try:
token = get_hf_token()
if not token:
raise Exception("No HuggingFace token found")
api = HfApi(token=token)
filename = "swe-review.json"
combined_data = {
'last_updated': datetime.now(timezone.utc).isoformat(),
'leaderboard': leaderboard_dict,
'monthly_metrics': monthly_metrics,
'metadata': {
'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS
}
}
with open(filename, 'w') as f:
json.dump(combined_data, f, indent=2)
try:
upload_file_with_backoff(
api=api,
path_or_fileobj=filename,
path_in_repo=filename,
repo_id=LEADERBOARD_REPO,
repo_type="dataset"
)
return True
finally:
if os.path.exists(filename):
os.remove(filename)
except Exception as e:
print(f"Error saving leaderboard data: {str(e)}")
import traceback
traceback.print_exc()
return False
# =============================================================================
# MINING FUNCTION
# =============================================================================
def mine_all_agents():
"""
Mine review metadata for all agents using STREAMING batch processing.
Downloads GHArchive data, then uses BATCH-based DuckDB queries.
"""
print(f"\n[1/4] Downloading GHArchive data...")
if not download_all_gharchive_data():
print("Warning: Download had errors, continuing with available data...")
print(f"\n[2/4] Loading agent metadata...")
agents = load_agents_from_hf()
if not agents:
print("Error: No agents found")
return
identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
if not identifiers:
print("Error: No valid agent identifiers found")
return
print(f"\n[3/4] Mining review metadata ({len(identifiers)} agents, {LEADERBOARD_TIME_FRAME_DAYS} days)...")
try:
conn = get_duckdb_connection()
except Exception as e:
print(f"Failed to initialize DuckDB connection: {str(e)}")
return
current_time = datetime.now(timezone.utc)
end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)
try:
# USE STREAMING FUNCTION
all_metadata = fetch_all_review_metadata_streaming(
conn, identifiers, start_date, end_date
)
except Exception as e:
print(f"Error during DuckDB fetch: {str(e)}")
import traceback
traceback.print_exc()
return
finally:
conn.close()
print(f"\n[4/4] Saving leaderboard...")
try:
leaderboard_dict = construct_leaderboard_from_metadata(all_metadata, agents)
monthly_metrics = calculate_monthly_metrics_by_agent(all_metadata, agents)
save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)
except Exception as e:
print(f"Error saving leaderboard: {str(e)}")
import traceback
traceback.print_exc()
# =============================================================================
# SCHEDULER SETUP
# =============================================================================
def setup_scheduler():
"""Set up APScheduler to run mining jobs periodically."""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logging.getLogger('httpx').setLevel(logging.WARNING)
scheduler = BlockingScheduler(timezone=SCHEDULE_TIMEZONE)
trigger = CronTrigger(
day=SCHEDULE_DAY_OF_MONTH,
hour=SCHEDULE_HOUR,
minute=SCHEDULE_MINUTE,
timezone=SCHEDULE_TIMEZONE
)
scheduler.add_job(
mine_all_agents,
trigger=trigger,
id='mine_all_agents',
name='Mine GHArchive data for all agents',
replace_existing=True
)
from datetime import datetime
next_run = trigger.get_next_fire_time(None, datetime.now(trigger.timezone))
print(f"Scheduler: Monthly on day {SCHEDULE_DAY_OF_MONTH} at {SCHEDULE_HOUR:02d}:{SCHEDULE_MINUTE:02d} {SCHEDULE_TIMEZONE}")
print(f"Next run: {next_run}\n")
print(f"\nScheduler started")
scheduler.start()
# =============================================================================
# ENTRY POINT
# =============================================================================
if __name__ == "__main__":
if SCHEDULE_ENABLED:
setup_scheduler()
else:
mine_all_agents()
|