File size: 27,048 Bytes
3dcd27a
 
0d6aceb
3dcd27a
 
73d682a
3dcd27a
f1f4f5c
3dcd27a
0d6aceb
f1f4f5c
73d682a
0d6aceb
73d682a
 
 
3dcd27a
 
 
 
 
 
 
 
3671a40
f5d00b4
 
 
 
0d6aceb
f5d00b4
 
 
 
 
 
 
43cd77a
73d682a
f5d00b4
 
 
73d682a
0d6aceb
f5d00b4
 
 
73d682a
 
f5d00b4
 
 
 
 
3dcd27a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcdb282
f5d00b4
dcdb282
 
 
 
 
 
f5d00b4
 
 
 
dcdb282
 
 
 
 
 
 
 
 
 
 
 
 
3d31827
 
 
 
 
 
3bf98ae
 
73d682a
 
 
 
 
f5d00b4
73d682a
 
 
 
 
 
 
 
 
 
 
 
 
324acea
73d682a
ddf12d3
 
 
73d682a
 
 
 
 
f5d00b4
73d682a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0118014
73d682a
 
 
 
 
 
 
 
 
f1f4f5c
f5d00b4
f1f4f5c
 
0d6aceb
f5d00b4
f1f4f5c
0d6aceb
 
 
 
 
 
 
 
 
 
 
 
 
f1f4f5c
 
 
 
 
0d6aceb
4925ef7
87c2ab6
 
0d6aceb
f1f4f5c
c109720
f1f4f5c
 
 
f5d00b4
f1f4f5c
 
 
 
 
0d6aceb
4925ef7
87c2ab6
 
0d6aceb
f1f4f5c
c109720
f1f4f5c
 
 
f5d00b4
f1f4f5c
 
 
 
 
0d6aceb
4925ef7
87c2ab6
 
0d6aceb
f1f4f5c
c109720
f1f4f5c
 
 
f5d00b4
f1f4f5c
 
 
dd5c0c7
 
0d6aceb
4925ef7
dd5c0c7
 
0d6aceb
dd5c0c7
c109720
dd5c0c7
 
 
f5d00b4
dd5c0c7
 
 
0d6aceb
3bf98ae
f5d00b4
 
3bf98ae
d34dfc3
3dcd27a
f5d00b4
 
 
 
 
 
 
9a4a0ec
0d6aceb
74e2c25
 
0d6aceb
f5d00b4
0d6aceb
c1b8cab
0d658c0
0d6aceb
 
0d658c0
0d6aceb
c1b8cab
 
 
 
 
 
 
 
 
0d658c0
0d6aceb
0d658c0
c1b8cab
f5d00b4
c1b8cab
0d6aceb
3d31827
3dcd27a
c0eda81
f5d00b4
c0eda81
3dcd27a
f5d00b4
313696f
f5d00b4
0fd77fe
f5d00b4
 
 
 
 
 
 
0d6aceb
3d31827
0d6aceb
c0eda81
 
 
0d6aceb
3d31827
f5d00b4
3d31827
f5d00b4
 
0d6aceb
f5d00b4
 
 
0d6aceb
f5d00b4
 
 
 
0d6aceb
f5d00b4
0d6aceb
f5d00b4
 
 
0d6aceb
f5d00b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3011cc
f5d00b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34dfc3
f5d00b4
 
 
43cd77a
f5d00b4
0d6aceb
f5d00b4
 
 
 
 
 
 
 
 
 
 
 
 
3d31827
3dcd27a
 
f5d00b4
3dcd27a
 
 
f5d00b4
3dcd27a
 
 
d454e42
f1f4f5c
3dcd27a
d454e42
3dcd27a
 
f1f4f5c
3dcd27a
 
 
 
d454e42
3dcd27a
 
aa66e07
 
 
 
3d31827
 
aa66e07
3dcd27a
d454e42
3dcd27a
0118014
3dcd27a
d454e42
bfe5f98
3dcd27a
d454e42
3dcd27a
 
 
 
 
f5d00b4
 
 
d454e42
f5d00b4
 
d454e42
 
 
 
 
 
 
 
 
 
 
 
f5d00b4
d454e42
 
 
f5d00b4
d454e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f8012e
f5d00b4
d454e42
 
4f8012e
d454e42
 
 
 
4f8012e
 
 
d454e42
4f8012e
 
d454e42
4f8012e
d454e42
4f8012e
 
 
 
 
 
 
d454e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f8012e
f5d00b4
d454e42
0118014
d454e42
 
 
 
 
 
 
 
4f8012e
3671a40
d454e42
 
 
 
 
 
 
 
 
 
 
 
f5d00b4
d454e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f4f5c
 
d454e42
 
 
 
 
 
 
 
 
 
 
0d6aceb
d454e42
 
 
 
 
3dcd27a
f5d00b4
3dcd27a
 
 
 
f5d00b4
 
3dcd27a
f670436
73d682a
 
0118014
73d682a
f670436
73d682a
3dcd27a
 
0118014
3dcd27a
0d6aceb
c0eda81
 
0118014
c0eda81
0d6aceb
f670436
0d6aceb
3d31827
0d6aceb
3d31827
0d6aceb
c0eda81
0d6aceb
c0eda81
 
 
0d6aceb
c0eda81
f5d00b4
 
0d6aceb
c0eda81
0fd77fe
c0eda81
0d6aceb
3d31827
 
 
0d6aceb
 
 
f670436
d454e42
 
4f8012e
 
d454e42
 
 
0118014
d454e42
 
 
3dcd27a
73d682a
 
 
 
 
f5d00b4
73d682a
 
 
 
 
863c3c0
 
73d682a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0118014
 
 
 
73d682a
9f10112
 
73d682a
 
3dcd27a
 
 
 
 
73d682a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
import json
import os
import time
from datetime import datetime, timezone, timedelta
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.errors import HfHubHTTPError
from dotenv import load_dotenv
import duckdb
import backoff
import requests
import requests.exceptions
from apscheduler.schedulers.blocking import BlockingScheduler
from apscheduler.triggers.cron import CronTrigger
import logging

# Load environment variables
load_dotenv()

# =============================================================================
# CONFIGURATION
# =============================================================================

AGENTS_REPO = "SWE-Arena/bot_metadata"
LEADERBOARD_REPO = "SWE-Arena/leaderboard_metadata"
LEADERBOARD_TIME_FRAME_DAYS = 180
GHARCHIVE_DATA_DIR = "../gharchive/data"
DUCKDB_CACHE_FILE = "cache.duckdb"

# OPTIMIZED DUCKDB CONFIGURATION
DUCKDB_THREADS = 8
DUCKDB_MEMORY_LIMIT = "64GB"

# Streaming batch configuration
BATCH_SIZE_DAYS = 7  # Process 1 week at a time (~168 hourly files)
# At this size: ~7 days × 24 files × ~100MB per file = ~16GB uncompressed per batch

# Download configuration
DOWNLOAD_WORKERS = 4
DOWNLOAD_RETRY_DELAY = 2
MAX_RETRIES = 5

# Upload configuration
UPLOAD_DELAY_SECONDS = 5
UPLOAD_INITIAL_BACKOFF = 60
UPLOAD_MAX_BACKOFF = 3600

# Scheduler configuration
SCHEDULE_ENABLED = False
SCHEDULE_DAY_OF_MONTH = 22
SCHEDULE_HOUR = 0
SCHEDULE_MINUTE = 0
SCHEDULE_TIMEZONE = 'UTC'

# =============================================================================
# UTILITY FUNCTIONS
# =============================================================================

def load_jsonl(filename):
    """Load JSONL file and return list of dictionaries."""
    if not os.path.exists(filename):
        return []

    data = []
    with open(filename, 'r', encoding='utf-8') as f:
        for line in f:
            line = line.strip()
            if line:
                try:
                    data.append(json.loads(line))
                except json.JSONDecodeError as e:
                    print(f"Warning: Skipping invalid JSON line: {e}")
    return data


def save_jsonl(filename, data):
    """Save list of dictionaries to JSONL file."""
    with open(filename, 'w', encoding='utf-8') as f:
        for item in data:
            f.write(json.dumps(item) + '\n')


def normalize_date_format(date_string):
    """Convert date strings or datetime objects to standardized ISO 8601 format with Z suffix."""
    if not date_string or date_string == 'N/A':
        return 'N/A'

    try:
        import re

        if isinstance(date_string, datetime):
            return date_string.strftime('%Y-%m-%dT%H:%M:%SZ')

        date_string = re.sub(r'\s+', ' ', date_string.strip())
        date_string = date_string.replace(' ', 'T')

        if len(date_string) >= 3:
            if date_string[-3:-2] in ('+', '-') and ':' not in date_string[-3:]:
                date_string = date_string + ':00'

        dt = datetime.fromisoformat(date_string.replace('Z', '+00:00'))
        return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
    except Exception as e:
        print(f"Warning: Could not parse date '{date_string}': {e}")
        return date_string


def get_hf_token():
    """Get HuggingFace token from environment variables."""
    token = os.getenv('HF_TOKEN')
    if not token:
        print("Warning: HF_TOKEN not found in environment variables")
    return token


# =============================================================================
# GHARCHIVE DOWNLOAD FUNCTIONS
# =============================================================================

def download_file(url):
    """Download a GHArchive file with retry logic."""
    filename = url.split("/")[-1]
    filepath = os.path.join(GHARCHIVE_DATA_DIR, filename)

    if os.path.exists(filepath):
        return True

    for attempt in range(MAX_RETRIES):
        try:
            response = requests.get(url, timeout=30)
            response.raise_for_status()
            with open(filepath, "wb") as f:
                f.write(response.content)
            return True
        
        except Exception as e:
            wait_time = DOWNLOAD_RETRY_DELAY * (2 ** attempt)
            print(f"   ⚠ {filename}: {e}, retrying in {wait_time}s (attempt {attempt + 1}/{MAX_RETRIES})")
            time.sleep(wait_time)

    return False


def download_all_gharchive_data():
    """Download all GHArchive data files for the last LEADERBOARD_TIME_FRAME_DAYS."""
    os.makedirs(GHARCHIVE_DATA_DIR, exist_ok=True)

    end_date = datetime.now()
    start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)

    urls = []
    current_date = start_date
    while current_date <= end_date:
        date_str = current_date.strftime("%Y-%m-%d")
        for hour in range(24):
            url = f"https://data.gharchive.org/{date_str}-{hour}.json.gz"
            urls.append(url)
        current_date += timedelta(days=1)

    downloads_processed = 0

    try:
        with ThreadPoolExecutor(max_workers=DOWNLOAD_WORKERS) as executor:
            futures = [executor.submit(download_file, url) for url in urls]
            for future in as_completed(futures):
                downloads_processed += 1

        print(f"Download complete: {downloads_processed} files")
        return True

    except Exception as e:
        print(f"Error during download: {str(e)}")
        import traceback
        traceback.print_exc()
        return False


# =============================================================================
# HUGGINGFACE API WRAPPERS
# =============================================================================

def is_retryable_error(e):
    """Check if exception is retryable (rate limit or timeout error)."""
    if isinstance(e, HfHubHTTPError):
        if e.response.status_code == 429:
            return True

    if isinstance(e, (requests.exceptions.Timeout,
                     requests.exceptions.ReadTimeout,
                     requests.exceptions.ConnectTimeout)):
        return True

    if isinstance(e, Exception):
        error_str = str(e).lower()
        if 'timeout' in error_str or 'timed out' in error_str:
            return True

    return False


@backoff.on_exception(
    backoff.expo,
    (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
    max_tries=MAX_RETRIES,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_retryable_error(e),
    on_backoff=lambda details: print(
        f"   {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
    )
)
def list_repo_files_with_backoff(api, **kwargs):
    """Wrapper for api.list_repo_files() with exponential backoff."""
    return api.list_repo_files(**kwargs)


@backoff.on_exception(
    backoff.expo,
    (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
    max_tries=MAX_RETRIES,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_retryable_error(e),
    on_backoff=lambda details: print(
        f"   {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
    )
)
def hf_hub_download_with_backoff(**kwargs):
    """Wrapper for hf_hub_download() with exponential backoff."""
    return hf_hub_download(**kwargs)


@backoff.on_exception(
    backoff.expo,
    (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
    max_tries=MAX_RETRIES,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_retryable_error(e),
    on_backoff=lambda details: print(
        f"   {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
    )
)
def upload_file_with_backoff(api, **kwargs):
    """Wrapper for api.upload_file() with exponential backoff."""
    return api.upload_file(**kwargs)


@backoff.on_exception(
    backoff.expo,
    (HfHubHTTPError, requests.exceptions.Timeout, requests.exceptions.RequestException, Exception),
    max_tries=MAX_RETRIES,
    base=300,
    max_value=3600,
    giveup=lambda e: not is_retryable_error(e),
    on_backoff=lambda details: print(
        f"   {details['exception']} error. Retrying in {details['wait']/60:.1f} minutes ({details['wait']:.0f}s) - attempt {details['tries']}/5..."
    )
)
def upload_folder_with_backoff(api, **kwargs):
    """Wrapper for api.upload_folder() with exponential backoff."""
    return api.upload_folder(**kwargs)


def get_duckdb_connection():
    """
    Initialize DuckDB connection with OPTIMIZED memory settings.
    Uses persistent database and reduced memory footprint.
    """
    conn = duckdb.connect(DUCKDB_CACHE_FILE)

    # OPTIMIZED SETTINGS
    conn.execute(f"SET threads TO {DUCKDB_THREADS};")
    conn.execute("SET preserve_insertion_order = false;")
    conn.execute("SET enable_object_cache = true;")
    conn.execute("SET temp_directory = '/tmp/duckdb_temp';")
    conn.execute(f"SET memory_limit = '{DUCKDB_MEMORY_LIMIT}';")
    conn.execute(f"SET max_memory = '{DUCKDB_MEMORY_LIMIT}';")

    return conn


def generate_file_path_patterns(start_date, end_date, data_dir=GHARCHIVE_DATA_DIR):
    """Generate file path patterns for GHArchive data in date range (only existing files)."""
    file_patterns = []
    missing_dates = set()

    current_date = start_date.replace(hour=0, minute=0, second=0, microsecond=0)
    end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)

    while current_date <= end_day:
        date_has_files = False
        for hour in range(24):
            pattern = os.path.join(data_dir, f"{current_date.strftime('%Y-%m-%d')}-{hour}.json.gz")
            if os.path.exists(pattern):
                file_patterns.append(pattern)
                date_has_files = True

        if not date_has_files:
            missing_dates.add(current_date.strftime('%Y-%m-%d'))

        current_date += timedelta(days=1)

    if missing_dates:
        print(f"   ⚠ Skipping {len(missing_dates)} date(s) with no data")

    return file_patterns


# =============================================================================
# STREAMING BATCH PROCESSING FOR REVIEW METADATA
# =============================================================================

def fetch_all_review_metadata_streaming(conn, identifiers, start_date, end_date):
    """
    OPTIMIZED: Fetch review metadata using streaming batch processing.

    Processes GHArchive files in BATCH_SIZE_DAYS chunks to limit memory usage.
    Instead of loading 180 days (4,344 files) at once, processes 7 days at a time.

    This prevents OOM errors by:
    1. Only keeping ~168 hourly files in memory per batch (vs 4,344)
    2. Incrementally building the results dictionary
    3. Allowing DuckDB to garbage collect after each batch

    Args:
        conn: DuckDB connection instance
        identifiers: List of GitHub usernames/bot identifiers
        start_date: Start datetime (timezone-aware)
        end_date: End datetime (timezone-aware)

    Returns:
        Dictionary mapping agent identifier to list of review metadata
    """
    identifier_list = ', '.join([f"'{id}'" for id in identifiers])
    metadata_by_agent = defaultdict(list)

    # Calculate total batches
    total_days = (end_date - start_date).days
    total_batches = (total_days // BATCH_SIZE_DAYS) + 1

    # Process in configurable batches
    current_date = start_date
    batch_num = 0
    total_reviews = 0

    print(f"   Streaming {total_batches} batches of {BATCH_SIZE_DAYS}-day intervals...")

    while current_date <= end_date:
        batch_num += 1
        batch_end = min(current_date + timedelta(days=BATCH_SIZE_DAYS - 1), end_date)

        # Get file patterns for THIS BATCH ONLY
        file_patterns = generate_file_path_patterns(current_date, batch_end)

        if not file_patterns:
            print(f"   Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} - NO DATA")
            current_date = batch_end + timedelta(days=1)
            continue

        # Progress indicator
        print(f"   Batch {batch_num}/{total_batches}: {current_date.date()} to {batch_end.date()} ({len(file_patterns)} files)... ", end="", flush=True)

        # Build file patterns SQL for THIS BATCH
        file_patterns_sql = '[' + ', '.join([f"'{fp}'" for fp in file_patterns]) + ']'

        # SIMPLIFIED query for review metadata
        # Focuses on PullRequestReviewEvent and tracks PR status
        query = f"""
        WITH review_events AS (
            SELECT
                payload.pull_request.html_url as pr_url,
                actor.login as reviewer,
                COALESCE(payload.review.submitted_at, created_at) as reviewed_at
            FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
            WHERE
                type = 'PullRequestReviewEvent'
                AND payload.pull_request.html_url IS NOT NULL
                AND actor.login IN ({identifier_list})
        ),
        pr_status AS (
            SELECT
                payload.pull_request.html_url as pr_url,
                payload.pull_request.merged as is_merged,
                payload.pull_request.merged_at as merged_at,
                payload.pull_request.closed_at as closed_at,
                ROW_NUMBER() OVER (PARTITION BY payload.pull_request.html_url ORDER BY created_at DESC) as rn
            FROM read_json({file_patterns_sql}, union_by_name=true, filename=true, compression='gzip', format='newline_delimited', ignore_errors=true, maximum_object_size=2147483648)
            WHERE
                type = 'PullRequestEvent'
                AND payload.action = 'closed'
                AND payload.pull_request.html_url IS NOT NULL
                AND payload.pull_request.html_url IN (SELECT DISTINCT pr_url FROM review_events)
        )
        SELECT
            re.reviewer,
            re.pr_url as url,
            re.reviewed_at,
            ps.merged_at,
            ps.closed_at
        FROM review_events re
        LEFT JOIN (SELECT * FROM pr_status WHERE rn = 1) ps ON re.pr_url = ps.pr_url
        ORDER BY re.reviewer, re.reviewed_at DESC
        """

        try:
            results = conn.execute(query).fetchall()
            batch_reviews = 0

            # Add results to accumulating dictionary
            for row in results:
                reviewer = row[0]
                url = row[1]
                reviewed_at = normalize_date_format(row[2]) if row[2] else None
                merged_at = normalize_date_format(row[3]) if row[3] else None
                closed_at = normalize_date_format(row[4]) if row[4] else None

                if not url or not reviewed_at:
                    continue

                review_metadata = {
                    'url': url,
                    'reviewed_at': reviewed_at,
                    'merged_at': merged_at,
                    'closed_at': closed_at,
                }

                metadata_by_agent[reviewer].append(review_metadata)
                batch_reviews += 1
                total_reviews += 1

            print(f"✓ {batch_reviews} reviews found")

        except Exception as e:
            print(f"\n   ✗ Batch {batch_num} error: {str(e)}")
            import traceback
            traceback.print_exc()

        # Move to next batch
        current_date = batch_end + timedelta(days=1)

    # Final summary
    agents_with_data = sum(1 for reviews in metadata_by_agent.values() if reviews)
    print(f"\n   ✓ Complete: {total_reviews} reviews found for {agents_with_data}/{len(identifiers)} agents")

    return dict(metadata_by_agent)


# =============================================================================
# HUGGINGFACE STORAGE FUNCTIONS
# =============================================================================

def load_agents_from_hf():
    """Load all agent metadata JSON files from HuggingFace dataset."""
    try:
        api = HfApi()
        agents = []

        files = list_repo_files_with_backoff(api=api, repo_id=AGENTS_REPO, repo_type="dataset")
        json_files = [f for f in files if f.endswith('.json')]

        for json_file in json_files:
            try:
                file_path = hf_hub_download_with_backoff(
                    repo_id=AGENTS_REPO,
                    filename=json_file,
                    repo_type="dataset"
                )

                with open(file_path, 'r') as f:
                    agent_data = json.load(f)

                    if agent_data.get('status') != 'public':
                        continue

                    github_identifier = json_file.replace('.json', '')
                    agent_data['github_identifier'] = github_identifier

                    agents.append(agent_data)

            except Exception as e:
                print(f"Error loading {json_file}: {str(e)}")
                continue

        print(f"Download complete: {len(agents)} agents")
        return agents

    except Exception as e:
        print(f"Could not load agents from HuggingFace: {str(e)}")
        return []


# =============================================================================
# STATISTICS CALCULATION
# =============================================================================

def get_pr_status_from_metadata(review_meta):
    """Derive PR status from merged_at and closed_at fields."""
    merged_at = review_meta.get('merged_at')
    closed_at = review_meta.get('closed_at')

    if merged_at:
        return 'merged'
    elif closed_at:
        return 'closed'
    else:
        return 'open'


def calculate_review_stats_from_metadata(metadata_list):
    """Calculate statistics from a list of review metadata."""
    total_reviews = len(metadata_list)

    merged_prs = sum(1 for review_meta in metadata_list
                     if get_pr_status_from_metadata(review_meta) == 'merged')

    rejected_prs = sum(1 for review_meta in metadata_list
                      if get_pr_status_from_metadata(review_meta) == 'closed')

    pending_prs = sum(1 for review_meta in metadata_list
                     if get_pr_status_from_metadata(review_meta) == 'open')

    # Calculate acceptance rate (exclude pending PRs)
    completed_prs = merged_prs + rejected_prs
    acceptance_rate = (merged_prs / completed_prs * 100) if completed_prs > 0 else 0

    return {
        'total_reviews': total_reviews,
        'merged_prs': merged_prs,
        'pending_prs': pending_prs,
        'acceptance_rate': round(acceptance_rate, 2),
    }


def calculate_monthly_metrics_by_agent(all_metadata_dict, agents):
    """Calculate monthly metrics for all agents for visualization."""
    identifier_to_name = {agent.get('github_identifier'): agent.get('name') for agent in agents if agent.get('github_identifier')}

    if not all_metadata_dict:
        return {'agents': [], 'months': [], 'data': {}}

    agent_month_data = defaultdict(lambda: defaultdict(list))

    for agent_identifier, metadata_list in all_metadata_dict.items():
        for review_meta in metadata_list:
            reviewed_at = review_meta.get('reviewed_at')

            if not reviewed_at:
                continue

            agent_name = identifier_to_name.get(agent_identifier, agent_identifier)

            try:
                dt = datetime.fromisoformat(reviewed_at.replace('Z', '+00:00'))
                month_key = f"{dt.year}-{dt.month:02d}"
                agent_month_data[agent_name][month_key].append(review_meta)
            except Exception as e:
                print(f"Warning: Could not parse date '{reviewed_at}': {e}")
                continue

    all_months = set()
    for agent_data in agent_month_data.values():
        all_months.update(agent_data.keys())
    months = sorted(list(all_months))

    result_data = {}
    for agent_name, month_dict in agent_month_data.items():
        acceptance_rates = []
        total_reviews_list = []
        merged_prs_list = []

        for month in months:
            reviews_in_month = month_dict.get(month, [])

            merged_count = sum(1 for review in reviews_in_month
                                if get_pr_status_from_metadata(review) == 'merged')

            rejected_count = sum(1 for review in reviews_in_month
                                if get_pr_status_from_metadata(review) == 'closed')

            total_count = len(reviews_in_month)

            completed_count = merged_count + rejected_count
            acceptance_rate = (merged_count / completed_count * 100) if completed_count > 0 else None

            acceptance_rates.append(acceptance_rate)
            total_reviews_list.append(total_count)
            merged_prs_list.append(merged_count)

        result_data[agent_name] = {
            'acceptance_rates': acceptance_rates,
            'total_reviews': total_reviews_list,
            'merged_prs': merged_prs_list,
        }

    agents_list = sorted(list(agent_month_data.keys()))

    return {
        'agents': agents_list,
        'months': months,
        'data': result_data
    }


def construct_leaderboard_from_metadata(all_metadata_dict, agents):
    """Construct leaderboard from in-memory review metadata."""
    if not agents:
        print("Error: No agents found")
        return {}

    cache_dict = {}

    for agent in agents:
        identifier = agent.get('github_identifier')
        agent_name = agent.get('name', 'Unknown')

        bot_metadata = all_metadata_dict.get(identifier, [])
        stats = calculate_review_stats_from_metadata(bot_metadata)

        cache_dict[identifier] = {
            'name': agent_name,
            'website': agent.get('website', 'N/A'),
            'github_identifier': identifier,
            **stats
        }

    return cache_dict


def save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics):
    """Save leaderboard data and monthly metrics to HuggingFace dataset."""
    try:
        token = get_hf_token()
        if not token:
            raise Exception("No HuggingFace token found")

        api = HfApi(token=token)
        filename = "swe-review.json"

        combined_data = {
            'last_updated': datetime.now(timezone.utc).isoformat(),
            'leaderboard': leaderboard_dict,
            'monthly_metrics': monthly_metrics,
            'metadata': {
                'leaderboard_time_frame_days': LEADERBOARD_TIME_FRAME_DAYS
            }
        }

        with open(filename, 'w') as f:
            json.dump(combined_data, f, indent=2)

        try:
            upload_file_with_backoff(
                api=api,
                path_or_fileobj=filename,
                path_in_repo=filename,
                repo_id=LEADERBOARD_REPO,
                repo_type="dataset"
            )
            return True
        finally:
            if os.path.exists(filename):
                os.remove(filename)

    except Exception as e:
        print(f"Error saving leaderboard data: {str(e)}")
        import traceback
        traceback.print_exc()
        return False


# =============================================================================
# MINING FUNCTION
# =============================================================================

def mine_all_agents():
    """
    Mine review metadata for all agents using STREAMING batch processing.
    Downloads GHArchive data, then uses BATCH-based DuckDB queries.
    """
    print(f"\n[1/4] Downloading GHArchive data...")

    if not download_all_gharchive_data():
        print("Warning: Download had errors, continuing with available data...")

    print(f"\n[2/4] Loading agent metadata...")

    agents = load_agents_from_hf()
    if not agents:
        print("Error: No agents found")
        return

    identifiers = [agent['github_identifier'] for agent in agents if agent.get('github_identifier')]
    if not identifiers:
        print("Error: No valid agent identifiers found")
        return

    print(f"\n[3/4] Mining review metadata ({len(identifiers)} agents, {LEADERBOARD_TIME_FRAME_DAYS} days)...")

    try:
        conn = get_duckdb_connection()
    except Exception as e:
        print(f"Failed to initialize DuckDB connection: {str(e)}")
        return

    current_time = datetime.now(timezone.utc)
    end_date = current_time.replace(hour=0, minute=0, second=0, microsecond=0)
    start_date = end_date - timedelta(days=LEADERBOARD_TIME_FRAME_DAYS)

    try:
        # USE STREAMING FUNCTION
        all_metadata = fetch_all_review_metadata_streaming(
            conn, identifiers, start_date, end_date
        )

    except Exception as e:
        print(f"Error during DuckDB fetch: {str(e)}")
        import traceback
        traceback.print_exc()
        return
    finally:
        conn.close()

    print(f"\n[4/4] Saving leaderboard...")

    try:
        leaderboard_dict = construct_leaderboard_from_metadata(all_metadata, agents)
        monthly_metrics = calculate_monthly_metrics_by_agent(all_metadata, agents)
        save_leaderboard_data_to_hf(leaderboard_dict, monthly_metrics)

    except Exception as e:
        print(f"Error saving leaderboard: {str(e)}")
        import traceback
        traceback.print_exc()


# =============================================================================
# SCHEDULER SETUP
# =============================================================================

def setup_scheduler():
    """Set up APScheduler to run mining jobs periodically."""
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
    )

    logging.getLogger('httpx').setLevel(logging.WARNING)

    scheduler = BlockingScheduler(timezone=SCHEDULE_TIMEZONE)

    trigger = CronTrigger(
        day=SCHEDULE_DAY_OF_MONTH,
        hour=SCHEDULE_HOUR,
        minute=SCHEDULE_MINUTE,
        timezone=SCHEDULE_TIMEZONE
    )

    scheduler.add_job(
        mine_all_agents,
        trigger=trigger,
        id='mine_all_agents',
        name='Mine GHArchive data for all agents',
        replace_existing=True
    )

    from datetime import datetime
    next_run = trigger.get_next_fire_time(None, datetime.now(trigger.timezone))
    print(f"Scheduler: Monthly on day {SCHEDULE_DAY_OF_MONTH} at {SCHEDULE_HOUR:02d}:{SCHEDULE_MINUTE:02d} {SCHEDULE_TIMEZONE}")
    print(f"Next run: {next_run}\n")

    print(f"\nScheduler started")
    scheduler.start()


# =============================================================================
# ENTRY POINT
# =============================================================================

if __name__ == "__main__":
    if SCHEDULE_ENABLED:
        setup_scheduler()
    else:
        mine_all_agents()