File size: 21,470 Bytes
9b3d9a0 95bbd6d 4bcc686 78f9096 4bcc686 6524787 78f9096 ef144b9 4bcc686 78f9096 6524787 ef144b9 78f9096 ef144b9 78f9096 4bcc686 e521f8a 6524787 7a5eb22 e521f8a 960fabc 7a5eb22 e521f8a 95bbd6d ef144b9 3ef1e5c 4bcc686 ef144b9 95bbd6d 36baf26 95bbd6d 7a5eb22 71845c1 7a5eb22 4bcc686 7a5eb22 95bbd6d 4bcc686 95bbd6d 3ef1e5c 95bbd6d 4bcc686 95bbd6d 4bcc686 7a5eb22 36baf26 95bbd6d 36baf26 7a5eb22 95bbd6d 4bcc686 95bbd6d 7a5eb22 95bbd6d 95cc7e5 4bcc686 e521f8a 4bcc686 e521f8a 4bcc686 e521f8a 4bcc686 7a5eb22 4bcc686 95bbd6d 4bcc686 e521f8a 95bbd6d ef144b9 4bcc686 ef144b9 4bcc686 ef144b9 56c4a12 3ef1e5c ef144b9 3ef1e5c ef144b9 2b1b1b6 ef144b9 4bcc686 3ef1e5c 4bcc686 3ef1e5c 4bcc686 56c4a12 3ef1e5c 56c4a12 3ef1e5c 4bcc686 3ef1e5c 4bcc686 3ef1e5c 4bcc686 a2fac34 3ef1e5c a2fac34 3ef1e5c a2fac34 4bcc686 a2fac34 3ef1e5c a2fac34 4bcc686 3ef1e5c ef144b9 4bcc686 ef144b9 3ef1e5c ef144b9 3ef1e5c ef144b9 4bcc686 3ef1e5c a2fac34 c921174 a2fac34 3ef1e5c a2fac34 c921174 3ef1e5c c921174 3ef1e5c a2fac34 3ef1e5c a2fac34 3ef1e5c a2fac34 36baf26 ef144b9 3ef1e5c 4bcc686 3ef1e5c a2fac34 56c4a12 a2fac34 3ef1e5c 56c4a12 ef144b9 3ef1e5c ef144b9 3ef1e5c 2b1b1b6 3ef1e5c 2b1b1b6 56c4a12 3ef1e5c 56c4a12 3ef1e5c 56c4a12 3ef1e5c a2fac34 56c4a12 ef144b9 2b1b1b6 ef144b9 a2fac34 3ef1e5c 56c4a12 ef144b9 4bcc686 ef144b9 4bcc686 ef144b9 4bcc686 ef144b9 4bcc686 ef144b9 3ef1e5c 56c4a12 ef144b9 95bbd6d ef144b9 95bbd6d 7a5eb22 95bbd6d 36baf26 ef144b9 95bbd6d 3ef1e5c a2fac34 f32805f a2fac34 95bbd6d 9e0ef17 3ef1e5c 9e0ef17 3ef1e5c 9e0ef17 3ef1e5c 9e0ef17 3ef1e5c 4bcc686 9e0ef17 95bbd6d 56c4a12 9e0ef17 3ef1e5c 9e0ef17 3ef1e5c 9e0ef17 3ef1e5c 9e0ef17 3ef1e5c 9e0ef17 95bbd6d 7a5eb22 95bbd6d 3ef1e5c 95bbd6d 95cc7e5 3ef1e5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import os
import sys
import traceback
from pathlib import Path
from typing import List, Tuple, Any
import duckdb
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use("Agg") # headless for Spaces
import matplotlib.pyplot as plt
import gradio as gr
# =========================
# Basic configuration
# =========================
APP_TITLE = "ALCO Liquidity & Interest-Rate Risk Dashboard"
TABLE_FQN = "my_db.main.masterdataset_v" # source table
VIEW_FQN = "my_db.main.positions_v" # normalized view created by this app
PRODUCT_ASSETS = [
"loan", "overdraft", "advances", "bills", "bill",
"tbond", "t-bond", "tbill", "t-bill", "repo_asset", "assets"
]
PRODUCT_SOF = [
"fd", "term_deposit", "td", "savings", "current",
"call", "repo_liab"
]
# =========================
# Helpers
# =========================
def connect_md() -> duckdb.DuckDBPyConnection:
token = os.environ.get("MOTHERDUCK_TOKEN", "")
if not token:
# In a real environment, this token should be securely managed
raise RuntimeError("MOTHERDUCK_TOKEN is not set. Add it in Space β Settings β Secrets.")
return duckdb.connect(f"md:?motherduck_token={token}")
def discover_columns(conn: duckdb.DuckDBPyConnection, table_fqn: str) -> List[str]:
# Try DESCRIBE first (fast), fall back to information_schema
try:
df = conn.execute(f"DESCRIBE {table_fqn};").fetchdf()
name_col = "column_name" if "column_name" in df.columns else df.columns[0]
return [str(c).lower() for c in df[name_col].tolist()]
except Exception:
df = conn.execute(
f"""
SELECT lower(column_name) AS col
FROM information_schema.columns
WHERE table_catalog = split_part('{table_fqn}', '.', 1)
AND table_schema = split_part('{table_fqn}', '.', 2)
AND table_name = split_part('{table_fqn}', '.', 3)
"""
).fetchdf()
return df["col"].tolist()
def build_view_sql(existing_cols: List[str]) -> str:
wanted = [
"as_of_date", "product", "months", "segments",
"currency", "Portfolio_value", "Interest_rate",
"days_to_maturity"
]
sel = []
for c in wanted:
if c.lower() in existing_cols:
sel.append(c)
else:
# Cast nulls for consistency, assuming most positions have these columns
if c in ("Portfolio_value", "Interest_rate", "days_to_maturity", "months"):
sel.append(f"CAST(NULL AS DOUBLE) AS {c}")
else:
sel.append(f"CAST(NULL AS VARCHAR) AS {c}")
sof_list = ", ".join([f"'{p}'" for p in PRODUCT_SOF])
asset_list = ", ".join([f"'{p}'" for p in PRODUCT_ASSETS])
bucket_case = (
f"CASE "
f"WHEN lower(product) IN ({sof_list}) THEN 'SoF' "
f"WHEN lower(product) IN ({asset_list}) THEN 'Assets' "
f"ELSE 'Unknown' END AS bucket"
)
select_sql = ",\n ".join(sel + [bucket_case])
return f"""
CREATE OR REPLACE VIEW {VIEW_FQN} AS
SELECT
{select_sql}
FROM {TABLE_FQN};
"""
def ensure_view(conn: duckdb.DuckDBPyConnection, cols: List[str]) -> None:
required = {"product", "portfolio_value", "days_to_maturity"}
if not required.issubset(set(cols)):
raise RuntimeError(
f"Source table {TABLE_FQN} must contain columns {sorted(required)}; found {sorted(cols)}"
)
conn.execute(build_view_sql(cols))
def safe_num(x) -> float:
try:
return float(0.0 if x is None or (isinstance(x, float) and np.isnan(x)) else x)
except Exception:
return 0.0
def zeros_like_index(index) -> pd.Series:
return pd.Series([0] * len(index), index=index)
def plot_ladder(df: pd.DataFrame):
try:
if df is None or df.empty:
fig, ax = plt.subplots(figsize=(7, 3))
ax.text(0.5, 0.5, "No data", ha="center", va="center")
ax.axis("off")
return fig
pivot = df.pivot(index="time_bucket", columns="bucket", values="Amount (LKR Mn)").fillna(0)
# Re-order the standard liquidity buckets
order = ["T+1", "T+2..7", "T+8..30", "T+31+"]
pivot = pivot.reindex(order)
fig, ax = plt.subplots(figsize=(7, 4))
assets = pivot["Assets"] if "Assets" in pivot.columns else zeros_like_index(pivot.index)
sof = pivot["SoF"] if "SoF" in pivot.columns else zeros_like_index(pivot.index)
ax.bar(pivot.index, assets, label="Assets", color="#4CAF50")
ax.bar(pivot.index, -sof, label="SoF", color="#FF9800")
ax.axhline(0, color="gray", lw=1)
ax.set_ylabel("LKR (Mn)")
ax.set_title("Maturity Ladder (Assets vs SoF)")
ax.legend()
fig.tight_layout()
return fig
except Exception as e:
fig, ax = plt.subplots(figsize=(7, 3))
ax.text(0.01, 0.8, "Chart Error:", fontsize=12, ha="left")
ax.text(0.01, 0.5, str(e), fontsize=10, ha="left", wrap=True)
ax.axis("off")
return fig
# =========================
# Query fragments
# =========================
KPI_SQL = f"""
SELECT
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS assets_t1,
COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS sof_t1,
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0)
- COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS net_gap_t1
FROM positions_v_stressed;
"""
LADDER_SQL = f"""
SELECT
CASE
WHEN days_to_maturity <= 1 THEN 'T+1'
WHEN days_to_maturity BETWEEN 2 AND 7 THEN 'T+2..7'
WHEN days_to_maturity BETWEEN 8 AND 30 THEN 'T+8..30'
ELSE 'T+31+'
END AS time_bucket,
bucket,
SUM(stressed_pv) / 1000000.0 AS "Amount (LKR Mn)"
FROM positions_v_stressed
GROUP BY 1,2
ORDER BY 1,2;
"""
GAP_DRIVERS_SQL = f"""
SELECT
product,
bucket,
SUM(stressed_pv) / 1000000.0 AS "Amount (LKR Mn)"
FROM positions_v_stressed
WHERE days_to_maturity <= 1
GROUP BY 1, 2
ORDER BY 3 DESC;
"""
def get_duration_components_sql(cols: List[str]) -> str:
"""Calculates Modified Duration, Portfolio Value, and Weights for Assets/Liabilities."""
# Use days_to_maturity as the best proxy for repricing/duration tenor
has_months = "months" in cols
has_ir = "interest_rate" in cols
# Time-to-Maturity (in years) used as proxy for Macaulay Duration (T)
t_expr = "CASE WHEN days_to_maturity IS NOT NULL THEN days_to_maturity/365.0"
if has_months:
t_expr += " WHEN months IS NOT NULL THEN months/12.0"
t_expr += " ELSE 0.0001 END" # Avoid division by zero, use minimal time if unknown
# Yield (Interest Rate / 100)
y_expr = "(Interest_rate/100.0)" if has_ir else "0.05" # Assume 5% if rate missing
return f"""
WITH irr_calcs AS (
SELECT
bucket,
stressed_pv,
-- Approximate Modified Duration = (Time / (1 + Yield))
({t_expr}) / (1 + {y_expr}) AS mod_dur
FROM positions_v_stressed
WHERE bucket IN ('Assets', 'SoF')
)
SELECT
bucket,
SUM(stressed_pv) AS total_pv,
SUM(stressed_pv * mod_dur) AS weighted_duration_sum
FROM irr_calcs
GROUP BY bucket;
"""
def get_nii_sensitivity_sql() -> str:
"""
Calculates the 1-Year Repricing Gap (Assets vs. Liabilities repricing within 1 year).
This is a simplification used to estimate NII change (Delta NII).
"""
return f"""
WITH repricing_volume AS (
SELECT
bucket,
-- Assume repricing happens within 1 year (365 days)
SUM(CASE WHEN days_to_maturity <= 365 THEN stressed_pv ELSE 0 END) AS repricing_pv
FROM positions_v_stressed
WHERE bucket IN ('Assets', 'SoF')
GROUP BY bucket
)
SELECT
COALESCE(SUM(CASE WHEN bucket = 'Assets' THEN repricing_pv ELSE 0 END), 0) AS assets_repricing_pv,
COALESCE(SUM(CASE WHEN bucket = 'SoF' THEN repricing_pv ELSE 0 END), 0) AS liabilities_repricing_pv,
-- Repricing Gap = Repricing Assets - Repricing Liabilities
(COALESCE(SUM(CASE WHEN bucket = 'Assets' THEN repricing_pv ELSE 0 END), 0) -
COALESCE(SUM(CASE WHEN bucket = 'SoF' THEN repricing_pv ELSE 0 END), 0)) AS repricing_gap
FROM repricing_volume;
"""
# =========================
# Dashboard callback
# =========================
def run_dashboard(scenario: str, runoff_pct: float, rate_shock_bps_input: float, nii_shock_bps: float) -> Tuple[str, str, str, str, str, Any, pd.DataFrame, pd.DataFrame, pd.DataFrame, str, pd.DataFrame]:
"""
Returns:
status, as_of, a1_text, a2_text, a3_text, figure, ladder_df, irr_df (BPV),
nii_df, explain_text, drivers_df
"""
try:
conn = connect_md()
# 1) Discover columns & ensure view is created
cols = discover_columns(conn, TABLE_FQN)
ensure_view(conn, cols)
# --- Scenario Application ---
stressed_view_fqn = "positions_v_stressed"
runoff_factor = 1.0
rate_shock_bps = 0.0 # Used for EVE (BPV) and NII sensitivity
if scenario == "Liquidity Stress: High Deposit Runoff" and runoff_pct > 0:
runoff_factor = (100.0 - runoff_pct) / 100.0
# Set shock to 0 for Liquidity stress
rate_shock_bps = 0.0
elif scenario == "IRR Stress: Rate Shock" and rate_shock_bps_input != 0:
rate_shock_bps = rate_shock_bps_input
# Use only run-off factor 1.0 (no liquidity stress)
runoff_factor = 1.0
# Create temporary view with scenario adjustments for both PV and Rate
# NOTE: Rate shock is currently only applied to derived metrics, not stored PV
scenario_sql = f"""
CREATE OR REPLACE TEMP VIEW {stressed_view_fqn} AS
SELECT
*,
-- Apply runoff only to liabilities (SoF)
CASE WHEN lower(product) IN ({', '.join([f"'{p}'" for p in PRODUCT_SOF])})
THEN Portfolio_value * {runoff_factor}
ELSE Portfolio_value
END AS stressed_pv,
-- Apply rate shock to Interest_rate for NII/Duration modeling (optional, but good practice)
Interest_rate + ({rate_shock_bps} / 100.0) AS stressed_ir
FROM {VIEW_FQN};
"""
conn.execute(scenario_sql)
# 2) As-of (optional)
as_of = "N/A"
if "as_of_date" in cols:
tmp = conn.execute(f"SELECT max(as_of_date) AS d FROM {VIEW_FQN}").fetchdf()
if not tmp.empty and not pd.isna(tmp["d"].iloc[0]):
as_of = str(tmp["d"].iloc[0])[:10]
# 3) KPIs (Liquidity Gap)
kpi = conn.execute(KPI_SQL).fetchdf()
assets_t1 = safe_num(kpi["assets_t1"].iloc[0]) if not kpi.empty else 0.0
sof_t1 = safe_num(kpi["sof_t1"].iloc[0]) if not kpi.empty else 0.0
net_gap = safe_num(kpi["net_gap_t1"].iloc[0]) if not kpi.empty else 0.0
# 4) Ladder and Gap Drivers
ladder = conn.execute(LADDER_SQL).fetchdf()
drivers = conn.execute(GAP_DRIVERS_SQL).fetchdf()
# 5) Duration Gap & BPV (IRR - EVE)
duration_components = conn.execute(get_duration_components_sql(cols)).fetchdf()
# Calculate Modified Duration (D_A, D_L) and L/A Ratio
pv_assets = duration_components[duration_components['bucket'] == 'Assets']['total_pv'].sum()
pv_liab = duration_components[duration_components['bucket'] == 'SoF']['total_pv'].sum()
wd_assets = duration_components[duration_components['bucket'] == 'Assets']['weighted_duration_sum'].sum()
wd_liab = duration_components[duration_components['bucket'] == 'SoF']['weighted_duration_sum'].sum()
mod_dur_assets = wd_assets / pv_assets if pv_assets > 0 else 0.0
mod_dur_liab = wd_liab / pv_liab if pv_liab > 0 else 0.0
# L/A Ratio (Liabilities / Assets)
l_a_ratio = pv_liab / pv_assets if pv_assets > 0 else 0.0
# Duration Gap = D_A β D_L Γ (L/A)
duration_gap = mod_dur_assets - (mod_dur_liab * l_a_ratio)
# BPV (Basis Point Value) / DV01 (Dollar Value of 01)
# BPV is the combined sensitivity (SUM(PV * Mod_Dur)) * 0.0001
net_bpv = (wd_assets - wd_liab) * 0.0001
# Calculate EVE Impact
eve_impact = net_bpv * rate_shock_bps
# Create EVE/BPV display table
irr_df = pd.DataFrame({
"Metric": ["Assets Mod. Duration (Yrs)", "Liabilities Mod. Duration (Yrs)", "Duration Gap (Yrs)", "Net BPV (LKR)"],
"Value": [mod_dur_assets, mod_dur_liab, duration_gap, net_bpv]
})
irr_df['Value'] = irr_df['Value'].map('{:,.4f}'.format)
# 6) NII Sensitivity (IRR - NII)
nii_data = conn.execute(get_nii_sensitivity_sql()).fetchdf()
assets_repricing_pv = safe_num(nii_data["assets_repricing_pv"].iloc[0])
liabilities_repricing_pv = safe_num(nii_data["liabilities_repricing_pv"].iloc[0])
repricing_gap = safe_num(nii_data["repricing_gap"].iloc[0])
# NII Delta = Repricing Gap * (Rate Shock / 10000)
nii_delta = repricing_gap * (nii_shock_bps / 10000.0)
# Create NII display table (in Mn)
nii_df = pd.DataFrame({
"Metric": [
"Assets Repricing (LKR Mn)",
"Liabilities Repricing (LKR Mn)",
"1-Year Repricing Gap (LKR Mn)",
f"NII Delta (+{nii_shock_bps:.0f}bps Shock) (LKR Mn)"
],
"Value": [
assets_repricing_pv / 1000000.0,
liabilities_repricing_pv / 1000000.0,
repricing_gap / 1000000.0,
nii_delta / 1000000.0
]
})
nii_df['Value'] = nii_df['Value'].map('{:,.2f}'.format)
# 7) Format output dataframes for UI
ladder_display = ladder.copy()
if "Amount (LKR Mn)" in ladder.columns:
ladder_display["Amount (LKR Mn)"] = ladder_display["Amount (LKR Mn)"].map('{:,.2f}'.format)
else:
ladder_display = pd.DataFrame()
drivers_display = drivers.copy()
if "Amount (LKR Mn)" in drivers.columns:
drivers_display["Amount (LKR Mn)"] = drivers_display["Amount (LKR Mn)"].map('{:,.2f}'.format)
else:
drivers_display = pd.DataFrame()
# 8) Chart
fig = plot_ladder(ladder)
# 9) Explanations
assets_t1_mn_str = f"{(assets_t1 / 1_000_000):,.2f}"
sof_t1_mn_str = f"{(sof_t1 / 1_000_000):,.2f}"
net_gap_mn_str = f"{(net_gap / 1_000_000):,.2f}"
gap_sign_str = "positive (surplus)" if net_gap >= 0 else "negative (deficit)"
a1_text = f"The amount of Assets maturing tomorrow (T+1) is **LKR {assets_t1_mn_str} Mn**."
a2_text = f"The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is **LKR {sof_t1_mn_str} Mn**."
a3_text = f"The resulting Net Liquidity Gap for tomorrow (T+1) is **LKR {net_gap_mn_str} Mn**."
# Build "Why" text
sof_drivers = drivers[drivers["bucket"] == "SoF"]
asset_drivers = drivers[drivers["bucket"] == "Assets"]
top_sof_prod = sof_drivers.iloc[0] if not sof_drivers.empty else None
top_asset_prod = asset_drivers.iloc[0] if not asset_drivers.empty else None
explain_text = f"### Liquidity Gap Analysis (T+1)\n"
explain_text += f"The T+1 Net Liquidity Gap is **LKR {net_gap_mn_str} Mn** ({gap_sign_str}).\n\n"
if top_sof_prod is not None:
explain_text += f"* **Largest Outflow:** From `{top_sof_prod['product']}` at **LKR {top_sof_prod['Amount (LKR Mn)']:,.2f} Mn**.\n"
if top_asset_prod is not None:
explain_text += f"* **Largest Inflow:** From `{top_asset_prod['product']}` at **LKR {top_asset_prod['Amount (LKR Mn)']:,.2f} Mn**.\n"
# Add EVE/NII analysis to explanation
explain_text += f"\n### Interest Rate Risk (IRR) Analysis\n"
# NII Explain
nii_delta_mn = safe_num(nii_delta / 1000000.0)
repricing_gap_mn = safe_num(repricing_gap / 1000000.0)
explain_text += f"* **NII Sensitivity:** Based on the 1-Year Repricing Gap (LKR {repricing_gap_mn:,.2f} Mn), a **+{nii_shock_bps:.0f} bps** rate shock suggests a **LKR {nii_delta_mn:,.2f} Mn** change in 1-year Net Interest Income.\n"
# EVE Explain
eve_impact_mn = safe_num(eve_impact / 1000000.0)
explain_text += f"* **EVE Sensitivity:** The Duration Gap is **{duration_gap:,.2f} years**. A **+{rate_shock_bps:.0f} bps** parallel rate shock is projected to change the portfolio's Economic Value (EVE) by **LKR {eve_impact_mn:,.2f} Mn**."
if scenario != "Baseline":
explain_text += f"\n\n**SCENARIO ACTIVE:** Results reflect the '{scenario}' scenario."
status = f"β
OK (as of {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')})"
return (
status,
as_of,
a1_text,
a2_text,
a3_text,
fig,
ladder_display,
irr_df,
nii_df,
explain_text,
drivers_display,
)
except Exception as e:
tb = traceback.format_exc()
empty_df = pd.DataFrame()
fig = plot_ladder(empty_df)
return (
f"β Error: {e}\n\n{tb}",
"N/A",
"0",
"0",
"0",
fig,
empty_df,
empty_df,
empty_df,
"Analysis could not be performed.",
empty_df,
)
# =========================
# Build Gradio UI
# =========================
with gr.Blocks(title=APP_TITLE) as demo:
gr.Markdown(f"# {APP_TITLE}\n_Source:_ `{TABLE_FQN}` β `{VIEW_FQN}`")
status = gr.Textbox(label="Status", interactive=False, lines=8)
with gr.Row():
refresh_btn = gr.Button("π Refresh/Calculate", variant="primary")
theme_btn = gr.Button("π Toggle Theme")
theme_btn.click(
None,
None,
js="() => { document.querySelector('html').classList.toggle('dark'); }"
)
with gr.Row():
# --- Left Column: Controls and Explanations ---
with gr.Column(scale=1):
scenario_dd = gr.Dropdown(
label="Select Stress Scenario",
choices=["Baseline", "Liquidity Stress: High Deposit Runoff", "IRR Stress: Rate Shock"],
value="Baseline"
)
with gr.Accordion("Stress Scenario Parameters", open=True):
runoff_slider = gr.Slider(
label="Deposit Runoff (%)",
minimum=0, maximum=100, step=5, value=20,
info="For Liquidity Stress: Percentage of key deposits that run off."
)
shock_slider = gr.Slider(
label="EVE Rate Shock (bps)",
minimum=-500, maximum=500, step=25, value=200,
info="For IRR Stress: Parallel shift in the yield curve for EVE (Duration) calculation."
)
nii_shock_slider = gr.Slider(
label="NII Rate Shock (bps)",
minimum=-500, maximum=500, step=25, value=100,
info="For NII Sensitivity: Shock applied to 1-Year Repricing Gap."
)
explain_text = gr.Markdown("Analysis of the T+1 gap and IRR will appear here...")
# --- Right Column: KPIs, Charts, and Tables ---
with gr.Column(scale=3):
with gr.Row():
as_of = gr.Textbox(label="As of date", interactive=False)
a1 = gr.Markdown("The amount of Assets maturing tomorrow (T+1) is...")
a2 = gr.Markdown("The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is...")
a3 = gr.Markdown("The resulting Net Liquidity Gap for tomorrow (T+1) is...")
chart = gr.Plot(label="Maturity Ladder")
with gr.Tabs():
with gr.TabItem("Liquidity Gap Detail"):
ladder_df = gr.Dataframe(
headers=["Time Bucket", "Bucket", "Amount (LKR Mn)"],
type="pandas"
)
with gr.TabItem("T+1 Gap Drivers"):
drivers_df = gr.Dataframe(
headers=["Product", "Bucket", "Amount (LKR Mn)"],
type="pandas"
)
with gr.TabItem("IRR - EVE (Duration Gap)"):
irr_df = gr.Dataframe(
headers=["Metric", "Value"],
type="pandas"
)
with gr.TabItem("IRR - NII (Repricing Gap)"):
nii_df = gr.Dataframe(
headers=["Metric", "Value"],
type="pandas"
)
refresh_btn.click(
fn=run_dashboard,
inputs=[scenario_dd, runoff_slider, shock_slider, nii_shock_slider],
outputs=[status, as_of, a1, a2, a3, chart, ladder_df, irr_df, nii_df, explain_text, drivers_df],
)
if __name__ == "__main__":
demo.launch() |