Update app.py
Browse files
app.py
CHANGED
|
@@ -34,6 +34,7 @@ PRODUCT_SOF = [
|
|
| 34 |
def connect_md() -> duckdb.DuckDBPyConnection:
|
| 35 |
token = os.environ.get("MOTHERDUCK_TOKEN", "")
|
| 36 |
if not token:
|
|
|
|
| 37 |
raise RuntimeError("MOTHERDUCK_TOKEN is not set. Add it in Space β Settings β Secrets.")
|
| 38 |
return duckdb.connect(f"md:?motherduck_token={token}")
|
| 39 |
|
|
@@ -66,6 +67,7 @@ def build_view_sql(existing_cols: List[str]) -> str:
|
|
| 66 |
if c.lower() in existing_cols:
|
| 67 |
sel.append(c)
|
| 68 |
else:
|
|
|
|
| 69 |
if c in ("Portfolio_value", "Interest_rate", "days_to_maturity", "months"):
|
| 70 |
sel.append(f"CAST(NULL AS DOUBLE) AS {c}")
|
| 71 |
else:
|
|
@@ -113,13 +115,14 @@ def plot_ladder(df: pd.DataFrame):
|
|
| 113 |
ax.axis("off")
|
| 114 |
return fig
|
| 115 |
pivot = df.pivot(index="time_bucket", columns="bucket", values="Amount (LKR Mn)").fillna(0)
|
|
|
|
| 116 |
order = ["T+1", "T+2..7", "T+8..30", "T+31+"]
|
| 117 |
pivot = pivot.reindex(order)
|
| 118 |
fig, ax = plt.subplots(figsize=(7, 4))
|
| 119 |
assets = pivot["Assets"] if "Assets" in pivot.columns else zeros_like_index(pivot.index)
|
| 120 |
sof = pivot["SoF"] if "SoF" in pivot.columns else zeros_like_index(pivot.index)
|
| 121 |
-
ax.bar(pivot.index, assets, label="Assets")
|
| 122 |
-
ax.bar(pivot.index, -sof, label="SoF")
|
| 123 |
ax.axhline(0, color="gray", lw=1)
|
| 124 |
ax.set_ylabel("LKR (Mn)")
|
| 125 |
ax.set_title("Maturity Ladder (Assets vs SoF)")
|
|
@@ -142,7 +145,7 @@ SELECT
|
|
| 142 |
COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS sof_t1,
|
| 143 |
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0)
|
| 144 |
- COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS net_gap_t1
|
| 145 |
-
FROM
|
| 146 |
"""
|
| 147 |
|
| 148 |
LADDER_SQL = f"""
|
|
@@ -154,8 +157,8 @@ SELECT
|
|
| 154 |
ELSE 'T+31+'
|
| 155 |
END AS time_bucket,
|
| 156 |
bucket,
|
| 157 |
-
SUM(
|
| 158 |
-
FROM
|
| 159 |
GROUP BY 1,2
|
| 160 |
ORDER BY 1,2;
|
| 161 |
"""
|
|
@@ -164,76 +167,117 @@ GAP_DRIVERS_SQL = f"""
|
|
| 164 |
SELECT
|
| 165 |
product,
|
| 166 |
bucket,
|
| 167 |
-
SUM(
|
| 168 |
-
FROM
|
| 169 |
WHERE days_to_maturity <= 1
|
| 170 |
GROUP BY 1, 2
|
| 171 |
ORDER BY 3 DESC;
|
| 172 |
"""
|
| 173 |
|
| 174 |
-
def
|
|
|
|
|
|
|
| 175 |
has_months = "months" in cols
|
| 176 |
has_ir = "interest_rate" in cols
|
|
|
|
|
|
|
| 177 |
t_expr = "CASE WHEN days_to_maturity IS NOT NULL THEN days_to_maturity/365.0"
|
| 178 |
if has_months:
|
| 179 |
t_expr += " WHEN months IS NOT NULL THEN months/12.0"
|
| 180 |
-
t_expr += " ELSE
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
| 182 |
return f"""
|
| 183 |
WITH irr_calcs AS (
|
| 184 |
SELECT
|
| 185 |
bucket,
|
| 186 |
-
|
| 187 |
-
-- Modified Duration =
|
| 188 |
-
-- We approximate Macaulay Duration with time-to-maturity in years (t_expr)
|
| 189 |
({t_expr}) / (1 + {y_expr}) AS mod_dur
|
| 190 |
-
FROM
|
|
|
|
| 191 |
)
|
| 192 |
SELECT
|
| 193 |
bucket,
|
| 194 |
-
SUM(
|
| 195 |
-
|
| 196 |
-
SUM(pv * mod_dur * 0.0001) AS "BPV (DV01)"
|
| 197 |
FROM irr_calcs
|
| 198 |
GROUP BY bucket;
|
| 199 |
"""
|
| 200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
# =========================
|
| 202 |
# Dashboard callback
|
| 203 |
# =========================
|
| 204 |
-
def run_dashboard(scenario: str, runoff_pct: float, rate_shock_bps_input: float) -> Tuple[str, str, str, str, str, Any, pd.DataFrame, pd.DataFrame, str, pd.DataFrame]:
|
| 205 |
"""
|
| 206 |
Returns:
|
| 207 |
-
status, as_of, a1_text, a2_text, a3_text, figure, ladder_df, irr_df,
|
| 208 |
-
explain_text, drivers_df
|
| 209 |
"""
|
| 210 |
try:
|
| 211 |
conn = connect_md()
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
# --- Scenario Application ---
|
| 214 |
-
# Create a temporary view with scenario adjustments.
|
| 215 |
-
# Subsequent queries will use this stressed view.
|
| 216 |
stressed_view_fqn = "positions_v_stressed"
|
| 217 |
runoff_factor = 1.0
|
| 218 |
-
rate_shock_bps = 0.0
|
| 219 |
|
| 220 |
if scenario == "Liquidity Stress: High Deposit Runoff" and runoff_pct > 0:
|
| 221 |
runoff_factor = (100.0 - runoff_pct) / 100.0
|
|
|
|
|
|
|
| 222 |
elif scenario == "IRR Stress: Rate Shock" and rate_shock_bps_input != 0:
|
| 223 |
rate_shock_bps = rate_shock_bps_input
|
|
|
|
|
|
|
| 224 |
|
|
|
|
|
|
|
| 225 |
scenario_sql = f"""
|
| 226 |
CREATE OR REPLACE TEMP VIEW {stressed_view_fqn} AS
|
| 227 |
-
SELECT
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
FROM {VIEW_FQN};
|
| 230 |
"""
|
| 231 |
conn.execute(scenario_sql)
|
| 232 |
|
| 233 |
-
# 1) Discover columns & build view
|
| 234 |
-
cols = discover_columns(conn, TABLE_FQN)
|
| 235 |
-
ensure_view(conn, cols)
|
| 236 |
-
|
| 237 |
# 2) As-of (optional)
|
| 238 |
as_of = "N/A"
|
| 239 |
if "as_of_date" in cols:
|
|
@@ -241,50 +285,98 @@ def run_dashboard(scenario: str, runoff_pct: float, rate_shock_bps_input: float)
|
|
| 241 |
if not tmp.empty and not pd.isna(tmp["d"].iloc[0]):
|
| 242 |
as_of = str(tmp["d"].iloc[0])[:10]
|
| 243 |
|
| 244 |
-
# 3) KPIs
|
| 245 |
-
|
| 246 |
-
kpi_sql_stressed = KPI_SQL.replace(f"FROM {VIEW_FQN}", f"FROM {stressed_view_fqn}").replace("Portfolio_value", "stressed_pv")
|
| 247 |
-
kpi = conn.execute(kpi_sql_stressed).fetchdf()
|
| 248 |
assets_t1 = safe_num(kpi["assets_t1"].iloc[0]) if not kpi.empty else 0.0
|
| 249 |
sof_t1 = safe_num(kpi["sof_t1"].iloc[0]) if not kpi.empty else 0.0
|
| 250 |
net_gap = safe_num(kpi["net_gap_t1"].iloc[0]) if not kpi.empty else 0.0
|
| 251 |
|
| 252 |
-
# 4) Ladder
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
ladder_display = ladder.copy()
|
| 263 |
if "Amount (LKR Mn)" in ladder.columns:
|
| 264 |
ladder_display["Amount (LKR Mn)"] = ladder_display["Amount (LKR Mn)"].map('{:,.2f}'.format)
|
| 265 |
else:
|
| 266 |
ladder_display = pd.DataFrame()
|
| 267 |
|
| 268 |
-
|
| 269 |
-
irr_display = irr.copy()
|
| 270 |
-
if not irr_display.empty:
|
| 271 |
-
irr_display["Portfolio Value (LKR Mn)"] = irr_display["Portfolio Value (LKR Mn)"].map('{:,.2f}'.format)
|
| 272 |
-
irr_display["BPV (DV01)"] = irr_display["BPV (DV01)"].map('{:,.2f}'.format)
|
| 273 |
-
|
| 274 |
if "Amount (LKR Mn)" in drivers.columns:
|
| 275 |
-
drivers_display = drivers.copy()
|
| 276 |
drivers_display["Amount (LKR Mn)"] = drivers_display["Amount (LKR Mn)"].map('{:,.2f}'.format)
|
| 277 |
else:
|
| 278 |
drivers_display = pd.DataFrame()
|
| 279 |
|
| 280 |
-
#
|
| 281 |
fig = plot_ladder(ladder)
|
| 282 |
|
| 283 |
-
#
|
| 284 |
assets_t1_mn_str = f"{(assets_t1 / 1_000_000):,.2f}"
|
| 285 |
sof_t1_mn_str = f"{(sof_t1 / 1_000_000):,.2f}"
|
| 286 |
net_gap_mn_str = f"{(net_gap / 1_000_000):,.2f}"
|
| 287 |
-
gap_sign_str = "positive" if net_gap >= 0 else "negative"
|
| 288 |
|
| 289 |
a1_text = f"The amount of Assets maturing tomorrow (T+1) is **LKR {assets_t1_mn_str} Mn**."
|
| 290 |
a2_text = f"The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is **LKR {sof_t1_mn_str} Mn**."
|
|
@@ -296,27 +388,27 @@ def run_dashboard(scenario: str, runoff_pct: float, rate_shock_bps_input: float)
|
|
| 296 |
top_sof_prod = sof_drivers.iloc[0] if not sof_drivers.empty else None
|
| 297 |
top_asset_prod = asset_drivers.iloc[0] if not asset_drivers.empty else None
|
| 298 |
|
| 299 |
-
explain_text = f"###
|
|
|
|
| 300 |
if top_sof_prod is not None:
|
| 301 |
-
explain_text += f"*
|
| 302 |
-
else:
|
| 303 |
-
explain_text += "* **Largest Liability Maturity:** No significant liabilities are maturing tomorrow.\n"
|
| 304 |
-
|
| 305 |
if top_asset_prod is not None:
|
| 306 |
-
explain_text += f"*
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
|
|
|
|
|
|
| 320 |
|
| 321 |
status = f"β
OK (as of {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')})"
|
| 322 |
return (
|
|
@@ -327,7 +419,8 @@ def run_dashboard(scenario: str, runoff_pct: float, rate_shock_bps_input: float)
|
|
| 327 |
a3_text,
|
| 328 |
fig,
|
| 329 |
ladder_display,
|
| 330 |
-
|
|
|
|
| 331 |
explain_text,
|
| 332 |
drivers_display,
|
| 333 |
)
|
|
@@ -345,6 +438,7 @@ def run_dashboard(scenario: str, runoff_pct: float, rate_shock_bps_input: float)
|
|
| 345 |
fig,
|
| 346 |
empty_df,
|
| 347 |
empty_df,
|
|
|
|
| 348 |
"Analysis could not be performed.",
|
| 349 |
empty_df,
|
| 350 |
)
|
|
@@ -358,7 +452,7 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 358 |
status = gr.Textbox(label="Status", interactive=False, lines=8)
|
| 359 |
|
| 360 |
with gr.Row():
|
| 361 |
-
refresh_btn = gr.Button("π Refresh", variant="primary")
|
| 362 |
theme_btn = gr.Button("π Toggle Theme")
|
| 363 |
theme_btn.click(
|
| 364 |
None,
|
|
@@ -377,15 +471,21 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 377 |
with gr.Accordion("Stress Scenario Parameters", open=True):
|
| 378 |
runoff_slider = gr.Slider(
|
| 379 |
label="Deposit Runoff (%)",
|
| 380 |
-
minimum=0, maximum=100, step=
|
| 381 |
info="For Liquidity Stress: Percentage of key deposits that run off."
|
| 382 |
)
|
| 383 |
shock_slider = gr.Slider(
|
| 384 |
-
label="Rate Shock (bps)",
|
| 385 |
minimum=-500, maximum=500, step=25, value=200,
|
| 386 |
-
info="For IRR Stress: Parallel shift in the yield curve
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
)
|
| 388 |
-
|
|
|
|
| 389 |
|
| 390 |
# --- Right Column: KPIs, Charts, and Tables ---
|
| 391 |
with gr.Column(scale=3):
|
|
@@ -398,22 +498,32 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 398 |
chart = gr.Plot(label="Maturity Ladder")
|
| 399 |
|
| 400 |
with gr.Tabs():
|
| 401 |
-
with gr.TabItem("
|
| 402 |
-
ladder_df = gr.Dataframe(
|
|
|
|
|
|
|
|
|
|
| 403 |
with gr.TabItem("T+1 Gap Drivers"):
|
| 404 |
drivers_df = gr.Dataframe(
|
| 405 |
headers=["Product", "Bucket", "Amount (LKR Mn)"],
|
|
|
|
| 406 |
)
|
| 407 |
-
with gr.TabItem("
|
| 408 |
irr_df = gr.Dataframe(
|
| 409 |
-
headers=["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
)
|
| 411 |
|
| 412 |
refresh_btn.click(
|
| 413 |
fn=run_dashboard,
|
| 414 |
-
inputs=[scenario_dd, runoff_slider, shock_slider],
|
| 415 |
-
outputs=[status, as_of, a1, a2, a3, chart, ladder_df, irr_df, explain_text, drivers_df],
|
| 416 |
)
|
| 417 |
|
| 418 |
if __name__ == "__main__":
|
| 419 |
-
demo.launch()
|
|
|
|
| 34 |
def connect_md() -> duckdb.DuckDBPyConnection:
|
| 35 |
token = os.environ.get("MOTHERDUCK_TOKEN", "")
|
| 36 |
if not token:
|
| 37 |
+
# In a real environment, this token should be securely managed
|
| 38 |
raise RuntimeError("MOTHERDUCK_TOKEN is not set. Add it in Space β Settings β Secrets.")
|
| 39 |
return duckdb.connect(f"md:?motherduck_token={token}")
|
| 40 |
|
|
|
|
| 67 |
if c.lower() in existing_cols:
|
| 68 |
sel.append(c)
|
| 69 |
else:
|
| 70 |
+
# Cast nulls for consistency, assuming most positions have these columns
|
| 71 |
if c in ("Portfolio_value", "Interest_rate", "days_to_maturity", "months"):
|
| 72 |
sel.append(f"CAST(NULL AS DOUBLE) AS {c}")
|
| 73 |
else:
|
|
|
|
| 115 |
ax.axis("off")
|
| 116 |
return fig
|
| 117 |
pivot = df.pivot(index="time_bucket", columns="bucket", values="Amount (LKR Mn)").fillna(0)
|
| 118 |
+
# Re-order the standard liquidity buckets
|
| 119 |
order = ["T+1", "T+2..7", "T+8..30", "T+31+"]
|
| 120 |
pivot = pivot.reindex(order)
|
| 121 |
fig, ax = plt.subplots(figsize=(7, 4))
|
| 122 |
assets = pivot["Assets"] if "Assets" in pivot.columns else zeros_like_index(pivot.index)
|
| 123 |
sof = pivot["SoF"] if "SoF" in pivot.columns else zeros_like_index(pivot.index)
|
| 124 |
+
ax.bar(pivot.index, assets, label="Assets", color="#4CAF50")
|
| 125 |
+
ax.bar(pivot.index, -sof, label="SoF", color="#FF9800")
|
| 126 |
ax.axhline(0, color="gray", lw=1)
|
| 127 |
ax.set_ylabel("LKR (Mn)")
|
| 128 |
ax.set_title("Maturity Ladder (Assets vs SoF)")
|
|
|
|
| 145 |
COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS sof_t1,
|
| 146 |
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0)
|
| 147 |
- COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS net_gap_t1
|
| 148 |
+
FROM positions_v_stressed;
|
| 149 |
"""
|
| 150 |
|
| 151 |
LADDER_SQL = f"""
|
|
|
|
| 157 |
ELSE 'T+31+'
|
| 158 |
END AS time_bucket,
|
| 159 |
bucket,
|
| 160 |
+
SUM(stressed_pv) / 1000000.0 AS "Amount (LKR Mn)"
|
| 161 |
+
FROM positions_v_stressed
|
| 162 |
GROUP BY 1,2
|
| 163 |
ORDER BY 1,2;
|
| 164 |
"""
|
|
|
|
| 167 |
SELECT
|
| 168 |
product,
|
| 169 |
bucket,
|
| 170 |
+
SUM(stressed_pv) / 1000000.0 AS "Amount (LKR Mn)"
|
| 171 |
+
FROM positions_v_stressed
|
| 172 |
WHERE days_to_maturity <= 1
|
| 173 |
GROUP BY 1, 2
|
| 174 |
ORDER BY 3 DESC;
|
| 175 |
"""
|
| 176 |
|
| 177 |
+
def get_duration_components_sql(cols: List[str]) -> str:
|
| 178 |
+
"""Calculates Modified Duration, Portfolio Value, and Weights for Assets/Liabilities."""
|
| 179 |
+
# Use days_to_maturity as the best proxy for repricing/duration tenor
|
| 180 |
has_months = "months" in cols
|
| 181 |
has_ir = "interest_rate" in cols
|
| 182 |
+
|
| 183 |
+
# Time-to-Maturity (in years) used as proxy for Macaulay Duration (T)
|
| 184 |
t_expr = "CASE WHEN days_to_maturity IS NOT NULL THEN days_to_maturity/365.0"
|
| 185 |
if has_months:
|
| 186 |
t_expr += " WHEN months IS NOT NULL THEN months/12.0"
|
| 187 |
+
t_expr += " ELSE 0.0001 END" # Avoid division by zero, use minimal time if unknown
|
| 188 |
+
|
| 189 |
+
# Yield (Interest Rate / 100)
|
| 190 |
+
y_expr = "(Interest_rate/100.0)" if has_ir else "0.05" # Assume 5% if rate missing
|
| 191 |
+
|
| 192 |
return f"""
|
| 193 |
WITH irr_calcs AS (
|
| 194 |
SELECT
|
| 195 |
bucket,
|
| 196 |
+
stressed_pv,
|
| 197 |
+
-- Approximate Modified Duration = (Time / (1 + Yield))
|
|
|
|
| 198 |
({t_expr}) / (1 + {y_expr}) AS mod_dur
|
| 199 |
+
FROM positions_v_stressed
|
| 200 |
+
WHERE bucket IN ('Assets', 'SoF')
|
| 201 |
)
|
| 202 |
SELECT
|
| 203 |
bucket,
|
| 204 |
+
SUM(stressed_pv) AS total_pv,
|
| 205 |
+
SUM(stressed_pv * mod_dur) AS weighted_duration_sum
|
|
|
|
| 206 |
FROM irr_calcs
|
| 207 |
GROUP BY bucket;
|
| 208 |
"""
|
| 209 |
|
| 210 |
+
def get_nii_sensitivity_sql() -> str:
|
| 211 |
+
"""
|
| 212 |
+
Calculates the 1-Year Repricing Gap (Assets vs. Liabilities repricing within 1 year).
|
| 213 |
+
This is a simplification used to estimate NII change (Delta NII).
|
| 214 |
+
"""
|
| 215 |
+
return f"""
|
| 216 |
+
WITH repricing_volume AS (
|
| 217 |
+
SELECT
|
| 218 |
+
bucket,
|
| 219 |
+
-- Assume repricing happens within 1 year (365 days)
|
| 220 |
+
SUM(CASE WHEN days_to_maturity <= 365 THEN stressed_pv ELSE 0 END) AS repricing_pv
|
| 221 |
+
FROM positions_v_stressed
|
| 222 |
+
WHERE bucket IN ('Assets', 'SoF')
|
| 223 |
+
GROUP BY bucket
|
| 224 |
+
)
|
| 225 |
+
SELECT
|
| 226 |
+
COALESCE(SUM(CASE WHEN bucket = 'Assets' THEN repricing_pv ELSE 0 END), 0) AS assets_repricing_pv,
|
| 227 |
+
COALESCE(SUM(CASE WHEN bucket = 'SoF' THEN repricing_pv ELSE 0 END), 0) AS liabilities_repricing_pv,
|
| 228 |
+
-- Repricing Gap = Repricing Assets - Repricing Liabilities
|
| 229 |
+
(COALESCE(SUM(CASE WHEN bucket = 'Assets' THEN repricing_pv ELSE 0 END), 0) -
|
| 230 |
+
COALESCE(SUM(CASE WHEN bucket = 'SoF' THEN repricing_pv ELSE 0 END), 0)) AS repricing_gap
|
| 231 |
+
FROM repricing_volume;
|
| 232 |
+
"""
|
| 233 |
+
|
| 234 |
# =========================
|
| 235 |
# Dashboard callback
|
| 236 |
# =========================
|
| 237 |
+
def run_dashboard(scenario: str, runoff_pct: float, rate_shock_bps_input: float, nii_shock_bps: float) -> Tuple[str, str, str, str, str, Any, pd.DataFrame, pd.DataFrame, pd.DataFrame, str, pd.DataFrame]:
|
| 238 |
"""
|
| 239 |
Returns:
|
| 240 |
+
status, as_of, a1_text, a2_text, a3_text, figure, ladder_df, irr_df (BPV),
|
| 241 |
+
nii_df, explain_text, drivers_df
|
| 242 |
"""
|
| 243 |
try:
|
| 244 |
conn = connect_md()
|
| 245 |
|
| 246 |
+
# 1) Discover columns & ensure view is created
|
| 247 |
+
cols = discover_columns(conn, TABLE_FQN)
|
| 248 |
+
ensure_view(conn, cols)
|
| 249 |
+
|
| 250 |
# --- Scenario Application ---
|
|
|
|
|
|
|
| 251 |
stressed_view_fqn = "positions_v_stressed"
|
| 252 |
runoff_factor = 1.0
|
| 253 |
+
rate_shock_bps = 0.0 # Used for EVE (BPV) and NII sensitivity
|
| 254 |
|
| 255 |
if scenario == "Liquidity Stress: High Deposit Runoff" and runoff_pct > 0:
|
| 256 |
runoff_factor = (100.0 - runoff_pct) / 100.0
|
| 257 |
+
# Set shock to 0 for Liquidity stress
|
| 258 |
+
rate_shock_bps = 0.0
|
| 259 |
elif scenario == "IRR Stress: Rate Shock" and rate_shock_bps_input != 0:
|
| 260 |
rate_shock_bps = rate_shock_bps_input
|
| 261 |
+
# Use only run-off factor 1.0 (no liquidity stress)
|
| 262 |
+
runoff_factor = 1.0
|
| 263 |
|
| 264 |
+
# Create temporary view with scenario adjustments for both PV and Rate
|
| 265 |
+
# NOTE: Rate shock is currently only applied to derived metrics, not stored PV
|
| 266 |
scenario_sql = f"""
|
| 267 |
CREATE OR REPLACE TEMP VIEW {stressed_view_fqn} AS
|
| 268 |
+
SELECT
|
| 269 |
+
*,
|
| 270 |
+
-- Apply runoff only to liabilities (SoF)
|
| 271 |
+
CASE WHEN lower(product) IN ({', '.join([f"'{p}'" for p in PRODUCT_SOF])})
|
| 272 |
+
THEN Portfolio_value * {runoff_factor}
|
| 273 |
+
ELSE Portfolio_value
|
| 274 |
+
END AS stressed_pv,
|
| 275 |
+
-- Apply rate shock to Interest_rate for NII/Duration modeling (optional, but good practice)
|
| 276 |
+
Interest_rate + ({rate_shock_bps} / 100.0) AS stressed_ir
|
| 277 |
FROM {VIEW_FQN};
|
| 278 |
"""
|
| 279 |
conn.execute(scenario_sql)
|
| 280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
# 2) As-of (optional)
|
| 282 |
as_of = "N/A"
|
| 283 |
if "as_of_date" in cols:
|
|
|
|
| 285 |
if not tmp.empty and not pd.isna(tmp["d"].iloc[0]):
|
| 286 |
as_of = str(tmp["d"].iloc[0])[:10]
|
| 287 |
|
| 288 |
+
# 3) KPIs (Liquidity Gap)
|
| 289 |
+
kpi = conn.execute(KPI_SQL).fetchdf()
|
|
|
|
|
|
|
| 290 |
assets_t1 = safe_num(kpi["assets_t1"].iloc[0]) if not kpi.empty else 0.0
|
| 291 |
sof_t1 = safe_num(kpi["sof_t1"].iloc[0]) if not kpi.empty else 0.0
|
| 292 |
net_gap = safe_num(kpi["net_gap_t1"].iloc[0]) if not kpi.empty else 0.0
|
| 293 |
|
| 294 |
+
# 4) Ladder and Gap Drivers
|
| 295 |
+
ladder = conn.execute(LADDER_SQL).fetchdf()
|
| 296 |
+
drivers = conn.execute(GAP_DRIVERS_SQL).fetchdf()
|
| 297 |
+
|
| 298 |
+
# 5) Duration Gap & BPV (IRR - EVE)
|
| 299 |
+
duration_components = conn.execute(get_duration_components_sql(cols)).fetchdf()
|
| 300 |
+
|
| 301 |
+
# Calculate Modified Duration (D_A, D_L) and L/A Ratio
|
| 302 |
+
pv_assets = duration_components[duration_components['bucket'] == 'Assets']['total_pv'].sum()
|
| 303 |
+
pv_liab = duration_components[duration_components['bucket'] == 'SoF']['total_pv'].sum()
|
| 304 |
+
|
| 305 |
+
wd_assets = duration_components[duration_components['bucket'] == 'Assets']['weighted_duration_sum'].sum()
|
| 306 |
+
wd_liab = duration_components[duration_components['bucket'] == 'SoF']['weighted_duration_sum'].sum()
|
| 307 |
+
|
| 308 |
+
mod_dur_assets = wd_assets / pv_assets if pv_assets > 0 else 0.0
|
| 309 |
+
mod_dur_liab = wd_liab / pv_liab if pv_liab > 0 else 0.0
|
| 310 |
+
|
| 311 |
+
# L/A Ratio (Liabilities / Assets)
|
| 312 |
+
l_a_ratio = pv_liab / pv_assets if pv_assets > 0 else 0.0
|
| 313 |
+
|
| 314 |
+
# Duration Gap = D_A β D_L Γ (L/A)
|
| 315 |
+
duration_gap = mod_dur_assets - (mod_dur_liab * l_a_ratio)
|
| 316 |
+
|
| 317 |
+
# BPV (Basis Point Value) / DV01 (Dollar Value of 01)
|
| 318 |
+
# BPV is the combined sensitivity (SUM(PV * Mod_Dur)) * 0.0001
|
| 319 |
+
net_bpv = (wd_assets - wd_liab) * 0.0001
|
| 320 |
+
|
| 321 |
+
# Calculate EVE Impact
|
| 322 |
+
eve_impact = net_bpv * rate_shock_bps
|
| 323 |
+
|
| 324 |
+
# Create EVE/BPV display table
|
| 325 |
+
irr_df = pd.DataFrame({
|
| 326 |
+
"Metric": ["Assets Mod. Duration (Yrs)", "Liabilities Mod. Duration (Yrs)", "Duration Gap (Yrs)", "Net BPV (LKR)"],
|
| 327 |
+
"Value": [mod_dur_assets, mod_dur_liab, duration_gap, net_bpv]
|
| 328 |
+
})
|
| 329 |
+
irr_df['Value'] = irr_df['Value'].map('{:,.4f}'.format)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
# 6) NII Sensitivity (IRR - NII)
|
| 333 |
+
nii_data = conn.execute(get_nii_sensitivity_sql()).fetchdf()
|
| 334 |
+
|
| 335 |
+
assets_repricing_pv = safe_num(nii_data["assets_repricing_pv"].iloc[0])
|
| 336 |
+
liabilities_repricing_pv = safe_num(nii_data["liabilities_repricing_pv"].iloc[0])
|
| 337 |
+
repricing_gap = safe_num(nii_data["repricing_gap"].iloc[0])
|
| 338 |
+
|
| 339 |
+
# NII Delta = Repricing Gap * (Rate Shock / 10000)
|
| 340 |
+
nii_delta = repricing_gap * (nii_shock_bps / 10000.0)
|
| 341 |
+
|
| 342 |
+
# Create NII display table (in Mn)
|
| 343 |
+
nii_df = pd.DataFrame({
|
| 344 |
+
"Metric": [
|
| 345 |
+
"Assets Repricing (LKR Mn)",
|
| 346 |
+
"Liabilities Repricing (LKR Mn)",
|
| 347 |
+
"1-Year Repricing Gap (LKR Mn)",
|
| 348 |
+
f"NII Delta (+{nii_shock_bps:.0f}bps Shock) (LKR Mn)"
|
| 349 |
+
],
|
| 350 |
+
"Value": [
|
| 351 |
+
assets_repricing_pv / 1000000.0,
|
| 352 |
+
liabilities_repricing_pv / 1000000.0,
|
| 353 |
+
repricing_gap / 1000000.0,
|
| 354 |
+
nii_delta / 1000000.0
|
| 355 |
+
]
|
| 356 |
+
})
|
| 357 |
+
nii_df['Value'] = nii_df['Value'].map('{:,.2f}'.format)
|
| 358 |
+
|
| 359 |
+
# 7) Format output dataframes for UI
|
| 360 |
ladder_display = ladder.copy()
|
| 361 |
if "Amount (LKR Mn)" in ladder.columns:
|
| 362 |
ladder_display["Amount (LKR Mn)"] = ladder_display["Amount (LKR Mn)"].map('{:,.2f}'.format)
|
| 363 |
else:
|
| 364 |
ladder_display = pd.DataFrame()
|
| 365 |
|
| 366 |
+
drivers_display = drivers.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
if "Amount (LKR Mn)" in drivers.columns:
|
|
|
|
| 368 |
drivers_display["Amount (LKR Mn)"] = drivers_display["Amount (LKR Mn)"].map('{:,.2f}'.format)
|
| 369 |
else:
|
| 370 |
drivers_display = pd.DataFrame()
|
| 371 |
|
| 372 |
+
# 8) Chart
|
| 373 |
fig = plot_ladder(ladder)
|
| 374 |
|
| 375 |
+
# 9) Explanations
|
| 376 |
assets_t1_mn_str = f"{(assets_t1 / 1_000_000):,.2f}"
|
| 377 |
sof_t1_mn_str = f"{(sof_t1 / 1_000_000):,.2f}"
|
| 378 |
net_gap_mn_str = f"{(net_gap / 1_000_000):,.2f}"
|
| 379 |
+
gap_sign_str = "positive (surplus)" if net_gap >= 0 else "negative (deficit)"
|
| 380 |
|
| 381 |
a1_text = f"The amount of Assets maturing tomorrow (T+1) is **LKR {assets_t1_mn_str} Mn**."
|
| 382 |
a2_text = f"The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is **LKR {sof_t1_mn_str} Mn**."
|
|
|
|
| 388 |
top_sof_prod = sof_drivers.iloc[0] if not sof_drivers.empty else None
|
| 389 |
top_asset_prod = asset_drivers.iloc[0] if not asset_drivers.empty else None
|
| 390 |
|
| 391 |
+
explain_text = f"### Liquidity Gap Analysis (T+1)\n"
|
| 392 |
+
explain_text += f"The T+1 Net Liquidity Gap is **LKR {net_gap_mn_str} Mn** ({gap_sign_str}).\n\n"
|
| 393 |
if top_sof_prod is not None:
|
| 394 |
+
explain_text += f"* **Largest Outflow:** From `{top_sof_prod['product']}` at **LKR {top_sof_prod['Amount (LKR Mn)']:,.2f} Mn**.\n"
|
|
|
|
|
|
|
|
|
|
| 395 |
if top_asset_prod is not None:
|
| 396 |
+
explain_text += f"* **Largest Inflow:** From `{top_asset_prod['product']}` at **LKR {top_asset_prod['Amount (LKR Mn)']:,.2f} Mn**.\n"
|
| 397 |
+
|
| 398 |
+
# Add EVE/NII analysis to explanation
|
| 399 |
+
explain_text += f"\n### Interest Rate Risk (IRR) Analysis\n"
|
| 400 |
+
|
| 401 |
+
# NII Explain
|
| 402 |
+
nii_delta_mn = safe_num(nii_delta / 1000000.0)
|
| 403 |
+
repricing_gap_mn = safe_num(repricing_gap / 1000000.0)
|
| 404 |
+
explain_text += f"* **NII Sensitivity:** Based on the 1-Year Repricing Gap (LKR {repricing_gap_mn:,.2f} Mn), a **+{nii_shock_bps:.0f} bps** rate shock suggests a **LKR {nii_delta_mn:,.2f} Mn** change in 1-year Net Interest Income.\n"
|
| 405 |
+
|
| 406 |
+
# EVE Explain
|
| 407 |
+
eve_impact_mn = safe_num(eve_impact / 1000000.0)
|
| 408 |
+
explain_text += f"* **EVE Sensitivity:** The Duration Gap is **{duration_gap:,.2f} years**. A **+{rate_shock_bps:.0f} bps** parallel rate shock is projected to change the portfolio's Economic Value (EVE) by **LKR {eve_impact_mn:,.2f} Mn**."
|
| 409 |
+
|
| 410 |
+
if scenario != "Baseline":
|
| 411 |
+
explain_text += f"\n\n**SCENARIO ACTIVE:** Results reflect the '{scenario}' scenario."
|
| 412 |
|
| 413 |
status = f"β
OK (as of {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')})"
|
| 414 |
return (
|
|
|
|
| 419 |
a3_text,
|
| 420 |
fig,
|
| 421 |
ladder_display,
|
| 422 |
+
irr_df,
|
| 423 |
+
nii_df,
|
| 424 |
explain_text,
|
| 425 |
drivers_display,
|
| 426 |
)
|
|
|
|
| 438 |
fig,
|
| 439 |
empty_df,
|
| 440 |
empty_df,
|
| 441 |
+
empty_df,
|
| 442 |
"Analysis could not be performed.",
|
| 443 |
empty_df,
|
| 444 |
)
|
|
|
|
| 452 |
status = gr.Textbox(label="Status", interactive=False, lines=8)
|
| 453 |
|
| 454 |
with gr.Row():
|
| 455 |
+
refresh_btn = gr.Button("π Refresh/Calculate", variant="primary")
|
| 456 |
theme_btn = gr.Button("π Toggle Theme")
|
| 457 |
theme_btn.click(
|
| 458 |
None,
|
|
|
|
| 471 |
with gr.Accordion("Stress Scenario Parameters", open=True):
|
| 472 |
runoff_slider = gr.Slider(
|
| 473 |
label="Deposit Runoff (%)",
|
| 474 |
+
minimum=0, maximum=100, step=5, value=20,
|
| 475 |
info="For Liquidity Stress: Percentage of key deposits that run off."
|
| 476 |
)
|
| 477 |
shock_slider = gr.Slider(
|
| 478 |
+
label="EVE Rate Shock (bps)",
|
| 479 |
minimum=-500, maximum=500, step=25, value=200,
|
| 480 |
+
info="For IRR Stress: Parallel shift in the yield curve for EVE (Duration) calculation."
|
| 481 |
+
)
|
| 482 |
+
nii_shock_slider = gr.Slider(
|
| 483 |
+
label="NII Rate Shock (bps)",
|
| 484 |
+
minimum=-500, maximum=500, step=25, value=100,
|
| 485 |
+
info="For NII Sensitivity: Shock applied to 1-Year Repricing Gap."
|
| 486 |
)
|
| 487 |
+
|
| 488 |
+
explain_text = gr.Markdown("Analysis of the T+1 gap and IRR will appear here...")
|
| 489 |
|
| 490 |
# --- Right Column: KPIs, Charts, and Tables ---
|
| 491 |
with gr.Column(scale=3):
|
|
|
|
| 498 |
chart = gr.Plot(label="Maturity Ladder")
|
| 499 |
|
| 500 |
with gr.Tabs():
|
| 501 |
+
with gr.TabItem("Liquidity Gap Detail"):
|
| 502 |
+
ladder_df = gr.Dataframe(
|
| 503 |
+
headers=["Time Bucket", "Bucket", "Amount (LKR Mn)"],
|
| 504 |
+
type="pandas"
|
| 505 |
+
)
|
| 506 |
with gr.TabItem("T+1 Gap Drivers"):
|
| 507 |
drivers_df = gr.Dataframe(
|
| 508 |
headers=["Product", "Bucket", "Amount (LKR Mn)"],
|
| 509 |
+
type="pandas"
|
| 510 |
)
|
| 511 |
+
with gr.TabItem("IRR - EVE (Duration Gap)"):
|
| 512 |
irr_df = gr.Dataframe(
|
| 513 |
+
headers=["Metric", "Value"],
|
| 514 |
+
type="pandas"
|
| 515 |
+
)
|
| 516 |
+
with gr.TabItem("IRR - NII (Repricing Gap)"):
|
| 517 |
+
nii_df = gr.Dataframe(
|
| 518 |
+
headers=["Metric", "Value"],
|
| 519 |
+
type="pandas"
|
| 520 |
)
|
| 521 |
|
| 522 |
refresh_btn.click(
|
| 523 |
fn=run_dashboard,
|
| 524 |
+
inputs=[scenario_dd, runoff_slider, shock_slider, nii_shock_slider],
|
| 525 |
+
outputs=[status, as_of, a1, a2, a3, chart, ladder_df, irr_df, nii_df, explain_text, drivers_df],
|
| 526 |
)
|
| 527 |
|
| 528 |
if __name__ == "__main__":
|
| 529 |
+
demo.launch()
|