Update app.py
Browse files
app.py
CHANGED
|
@@ -6,40 +6,20 @@ from typing import Tuple, Any, List
|
|
| 6 |
import duckdb
|
| 7 |
import pandas as pd
|
| 8 |
import numpy as np
|
|
|
|
|
|
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
import gradio as gr
|
| 11 |
-
from pydantic import BaseModel, ConfigDict
|
| 12 |
-
from reportlab.lib.pagesizes import A4
|
| 13 |
-
from reportlab.lib.units import mm
|
| 14 |
-
from reportlab.pdfgen import canvas
|
| 15 |
|
| 16 |
-
#
|
| 17 |
# Basic configuration
|
| 18 |
-
#
|
| 19 |
APP_TITLE = "ALCO Liquidity & Interest-Rate Risk Dashboard"
|
| 20 |
TABLE_FQN = "my_db.main.masterdataset_v" # your source table
|
| 21 |
VIEW_FQN = "my_db.main.positions_v" # normalized view created by this app
|
| 22 |
EXPORT_DIR = Path("exports")
|
| 23 |
EXPORT_DIR.mkdir(exist_ok=True)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
# -------------------------------------------------------------------
|
| 27 |
-
# MotherDuck connection
|
| 28 |
-
# -------------------------------------------------------------------
|
| 29 |
-
def connect_md() -> duckdb.DuckDBPyConnection:
|
| 30 |
-
token = os.environ.get("MOTHERDUCK_TOKEN", "")
|
| 31 |
-
if not token:
|
| 32 |
-
raise RuntimeError("MOTHERDUCK_TOKEN is not set. Add it as a Space secret.")
|
| 33 |
-
try:
|
| 34 |
-
return duckdb.connect(f"md:?motherduck_token={token}")
|
| 35 |
-
except Exception as e:
|
| 36 |
-
print("β Connection failed:", e, file=sys.stderr)
|
| 37 |
-
raise
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# -------------------------------------------------------------------
|
| 41 |
-
# Column discovery & dynamic SQL
|
| 42 |
-
# -------------------------------------------------------------------
|
| 43 |
PRODUCT_ASSETS = [
|
| 44 |
"loan", "overdraft", "advances", "bills", "bill",
|
| 45 |
"tbond", "t-bond", "tbill", "t-bill", "repo_asset"
|
|
@@ -49,6 +29,29 @@ PRODUCT_SOF = [
|
|
| 49 |
"call", "repo_liab"
|
| 50 |
]
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
def discover_columns(conn: duckdb.DuckDBPyConnection, table_fqn: str) -> List[str]:
|
| 53 |
q = f"""
|
| 54 |
SELECT lower(column_name) AS col
|
|
@@ -70,7 +73,7 @@ def build_view_sql(existing_cols: List[str]) -> str:
|
|
| 70 |
if c.lower() in existing_cols:
|
| 71 |
select_list.append(c)
|
| 72 |
else:
|
| 73 |
-
# fill missing columns with NULLs
|
| 74 |
if c in ("Portfolio_value", "Interest_rate", "days_to_maturity", "months"):
|
| 75 |
select_list.append(f"CAST(NULL AS DOUBLE) AS {c}")
|
| 76 |
else:
|
|
@@ -94,51 +97,17 @@ def build_view_sql(existing_cols: List[str]) -> str:
|
|
| 94 |
FROM {TABLE_FQN};
|
| 95 |
"""
|
| 96 |
|
| 97 |
-
|
| 98 |
-
# -------------------------------------------------------------------
|
| 99 |
-
# Data model (allow pandas types)
|
| 100 |
-
# -------------------------------------------------------------------
|
| 101 |
-
class DashboardResult(BaseModel):
|
| 102 |
-
model_config = ConfigDict(arbitrary_types_allowed=True)
|
| 103 |
-
|
| 104 |
-
as_of_date: str
|
| 105 |
-
assets_t1: float
|
| 106 |
-
sof_t1: float
|
| 107 |
-
net_gap_t1: float
|
| 108 |
-
ladder: Any # pandas.DataFrame
|
| 109 |
-
irr: Any # pandas.DataFrame
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
# -------------------------------------------------------------------
|
| 113 |
-
# Core logic
|
| 114 |
-
# -------------------------------------------------------------------
|
| 115 |
def ensure_view(conn: duckdb.DuckDBPyConnection, existing_cols: List[str]):
|
| 116 |
-
# Mandatory columns in source:
|
| 117 |
required = {"product", "portfolio_value", "days_to_maturity"}
|
| 118 |
if not required.issubset(set(existing_cols)):
|
| 119 |
raise RuntimeError(
|
| 120 |
-
f"Source table {TABLE_FQN} must contain {sorted(required)}; "
|
| 121 |
-
f"found
|
| 122 |
)
|
| 123 |
conn.execute(build_view_sql(existing_cols))
|
| 124 |
|
| 125 |
-
def
|
| 126 |
-
|
| 127 |
-
ensure_view(conn, cols)
|
| 128 |
-
|
| 129 |
-
has_asof = "as_of_date" in cols
|
| 130 |
-
has_ir = "interest_rate" in cols
|
| 131 |
-
has_months = "months" in cols
|
| 132 |
-
|
| 133 |
-
# As-of date or N/A
|
| 134 |
-
if has_asof:
|
| 135 |
-
asof_df = conn.execute(f"SELECT max(as_of_date) AS d FROM {VIEW_FQN}").fetchdf()
|
| 136 |
-
as_of_date = "N/A" if asof_df.empty or pd.isna(asof_df["d"].iloc[0]) else str(asof_df["d"].iloc[0])[:10]
|
| 137 |
-
else:
|
| 138 |
-
as_of_date = "N/A"
|
| 139 |
-
|
| 140 |
-
# KPIs
|
| 141 |
-
kpi_sql = f"""
|
| 142 |
SELECT
|
| 143 |
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS assets_t1,
|
| 144 |
COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS sof_t1,
|
|
@@ -146,10 +115,13 @@ def fetch_all(conn: duckdb.DuckDBPyConnection) -> DashboardResult:
|
|
| 146 |
- COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS net_gap_t1
|
| 147 |
FROM {VIEW_FQN};
|
| 148 |
"""
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
SELECT
|
| 154 |
CASE
|
| 155 |
WHEN days_to_maturity <= 1 THEN 'T+1'
|
|
@@ -163,16 +135,20 @@ def fetch_all(conn: duckdb.DuckDBPyConnection) -> DashboardResult:
|
|
| 163 |
GROUP BY 1,2
|
| 164 |
ORDER BY 1,2;
|
| 165 |
"""
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
-
|
|
|
|
|
|
|
| 169 |
t_expr = "CASE WHEN days_to_maturity IS NOT NULL THEN days_to_maturity/365.0"
|
| 170 |
if has_months:
|
| 171 |
t_expr += " WHEN months IS NOT NULL THEN months/12.0"
|
| 172 |
t_expr += " ELSE NULL END"
|
| 173 |
y_expr = "(Interest_rate/100.0)" if has_ir else "0.0"
|
| 174 |
-
|
| 175 |
-
irr_sql = f"""
|
| 176 |
SELECT
|
| 177 |
bucket,
|
| 178 |
SUM(Portfolio_value) AS pv_sum,
|
|
@@ -181,82 +157,133 @@ def fetch_all(conn: duckdb.DuckDBPyConnection) -> DashboardResult:
|
|
| 181 |
FROM {VIEW_FQN}
|
| 182 |
GROUP BY bucket;
|
| 183 |
"""
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
assets_t1=float(kpi["assets_t1"].iloc[0]),
|
| 189 |
-
sof_t1=float(kpi["sof_t1"].iloc[0]),
|
| 190 |
-
net_gap_t1=float(kpi["net_gap_t1"].iloc[0]),
|
| 191 |
-
ladder=ladder,
|
| 192 |
-
irr=irr,
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
# -------------------------------------------------------------------
|
| 197 |
-
# Visualization
|
| 198 |
-
# -------------------------------------------------------------------
|
| 199 |
-
def _zeros_like_index(index) -> pd.Series:
|
| 200 |
-
return pd.Series([0] * len(index), index=index)
|
| 201 |
|
| 202 |
def plot_ladder(df: pd.DataFrame):
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
with pd.ExcelWriter(out, engine="xlsxwriter") as xw:
|
| 227 |
pd.DataFrame({
|
| 228 |
-
"as_of_date": [
|
| 229 |
-
"assets_t1": [
|
| 230 |
-
"sof_t1": [
|
| 231 |
-
"net_gap_t1": [
|
| 232 |
}).to_excel(xw, index=False, sheet_name="kpis")
|
| 233 |
-
|
| 234 |
-
|
| 235 |
return out
|
| 236 |
|
| 237 |
-
|
| 238 |
-
#
|
| 239 |
-
#
|
| 240 |
-
# -------------------------------------------------------------------
|
| 241 |
def run_dashboard():
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
|
|
|
|
|
|
|
|
|
| 257 |
with gr.Blocks(title=APP_TITLE) as demo:
|
| 258 |
gr.Markdown(f"# {APP_TITLE}\n_Source:_ `{TABLE_FQN}` β `{VIEW_FQN}`")
|
| 259 |
|
|
|
|
|
|
|
| 260 |
with gr.Row():
|
| 261 |
refresh_btn = gr.Button("π Refresh", variant="primary")
|
| 262 |
|
|
@@ -274,7 +301,7 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 274 |
|
| 275 |
refresh_btn.click(
|
| 276 |
fn=run_dashboard,
|
| 277 |
-
outputs=[as_of, a1, a2, a3, chart, ladder_df, irr_df, excel_file],
|
| 278 |
)
|
| 279 |
|
| 280 |
if __name__ == "__main__":
|
|
|
|
| 6 |
import duckdb
|
| 7 |
import pandas as pd
|
| 8 |
import numpy as np
|
| 9 |
+
import matplotlib
|
| 10 |
+
matplotlib.use("Agg") # headless backend for Spaces
|
| 11 |
import matplotlib.pyplot as plt
|
| 12 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# =========================
|
| 15 |
# Basic configuration
|
| 16 |
+
# =========================
|
| 17 |
APP_TITLE = "ALCO Liquidity & Interest-Rate Risk Dashboard"
|
| 18 |
TABLE_FQN = "my_db.main.masterdataset_v" # your source table
|
| 19 |
VIEW_FQN = "my_db.main.positions_v" # normalized view created by this app
|
| 20 |
EXPORT_DIR = Path("exports")
|
| 21 |
EXPORT_DIR.mkdir(exist_ok=True)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
PRODUCT_ASSETS = [
|
| 24 |
"loan", "overdraft", "advances", "bills", "bill",
|
| 25 |
"tbond", "t-bond", "tbill", "t-bill", "repo_asset"
|
|
|
|
| 29 |
"call", "repo_liab"
|
| 30 |
]
|
| 31 |
|
| 32 |
+
# =========================
|
| 33 |
+
# Helpers
|
| 34 |
+
# =========================
|
| 35 |
+
def safe_float(x, default: float = 0.0) -> float:
|
| 36 |
+
try:
|
| 37 |
+
if x is None or (isinstance(x, float) and np.isnan(x)):
|
| 38 |
+
return default
|
| 39 |
+
return float(x)
|
| 40 |
+
except Exception:
|
| 41 |
+
return default
|
| 42 |
+
|
| 43 |
+
def zeros_like_index(index) -> pd.Series:
|
| 44 |
+
return pd.Series([0] * len(index), index=index)
|
| 45 |
+
|
| 46 |
+
def connect_md() -> duckdb.DuckDBPyConnection:
|
| 47 |
+
token = os.environ.get("MOTHERDUCK_TOKEN", "")
|
| 48 |
+
if not token:
|
| 49 |
+
raise RuntimeError("MOTHERDUCK_TOKEN is not set. Add it in your Space β Settings β Secrets.")
|
| 50 |
+
try:
|
| 51 |
+
return duckdb.connect(f"md:?motherduck_token={token}")
|
| 52 |
+
except Exception as e:
|
| 53 |
+
raise RuntimeError(f"MotherDuck connection failed: {e}") from e
|
| 54 |
+
|
| 55 |
def discover_columns(conn: duckdb.DuckDBPyConnection, table_fqn: str) -> List[str]:
|
| 56 |
q = f"""
|
| 57 |
SELECT lower(column_name) AS col
|
|
|
|
| 73 |
if c.lower() in existing_cols:
|
| 74 |
select_list.append(c)
|
| 75 |
else:
|
| 76 |
+
# fill missing columns with typed NULLs
|
| 77 |
if c in ("Portfolio_value", "Interest_rate", "days_to_maturity", "months"):
|
| 78 |
select_list.append(f"CAST(NULL AS DOUBLE) AS {c}")
|
| 79 |
else:
|
|
|
|
| 97 |
FROM {TABLE_FQN};
|
| 98 |
"""
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
def ensure_view(conn: duckdb.DuckDBPyConnection, existing_cols: List[str]):
|
|
|
|
| 101 |
required = {"product", "portfolio_value", "days_to_maturity"}
|
| 102 |
if not required.issubset(set(existing_cols)):
|
| 103 |
raise RuntimeError(
|
| 104 |
+
f"Source table {TABLE_FQN} must contain columns {sorted(required)}; "
|
| 105 |
+
f"found {sorted(existing_cols)}"
|
| 106 |
)
|
| 107 |
conn.execute(build_view_sql(existing_cols))
|
| 108 |
|
| 109 |
+
def fetch_kpis(conn: duckdb.DuckDBPyConnection) -> Tuple[float, float, float]:
|
| 110 |
+
sql = f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
SELECT
|
| 112 |
COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS assets_t1,
|
| 113 |
COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS sof_t1,
|
|
|
|
| 115 |
- COALESCE(SUM(CASE WHEN bucket='SoF' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS net_gap_t1
|
| 116 |
FROM {VIEW_FQN};
|
| 117 |
"""
|
| 118 |
+
df = conn.execute(sql).fetchdf()
|
| 119 |
+
if df.empty:
|
| 120 |
+
return 0.0, 0.0, 0.0
|
| 121 |
+
return safe_float(df["assets_t1"].iloc[0]), safe_float(df["sof_t1"].iloc[0]), safe_float(df["net_gap_t1"].iloc[0])
|
| 122 |
|
| 123 |
+
def fetch_ladder(conn: duckdb.DuckDBPyConnection) -> pd.DataFrame:
|
| 124 |
+
sql = f"""
|
| 125 |
SELECT
|
| 126 |
CASE
|
| 127 |
WHEN days_to_maturity <= 1 THEN 'T+1'
|
|
|
|
| 135 |
GROUP BY 1,2
|
| 136 |
ORDER BY 1,2;
|
| 137 |
"""
|
| 138 |
+
df = conn.execute(sql).fetchdf()
|
| 139 |
+
if df.empty:
|
| 140 |
+
return pd.DataFrame({"time_bucket": [], "bucket": [], "amount": []})
|
| 141 |
+
return df
|
| 142 |
|
| 143 |
+
def fetch_irr(conn: duckdb.DuckDBPyConnection, cols: List[str]) -> pd.DataFrame:
|
| 144 |
+
has_months = "months" in cols
|
| 145 |
+
has_ir = "interest_rate" in cols
|
| 146 |
t_expr = "CASE WHEN days_to_maturity IS NOT NULL THEN days_to_maturity/365.0"
|
| 147 |
if has_months:
|
| 148 |
t_expr += " WHEN months IS NOT NULL THEN months/12.0"
|
| 149 |
t_expr += " ELSE NULL END"
|
| 150 |
y_expr = "(Interest_rate/100.0)" if has_ir else "0.0"
|
| 151 |
+
sql = f"""
|
|
|
|
| 152 |
SELECT
|
| 153 |
bucket,
|
| 154 |
SUM(Portfolio_value) AS pv_sum,
|
|
|
|
| 157 |
FROM {VIEW_FQN}
|
| 158 |
GROUP BY bucket;
|
| 159 |
"""
|
| 160 |
+
df = conn.execute(sql).fetchdf()
|
| 161 |
+
if df.empty:
|
| 162 |
+
return pd.DataFrame({"bucket": [], "pv_sum": [], "dur_mac": [], "dur_mod": []})
|
| 163 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
def plot_ladder(df: pd.DataFrame):
|
| 166 |
+
try:
|
| 167 |
+
if df.empty:
|
| 168 |
+
fig, ax = plt.subplots(figsize=(7, 3))
|
| 169 |
+
ax.text(0.5, 0.5, "No data", ha="center", va="center", fontsize=12)
|
| 170 |
+
ax.axis("off")
|
| 171 |
+
return fig
|
| 172 |
+
|
| 173 |
+
pivot = df.pivot(index="time_bucket", columns="bucket", values="amount").fillna(0)
|
| 174 |
+
order = ["T+1", "T+2..7", "T+8..30", "T+31+"]
|
| 175 |
+
pivot = pivot.reindex(order)
|
| 176 |
+
fig, ax = plt.subplots(figsize=(7, 4))
|
| 177 |
+
|
| 178 |
+
assets = pivot["Assets"] if "Assets" in pivot.columns else zeros_like_index(pivot.index)
|
| 179 |
+
sof = pivot["SoF"] if "SoF" in pivot.columns else zeros_like_index(pivot.index)
|
| 180 |
+
|
| 181 |
+
ax.bar(pivot.index, assets, label="Assets")
|
| 182 |
+
ax.bar(pivot.index, -sof, label="SoF")
|
| 183 |
+
ax.axhline(0, color="gray", lw=1)
|
| 184 |
+
ax.set_ylabel("LKR")
|
| 185 |
+
ax.set_title("Maturity Ladder (Assets vs SoF)")
|
| 186 |
+
ax.legend()
|
| 187 |
+
fig.tight_layout()
|
| 188 |
+
return fig
|
| 189 |
+
except Exception as e:
|
| 190 |
+
# Return a simple figure with the error rendered
|
| 191 |
+
fig, ax = plt.subplots(figsize=(7, 3))
|
| 192 |
+
ax.text(0.01, 0.8, "Chart Error:", fontsize=12, ha="left")
|
| 193 |
+
ax.text(0.01, 0.5, str(e), fontsize=10, ha="left", wrap=True)
|
| 194 |
+
ax.axis("off")
|
| 195 |
+
return fig
|
| 196 |
+
|
| 197 |
+
def export_excel(as_of_date: str,
|
| 198 |
+
assets_t1: float,
|
| 199 |
+
sof_t1: float,
|
| 200 |
+
net_gap_t1: float,
|
| 201 |
+
ladder: pd.DataFrame,
|
| 202 |
+
irr: pd.DataFrame) -> Path:
|
| 203 |
+
out = EXPORT_DIR / f"alco_report_{as_of_date}.xlsx"
|
| 204 |
with pd.ExcelWriter(out, engine="xlsxwriter") as xw:
|
| 205 |
pd.DataFrame({
|
| 206 |
+
"as_of_date": [as_of_date],
|
| 207 |
+
"assets_t1": [assets_t1],
|
| 208 |
+
"sof_t1": [sof_t1],
|
| 209 |
+
"net_gap_t1": [net_gap_t1],
|
| 210 |
}).to_excel(xw, index=False, sheet_name="kpis")
|
| 211 |
+
ladder.to_excel(xw, index=False, sheet_name="ladder")
|
| 212 |
+
irr.to_excel(xw, index=False, sheet_name="irr")
|
| 213 |
return out
|
| 214 |
|
| 215 |
+
# =========================
|
| 216 |
+
# Gradio UI logic
|
| 217 |
+
# =========================
|
|
|
|
| 218 |
def run_dashboard():
|
| 219 |
+
"""
|
| 220 |
+
Returns:
|
| 221 |
+
status (str),
|
| 222 |
+
as_of (str),
|
| 223 |
+
assets_t1 (float),
|
| 224 |
+
sof_t1 (float),
|
| 225 |
+
net_gap_t1 (float),
|
| 226 |
+
fig (matplotlib fig),
|
| 227 |
+
ladder_df (DataFrame),
|
| 228 |
+
irr_df (DataFrame),
|
| 229 |
+
excel_file (path str)
|
| 230 |
+
"""
|
| 231 |
+
status = "β
OK"
|
| 232 |
+
try:
|
| 233 |
+
conn = connect_md()
|
| 234 |
+
cols = discover_columns(conn, TABLE_FQN) # lower-cased names
|
| 235 |
+
ensure_view(conn, cols)
|
| 236 |
+
|
| 237 |
+
# As-of when available (otherwise N/A)
|
| 238 |
+
as_of = "N/A"
|
| 239 |
+
if "as_of_date" in cols:
|
| 240 |
+
tmp = conn.execute(f"SELECT max(as_of_date) AS d FROM {VIEW_FQN}").fetchdf()
|
| 241 |
+
if not tmp.empty and not pd.isna(tmp["d"].iloc[0]):
|
| 242 |
+
as_of = str(tmp["d"].iloc[0])[:10]
|
| 243 |
+
|
| 244 |
+
assets_t1, sof_t1, net_gap_t1 = fetch_kpis(conn)
|
| 245 |
+
ladder = fetch_ladder(conn)
|
| 246 |
+
irr = fetch_irr(conn, cols)
|
| 247 |
+
|
| 248 |
+
fig = plot_ladder(ladder)
|
| 249 |
+
xlsx_path = export_excel(as_of, assets_t1, sof_t1, net_gap_t1, ladder, irr)
|
| 250 |
+
|
| 251 |
+
return (
|
| 252 |
+
status,
|
| 253 |
+
as_of,
|
| 254 |
+
assets_t1,
|
| 255 |
+
sof_t1,
|
| 256 |
+
net_gap_t1,
|
| 257 |
+
fig,
|
| 258 |
+
ladder,
|
| 259 |
+
irr,
|
| 260 |
+
str(xlsx_path),
|
| 261 |
+
)
|
| 262 |
+
except Exception as e:
|
| 263 |
+
# Swallow the error for the UI; show user-friendly message + zeros/empty placeholders
|
| 264 |
+
status = f"β Error: {e}"
|
| 265 |
+
empty_df = pd.DataFrame()
|
| 266 |
+
fig = plot_ladder(empty_df)
|
| 267 |
+
return (
|
| 268 |
+
status,
|
| 269 |
+
"N/A",
|
| 270 |
+
0.0,
|
| 271 |
+
0.0,
|
| 272 |
+
0.0,
|
| 273 |
+
fig,
|
| 274 |
+
empty_df,
|
| 275 |
+
empty_df,
|
| 276 |
+
"",
|
| 277 |
+
)
|
| 278 |
|
| 279 |
+
# =========================
|
| 280 |
+
# Build Gradio UI
|
| 281 |
+
# =========================
|
| 282 |
with gr.Blocks(title=APP_TITLE) as demo:
|
| 283 |
gr.Markdown(f"# {APP_TITLE}\n_Source:_ `{TABLE_FQN}` β `{VIEW_FQN}`")
|
| 284 |
|
| 285 |
+
status = gr.Textbox(label="Status", interactive=False)
|
| 286 |
+
|
| 287 |
with gr.Row():
|
| 288 |
refresh_btn = gr.Button("π Refresh", variant="primary")
|
| 289 |
|
|
|
|
| 301 |
|
| 302 |
refresh_btn.click(
|
| 303 |
fn=run_dashboard,
|
| 304 |
+
outputs=[status, as_of, a1, a2, a3, chart, ladder_df, irr_df, excel_file],
|
| 305 |
)
|
| 306 |
|
| 307 |
if __name__ == "__main__":
|