NetraEmbed / README.md
AdithyaSK's picture
Update README.md and app.py: change SDK version to 6.0.2 and enhance error handling in document indexing
e03ab78
---
title: NetraEmbed
emoji: πŸ‘οΈ
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 6.0.2
app_file: app.py
pinned: false
license: mit
short_description: Universal Multilingual Multimodal Document Retrieval
---
# NetraEmbed - Universal Multilingual Multimodal Document Retrieval
This Space demonstrates **NetraEmbed** and **ColNetraEmbed**, state-of-the-art multilingual multimodal document retrieval models based on the BiGemma3 and ColGemma3 architectures.
## Features
- **NetraEmbed (BiGemma3)**: Single-vector embedding with Matryoshka representation for fast retrieval
- **ColNetraEmbed (ColGemma3)**: Multi-vector embedding with late interaction for high-quality retrieval with attention heatmaps
- **ZeroGPU Integration**: Efficient dynamic GPU allocation for on-demand model loading
- **PDF Document Support**: Upload PDFs and perform semantic search across pages
- **Side-by-side Comparison**: Compare both models simultaneously
## Citation
If you use NetraEmbed or ColNetraEmbed in your research, please cite:
```bibtex
@misc{kolavi2025m3druniversalmultilingualmultimodal,
title={M3DR: Towards Universal Multilingual Multimodal Document Retrieval},
author={Adithya S Kolavi and Vyoman Jain},
year={2025},
eprint={2512.03514},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2512.03514}
}
```
## Links
- πŸ“„ [Paper](https://arxiv.org/abs/2512.03514)
- πŸ’» [GitHub](https://github.com/adithya-s-k/colpali)
- πŸ€— [Models on Hugging Face](https://huggingface.co/Cognitive-Lab)
- 🌐 [CognitiveLab Website](https://www.cognitivelab.in)
## Usage
1. **Load Model**: Select your preferred model (NetraEmbed, ColNetraEmbed, or Both) and click "Load Model"
2. **Upload PDF**: Upload a PDF document to index
3. **Index Document**: Click "Index Document" to process and embed the pages
4. **Query**: Enter your search query and click "Search" to retrieve relevant pages
This Space uses ZeroGPU for dynamic GPU allocation. Models are loaded on-demand when functions are called.
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference