Spaces:
Running
on
Zero
Running
on
Zero
| title: NetraEmbed | |
| emoji: ποΈ | |
| colorFrom: yellow | |
| colorTo: purple | |
| sdk: gradio | |
| sdk_version: 6.0.2 | |
| app_file: app.py | |
| pinned: false | |
| license: mit | |
| short_description: Universal Multilingual Multimodal Document Retrieval | |
| # NetraEmbed - Universal Multilingual Multimodal Document Retrieval | |
| This Space demonstrates **NetraEmbed** and **ColNetraEmbed**, state-of-the-art multilingual multimodal document retrieval models based on the BiGemma3 and ColGemma3 architectures. | |
| ## Features | |
| - **NetraEmbed (BiGemma3)**: Single-vector embedding with Matryoshka representation for fast retrieval | |
| - **ColNetraEmbed (ColGemma3)**: Multi-vector embedding with late interaction for high-quality retrieval with attention heatmaps | |
| - **ZeroGPU Integration**: Efficient dynamic GPU allocation for on-demand model loading | |
| - **PDF Document Support**: Upload PDFs and perform semantic search across pages | |
| - **Side-by-side Comparison**: Compare both models simultaneously | |
| ## Citation | |
| If you use NetraEmbed or ColNetraEmbed in your research, please cite: | |
| ```bibtex | |
| @misc{kolavi2025m3druniversalmultilingualmultimodal, | |
| title={M3DR: Towards Universal Multilingual Multimodal Document Retrieval}, | |
| author={Adithya S Kolavi and Vyoman Jain}, | |
| year={2025}, | |
| eprint={2512.03514}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR}, | |
| url={https://arxiv.org/abs/2512.03514} | |
| } | |
| ``` | |
| ## Links | |
| - π [Paper](https://arxiv.org/abs/2512.03514) | |
| - π» [GitHub](https://github.com/adithya-s-k/colpali) | |
| - π€ [Models on Hugging Face](https://huggingface.co/Cognitive-Lab) | |
| - π [CognitiveLab Website](https://www.cognitivelab.in) | |
| ## Usage | |
| 1. **Load Model**: Select your preferred model (NetraEmbed, ColNetraEmbed, or Both) and click "Load Model" | |
| 2. **Upload PDF**: Upload a PDF document to index | |
| 3. **Index Document**: Click "Index Document" to process and embed the pages | |
| 4. **Query**: Enter your search query and click "Search" to retrieve relevant pages | |
| This Space uses ZeroGPU for dynamic GPU allocation. Models are loaded on-demand when functions are called. | |
| Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference | |