Spaces:
Running
on
Zero
Running
on
Zero
A newer version of the Gradio SDK is available:
6.1.0
metadata
title: NetraEmbed
emoji: ποΈ
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 6.0.2
app_file: app.py
pinned: false
license: mit
short_description: Universal Multilingual Multimodal Document Retrieval
NetraEmbed - Universal Multilingual Multimodal Document Retrieval
This Space demonstrates NetraEmbed and ColNetraEmbed, state-of-the-art multilingual multimodal document retrieval models based on the BiGemma3 and ColGemma3 architectures.
Features
- NetraEmbed (BiGemma3): Single-vector embedding with Matryoshka representation for fast retrieval
- ColNetraEmbed (ColGemma3): Multi-vector embedding with late interaction for high-quality retrieval with attention heatmaps
- ZeroGPU Integration: Efficient dynamic GPU allocation for on-demand model loading
- PDF Document Support: Upload PDFs and perform semantic search across pages
- Side-by-side Comparison: Compare both models simultaneously
Citation
If you use NetraEmbed or ColNetraEmbed in your research, please cite:
@misc{kolavi2025m3druniversalmultilingualmultimodal,
title={M3DR: Towards Universal Multilingual Multimodal Document Retrieval},
author={Adithya S Kolavi and Vyoman Jain},
year={2025},
eprint={2512.03514},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2512.03514}
}
Links
- π Paper
- π» GitHub
- π€ Models on Hugging Face
- π CognitiveLab Website
Usage
- Load Model: Select your preferred model (NetraEmbed, ColNetraEmbed, or Both) and click "Load Model"
- Upload PDF: Upload a PDF document to index
- Index Document: Click "Index Document" to process and embed the pages
- Query: Enter your search query and click "Search" to retrieve relevant pages
This Space uses ZeroGPU for dynamic GPU allocation. Models are loaded on-demand when functions are called.
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference