NetraEmbed / README.md
AdithyaSK's picture
Update README.md and app.py: change SDK version to 6.0.2 and enhance error handling in document indexing
e03ab78

A newer version of the Gradio SDK is available: 6.1.0

Upgrade
metadata
title: NetraEmbed
emoji: πŸ‘οΈ
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 6.0.2
app_file: app.py
pinned: false
license: mit
short_description: Universal Multilingual Multimodal Document Retrieval

NetraEmbed - Universal Multilingual Multimodal Document Retrieval

This Space demonstrates NetraEmbed and ColNetraEmbed, state-of-the-art multilingual multimodal document retrieval models based on the BiGemma3 and ColGemma3 architectures.

Features

  • NetraEmbed (BiGemma3): Single-vector embedding with Matryoshka representation for fast retrieval
  • ColNetraEmbed (ColGemma3): Multi-vector embedding with late interaction for high-quality retrieval with attention heatmaps
  • ZeroGPU Integration: Efficient dynamic GPU allocation for on-demand model loading
  • PDF Document Support: Upload PDFs and perform semantic search across pages
  • Side-by-side Comparison: Compare both models simultaneously

Citation

If you use NetraEmbed or ColNetraEmbed in your research, please cite:

@misc{kolavi2025m3druniversalmultilingualmultimodal,
  title={M3DR: Towards Universal Multilingual Multimodal Document Retrieval},
  author={Adithya S Kolavi and Vyoman Jain},
  year={2025},
  eprint={2512.03514},
  archivePrefix={arXiv},
  primaryClass={cs.IR},
  url={https://arxiv.org/abs/2512.03514}
}

Links

Usage

  1. Load Model: Select your preferred model (NetraEmbed, ColNetraEmbed, or Both) and click "Load Model"
  2. Upload PDF: Upload a PDF document to index
  3. Index Document: Click "Index Document" to process and embed the pages
  4. Query: Enter your search query and click "Search" to retrieve relevant pages

This Space uses ZeroGPU for dynamic GPU allocation. Models are loaded on-demand when functions are called.

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference