File size: 22,668 Bytes
fe4fb5e 0ba0b32 fe4fb5e 9e48adf fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 8e07b17 0ba0b32 8e07b17 0ba0b32 9e48adf 8e07b17 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 d680eb8 0ba0b32 d680eb8 0ba0b32 d680eb8 9e48adf 0ba0b32 9e48adf 0ba0b32 9e48adf 0ba0b32 9e48adf fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 0ba0b32 fe4fb5e 9e48adf d680eb8 9e48adf d680eb8 9e48adf d680eb8 9e48adf 0ba0b32 9e48adf d680eb8 0ba0b32 d680eb8 0ba0b32 9e48adf fe4fb5e 93ebee4 fe4fb5e 0ba0b32 fe4fb5e bd89e14 fe4fb5e 9e48adf 0ba0b32 9e48adf 93ebee4 fe4fb5e 93ebee4 fe4fb5e 0ba0b32 d680eb8 0ba0b32 bd89e14 d680eb8 fe4fb5e 0ba0b32 d680eb8 fe4fb5e 0ba0b32 bd89e14 0ba0b32 bd89e14 0ba0b32 bd89e14 fe4fb5e 0ba0b32 bd89e14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from typing import Dict, Tuple, List, Optional, Callable
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.io as pio
# ======================================
# 設定(添付CSVの既定パス:必要に応じて変更可)
# ======================================
DEFAULT_CSV_PATH = "/mnt/data/mock_data_id_9999.csv"
# ======================================
# ユーティリティ
# ======================================
def normalize(s: str) -> str:
return str(s).replace("\u3000", " ").replace("\n", "").replace("\r", "").strip()
def try_read_csv_3header(path_or_file) -> pd.DataFrame:
"""
3行ヘッダーCSVを読み込む(cp932/utf-8-sig フォールバック)。
1列目は timestamp として datetime 変換。
2列目以降は (ID, ItemName, ProcessName) の3段。
"""
last_err = None
for enc in ["cp932", "utf-8-sig", "utf-8"]:
try:
df = pd.read_csv(path_or_file, header=[0, 1, 2], encoding=enc)
break
except Exception as e:
last_err = e
df = None
if df is None:
raise last_err
# 先頭列を timestamp に
ts = pd.to_datetime(df.iloc[:, 0], errors="coerce")
df = df.drop(df.columns[0], axis=1)
df.insert(0, "timestamp", ts)
return df
def col_tuple_to_str(col) -> str:
if isinstance(col, tuple):
return "_".join([str(x) for x in col if x])
return str(col)
def build_index_maps(df: pd.DataFrame):
"""
プロセス(3行目=タプルの3つ目)→ 該当列情報 の辞書を作る。
各列は (col_tuple, id, item, process, col_str)
"""
process_map = {}
for col in df.columns:
if col == "timestamp":
continue
if isinstance(col, tuple) and len(col) >= 3:
col_id, item_name, process_name = str(col[0]), str(col[1]), str(col[2])
else:
parts = str(col).split("_")
if len(parts) >= 3:
col_id, item_name, process_name = parts[0], "_".join(parts[1:-1]), parts[-1]
else:
continue
rec = {
"col_tuple": col,
"id": col_id,
"item": item_name,
"process": process_name,
"col_str": col_tuple_to_str(col),
}
process_map.setdefault(process_name, []).append(rec)
processes = sorted(list(process_map.keys()), key=lambda x: normalize(x))
return process_map, processes
def extract_measure_tag(item_name: str) -> str:
"""
項目名末尾の計測項目タグを抽出。([...]優先→末尾語)
"""
s = normalize(item_name)
m = re.search(r"\[([^\[\]]+)\]\s*$", s)
if m:
return m.group(1).strip()
tokens = re.split(r"\s+", s)
return tokens[-1] if tokens else s
def extract_category(item_name: str) -> str:
"""
項目名の「最後の '_' 以降」をカテゴリ名として返す。
例: '除害RO_A処理水_導電率' → '導電率' / '..._圧力' → '圧力'
'_' が無い場合は「処理水…」の後ろや末尾語を推定。
"""
s = normalize(item_name)
if "_" in s:
return s.split("_")[-1].strip()
m = re.search(r"処理水[_\s]*(.+)$", s)
if m:
return m.group(1).strip()
toks = re.split(r"\s+", s)
return toks[-1] if toks else s
# ======================================
# しきい値ハンドリング
# ======================================
def try_read_thresholds_excel(file) -> Optional[pd.DataFrame]:
"""
しきい値Excel(任意)を読み込み。
想定カラム: ColumnID, ItemName, ProcessNo_ProcessName, LL, L, H, HH, Important(任意)
"""
if file is None:
return None
df = pd.read_excel(file)
df.columns = [normalize(c) for c in df.columns]
needed = {"ColumnID", "ItemName", "ProcessNo_ProcessName"}
if not needed.issubset(set(df.columns)):
rename_map = {}
for k in list(df.columns):
nk = normalize(str(k))
if nk.lower() in ["columnid", "colid", "id"]:
rename_map[k] = "ColumnID"
elif nk.lower() in ["itemname", "item", "name"]:
rename_map[k] = "ItemName"
elif nk.lower() in ["processno_processname", "process", "processname"]:
rename_map[k] = "ProcessNo_ProcessName"
if rename_map:
df = df.rename(columns=rename_map)
for c in ["LL", "L", "H", "HH"]:
if c in df.columns:
df[c] = pd.to_numeric(df[c], errors="coerce")
if "Important" in df.columns:
df["Important"] = (
df["Important"].astype(str).str.upper().map({"TRUE": True, "FALSE": False})
)
return df
def build_threshold_lookup(thr_df: Optional[pd.DataFrame]) -> Dict[Tuple[str, str, str], Tuple[float, float, float, float]]:
"""
キー: (ColumnID, ItemName, ProcessNo_ProcessName) → (LL, L, H, HH)
"""
lookup = {}
if thr_df is None or thr_df.empty:
return lookup
for _, r in thr_df.iterrows():
colid = normalize(str(r.get("ColumnID", "")))
item = normalize(str(r.get("ItemName", "")))
proc = normalize(str(r.get("ProcessNo_ProcessName", "")))
LL = r.get("LL", np.nan)
L = r.get("L", np.nan)
H = r.get("H", np.nan)
HH = r.get("HH", np.nan)
lookup[(colid, item, proc)] = (LL, L, H, HH)
return lookup
def auto_threshold(series: pd.Series) -> Tuple[float, float, float, float]:
"""
自動しきい値: mean ± std(LL/L/H/HH を mean±2sd / ±1sd とする)
"""
s = series.dropna()
if len(s) < 5:
return (np.nan, np.nan, np.nan, np.nan)
m = float(s.mean())
sd = float(s.std(ddof=1)) if len(s) >= 2 else 0.0
return (m - 2*sd, m - sd, m + sd, m + 2*sd)
def judge_status(value, LL, L, H, HH) -> str:
if pd.notna(LL) and value <= LL:
return "LL"
if pd.notna(L) and value <= L:
return "L"
if pd.notna(HH) and value >= HH:
return "HH"
if pd.notna(H) and value >= H:
return "H"
return "OK"
# カラー設定
STATUS_COLOR = {
"LL": "#2b6cb0",
"L": "#63b3ed",
"OK": "#a0aec0",
"H": "#f6ad55",
"HH": "#e53e3e",
}
LINE_COLOR = "#4a5568"
# ======================================
# 汎用:グループキーに応じて図を作る(サブプロット)
# group_by: "all" / "category" / "item"
# ======================================
def _group_key_func(group_by: str) -> Callable[[dict], str]:
if group_by == "item":
return lambda rr: normalize(rr["item"])
if group_by == "category":
return lambda rr: extract_category(rr["item"])
# "all"
return lambda rr: "ALL"
def make_grouped_figure(
df: pd.DataFrame,
process_map: Dict[str, List[dict]],
process_name: str,
selected_items: List[str],
thr_df: Optional[pd.DataFrame],
thr_mode: str,
date_min: Optional[str],
date_max: Optional[str],
group_by: str, # "all" / "category" / "item"
_force_groups: Optional[List[str]] = None, # ページ分割用
) -> Optional[go.Figure]:
if df is None or not process_name:
return None
recs = process_map.get(process_name, [])
if not recs:
return None
selected = set([normalize(x) for x in (selected_items or [])])
recs = [r for r in recs if normalize(r["item"]) in selected]
if not recs:
return None
dfw = df.copy()
if date_min:
dfw = dfw[dfw["timestamp"] >= pd.to_datetime(date_min)]
if date_max:
dfw = dfw[dfw["timestamp"] <= pd.to_datetime(date_max)]
if dfw.empty:
return None
thr_lookup = build_threshold_lookup(thr_df) if thr_mode == "excel" else {}
keyfunc = _group_key_func(group_by)
# グループ化(カテゴリ / 項目 / 一括ALL)
groups: Dict[str, List[dict]] = {}
for r in recs:
groups.setdefault(keyfunc(r), []).append(r)
group_names = list(groups.keys()) if _force_groups is None else _force_groups
if not group_names:
return None
rows = len(group_names)
if rows <= 1:
vspace = 0.03
else:
max_vs = (1.0 / (rows - 1)) - 1e-4
vspace = max(0.0, min(0.03, max_vs))
# サブタイトル
if group_by == "all":
subtitles = [f"{process_name} | すべての項目"] # 1行
elif group_by == "category":
subtitles = [f"{process_name} | 分類: {g}" for g in group_names]
else: # item
subtitles = [f"{process_name} | 項目: {g}" for g in group_names]
fig = make_subplots(
rows=rows, cols=1, shared_xaxes=True,
vertical_spacing=vspace,
subplot_titles=subtitles
)
# 各グループを1行にまとめて複数系列として描画
row_idx = 1
for gname in group_names:
cols = groups.get(gname, [])
for r in cols:
col = r["col_tuple"]
col_str = r["col_str"]
if col in dfw.columns:
series = dfw[col]
elif col_str in dfw.columns:
series = dfw[col_str]
else:
continue
x = dfw["timestamp"]
y = pd.to_numeric(series, errors="coerce")
if thr_mode == "excel":
key = (normalize(r["id"]), normalize(r["item"]), normalize(r["process"]))
LL, L, H, HH = thr_lookup.get(key, (np.nan, np.nan, np.nan, np.nan))
if all(pd.isna(v) for v in [LL, L, H, HH]):
LL, L, H, HH = auto_threshold(y)
else:
LL, L, H, HH = auto_threshold(y)
# ライン
fig.add_trace(
go.Scatter(
x=x, y=y, mode="lines",
name=f"{r['item']} ({r['id']})",
line=dict(color=LINE_COLOR, width=1.5),
hovertemplate="%{x}<br>%{y}<extra>"+f"{r['item']} ({r['id']})"+"</extra>"
),
row=row_idx, col=1
)
# マーカー(色分け)
colors = []
for v in y:
if pd.isna(v):
colors.append("rgba(0,0,0,0)")
else:
st = judge_status(v, LL, L, H, HH)
colors.append(STATUS_COLOR.get(st, STATUS_COLOR["OK"]))
fig.add_trace(
go.Scatter(
x=x, y=y, mode="markers",
name=f"{r['item']} markers",
marker=dict(size=6, color=colors),
showlegend=False,
hovertemplate="%{x}<br>%{y}<extra></extra>"
),
row=row_idx, col=1
)
# しきい値ガイドはグループ行に対して一律ではなく、系列ごとに別値になるので省略
row_idx += 1
fig.update_layout(
title=(
f"{process_name} | "
+ ("一括表示" if group_by == "all"
else "分類別表示(カテゴリ)" if group_by == "category"
else "個別表示(項目)")
),
xaxis_title="timestamp",
showlegend=True,
margin=dict(l=10, r=10, t=40, b=10),
hovermode="x unified",
height=max(420, 260 * rows),
)
return fig
# ページ分割(group_byごと)
def make_grouped_figure_paged(
df: pd.DataFrame,
process_map: Dict[str, List[dict]],
process_name: str,
selected_items: List[str],
thr_df: Optional[pd.DataFrame],
thr_mode: str,
date_min: Optional[str],
date_max: Optional[str],
page: int,
per_page: int,
group_by: str, # "category" or "item"
) -> Tuple[Optional[go.Figure], int, List[str]]:
recs = process_map.get(process_name, [])
if not recs:
return None, 0, []
selected = set([normalize(x) for x in (selected_items or [])])
recs = [r for r in recs if normalize(r["item"]) in selected]
if not recs:
return None, 0, []
keyfunc = _group_key_func(group_by)
groups: Dict[str, List[dict]] = {}
for r in recs:
groups.setdefault(keyfunc(r), []).append(r)
all_names = list(groups.keys())
total_pages = max(1, int(np.ceil(len(all_names) / max(1, per_page))))
page = int(max(1, min(page, total_pages)))
start = (page - 1) * per_page
end = start + per_page
names_slice = all_names[start:end]
fig = make_grouped_figure(
df, process_map, process_name, selected_items, thr_df, thr_mode,
date_min, date_max, group_by=group_by, _force_groups=names_slice
)
return fig, total_pages, all_names
# ======================================
# グローバル状態(UI間共有)
# ======================================
G_DF: Optional[pd.DataFrame] = None
G_PROCESS_MAP = {}
G_PROCESSES = []
G_THRESHOLDS_DF: Optional[pd.DataFrame] = None
# ======================================
# コールバック
# ======================================
def initialize_default_csv():
"""
起動時にデフォルトCSVが存在すれば読み込む。
"""
global G_DF, G_PROCESS_MAP, G_PROCESSES
if os.path.exists(DEFAULT_CSV_PATH):
try:
df = try_read_csv_3header(DEFAULT_CSV_PATH)
G_DF = df
G_PROCESS_MAP, G_PROCESSES = build_index_maps(df)
return (
f"✅ 既定CSVを読み込みました: {DEFAULT_CSV_PATH}",
gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)),
G_PROCESSES
)
except Exception as e:
return f"⚠ 既定CSV読み込み失敗: {e}", gr.update(), []
return "ℹ CSVをアップロードしてください。", gr.update(), []
def on_csv_upload(file):
"""
CSVアップロード → パース → プロセス候補更新
"""
global G_DF, G_PROCESS_MAP, G_PROCESSES
if file is None:
return "⚠ ファイルが選択されていません。", gr.update(choices=[]), []
try:
df = try_read_csv_3header(file.name if hasattr(file, "name") else file)
G_DF = df
G_PROCESS_MAP, G_PROCESSES = build_index_maps(df)
return (
f"✅ CSV読み込み: {df.shape[0]}行 × {df.shape[1]}列",
gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)),
G_PROCESSES
)
except Exception as e:
return f"❌ 読み込みエラー: {e}", gr.update(choices=[]), []
def on_thr_upload(file):
"""
しきい値Excelアップロード → メモリ更新
"""
global G_THRESHOLDS_DF
if file is None:
G_THRESHOLDS_DF = None
return "ℹ しきい値ファイルなし(自動しきい値が使われます)"
try:
thr = try_read_thresholds_excel(file.name if hasattr(file, "name") else file)
G_THRESHOLDS_DF = thr
return f"✅ しきい値を読み込みました({thr.shape[0]}件)"
except Exception as e:
G_THRESHOLDS_DF = None
return f"❌ しきい値読み込みエラー: {e}"
def update_items(process_name: str):
"""
プロセス選択に応じて、項目(2行目)候補を返す。
"""
if not process_name or process_name not in G_PROCESS_MAP:
return gr.update(choices=[], value=[])
items = sorted(list({rec["item"] for rec in G_PROCESS_MAP[process_name]}), key=lambda x: normalize(x))
# デフォルトは全選択
return gr.update(choices=items, value=items)
def render_any(process_name: str, items: List[str], display_mode: str, thr_mode_label: str,
date_min, date_max, page: int, per_page: int):
"""
表示モードに応じて Plot を返す。
- 一括表示: 全選択項目を1枚の行(ALL)にまとめる
- 分類別表示: 末尾カテゴリごとにサブプロット。多い場合はページ分割
- 個別表示: 項目ごとにサブプロット。多い場合はページ分割
"""
if G_DF is None:
return "⚠ データ未読み込み", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
if not process_name:
return "⚠ プロセスを選択してください", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
if not items:
return "⚠ 項目を選択してください", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
mode = "excel" if str(thr_mode_label).startswith("excel") else "auto"
# 一括表示
if str(display_mode).startswith("一括"):
fig = make_grouped_figure(
G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode, date_min, date_max, group_by="all"
)
if fig is None:
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
return "✅ 一括表示を描画しました", gr.update(value=fig, visible=True), gr.update(visible=False), gr.update(visible=False)
# 分類別表示(カテゴリ)
if str(display_mode).startswith("分類"):
fig, total_pages, all_names = make_grouped_figure_paged(
G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode,
date_min, date_max, page=int(page), per_page=int(per_page), group_by="category"
)
if fig is None:
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
info = f"分類(カテゴリ)数: {len(all_names)} | ページ {int(max(1,min(page, total_pages)))} / {total_pages} | 件/ページ={int(per_page)}"
return "✅ 分類別表示(末尾語カテゴリ)を描画しました", gr.update(value=fig, visible=True), gr.update(value=info, visible=True), gr.update(visible=True)
# 個別表示(項目)
fig, total_pages, all_names = make_grouped_figure_paged(
G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode,
date_min, date_max, page=int(page), per_page=int(per_page), group_by="item"
)
if fig is None:
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
info = f"項目数: {len(all_names)} | ページ {int(max(1,min(page, total_pages)))} / {total_pages} | 件/ページ={int(per_page)}"
return "✅ 個別表示(項目)を描画しました", gr.update(value=fig, visible=True), gr.update(value=info, visible=True), gr.update(visible=True)
# ======================================
# UI
# ======================================
init_msg, init_proc_update, _ = initialize_default_csv()
init_value = init_proc_update.get("value") if isinstance(init_proc_update, dict) else None
init_choices = init_proc_update.get("choices") if isinstance(init_proc_update, dict) else []
with gr.Blocks(css="""
.gradio-container {overflow: auto !important;}
""") as demo:
gr.Markdown("## トレンドグラフ専用アプリ(3行ヘッダー対応・プロセス別・分類/個別・閾値色分け)")
with gr.Row():
csv_uploader = gr.File(label="① 時系列CSV(3行ヘッダー)", file_count="single", file_types=[".csv"])
thr_uploader = gr.File(label="② 閾値Excel(任意: LL/L/H/HH)", file_count="single", file_types=[".xlsx", ".xls"])
with gr.Row():
thr_mode = gr.Radio(
["excel(アップロード優先・無ければ自動)", "自動(平均±標準偏差)"],
value="excel(アップロード優先・無ければ自動)",
label="しきい値モード"
)
date_min = gr.Textbox(label="抽出開始日時(任意)例: 2024-07-01 00:00")
date_max = gr.Textbox(label="抽出終了日時(任意)例: 2024-07-31 23:59")
# 表示形式の切り替え
display_mode = gr.Radio(
["一括表示", "分類別表示(カテゴリ)", "個別表示(項目)"],
value="一括表示",
label="表示形式"
)
status_csv = gr.Markdown(init_msg)
status_thr = gr.Markdown()
process_dd = gr.Dropdown(label="対象プロセス(3行ヘッダーの3行目)",
choices=init_choices, value=init_value)
items_cb = gr.CheckboxGroup(label="表示する項目(3行ヘッダーの2行目)", choices=[], value=[])
with gr.Row():
btn_render = gr.Button("トレンド図を生成", variant="primary")
msg = gr.Markdown()
plot = gr.Plot(label="トレンド図", visible=True)
# ページ分割コントロール(分類別/個別のみ表示)
with gr.Row():
per_page = gr.Slider(1, 12, value=8, step=1, label="件/ページ(分類別・個別)", visible=False)
page_no = gr.Number(value=1, label="ページ(1〜)", precision=0, visible=False)
page_info = gr.Markdown(visible=False)
# 2) CSVアップロードで更新
csv_uploader.change(
on_csv_upload,
inputs=[csv_uploader],
outputs=[status_csv, process_dd, gr.State()],
)
# 3) 閾値アップロードで更新
thr_uploader.change(
on_thr_upload,
inputs=[thr_uploader],
outputs=[status_thr],
)
# 4) プロセス選択で項目候補更新
process_dd.change(
update_items,
inputs=[process_dd],
outputs=[items_cb],
)
# 5) 図生成
btn_render.click(
fn=lambda proc, items, disp_mode, mode, dmin, dmax, p, pp:
render_any(proc, items, disp_mode, mode, dmin, dmax, p, pp),
inputs=[process_dd, items_cb, display_mode, thr_mode, date_min, date_max, page_no, per_page],
outputs=[msg, plot, page_info, page_no],
)
# 6) 表示形式に応じたコントロール表示切替
def _toggle_page_controls(mode):
show = not str(mode).startswith("一括")
return gr.update(visible=show), gr.update(visible=show), gr.update(visible=show)
display_mode.change(
_toggle_page_controls,
inputs=[display_mode],
outputs=[per_page, page_no, page_info],
)
if __name__ == "__main__":
# SSRオフ(Plotly埋め込みや再描画の安定化のため)
demo.launch(ssr_mode=False)
|