File size: 22,668 Bytes
fe4fb5e
 
 
 
 
0ba0b32
fe4fb5e
9e48adf
 
fe4fb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba0b32
fe4fb5e
 
 
 
 
 
0ba0b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe4fb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba0b32
fe4fb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba0b32
fe4fb5e
0ba0b32
 
 
 
 
fe4fb5e
0ba0b32
fe4fb5e
 
0ba0b32
 
fe4fb5e
0ba0b32
 
 
 
 
 
 
 
 
fe4fb5e
 
 
 
 
0ba0b32
 
 
 
 
9e48adf
 
 
 
 
 
0ba0b32
 
9e48adf
 
 
 
 
 
 
 
 
 
 
 
0ba0b32
9e48adf
0ba0b32
9e48adf
 
0ba0b32
 
 
 
9e48adf
 
0ba0b32
8e07b17
 
 
0ba0b32
8e07b17
 
0ba0b32
 
 
 
 
 
 
 
9e48adf
8e07b17
 
0ba0b32
9e48adf
 
0ba0b32
9e48adf
0ba0b32
 
9e48adf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba0b32
9e48adf
 
 
0ba0b32
 
 
 
 
 
9e48adf
 
 
 
0ba0b32
9e48adf
 
 
0ba0b32
 
d680eb8
 
 
 
 
 
 
 
 
0ba0b32
 
d680eb8
 
 
 
0ba0b32
 
d680eb8
 
9e48adf
0ba0b32
9e48adf
 
0ba0b32
 
 
 
 
 
 
9e48adf
0ba0b32
 
 
 
 
9e48adf
fe4fb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba0b32
 
 
 
 
fe4fb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba0b32
 
 
 
 
fe4fb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba0b32
 
fe4fb5e
0ba0b32
 
 
 
fe4fb5e
9e48adf
d680eb8
9e48adf
d680eb8
9e48adf
d680eb8
9e48adf
 
 
0ba0b32
 
 
 
 
9e48adf
d680eb8
0ba0b32
 
 
 
 
 
 
d680eb8
 
 
0ba0b32
 
 
 
 
 
 
 
 
 
 
 
9e48adf
fe4fb5e
 
 
93ebee4
 
 
 
fe4fb5e
 
 
0ba0b32
fe4fb5e
 
 
bd89e14
fe4fb5e
 
 
 
 
 
 
 
 
 
9e48adf
 
0ba0b32
 
9e48adf
 
 
93ebee4
fe4fb5e
 
93ebee4
 
fe4fb5e
 
 
 
 
 
0ba0b32
 
 
d680eb8
0ba0b32
bd89e14
d680eb8
fe4fb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba0b32
 
 
d680eb8
fe4fb5e
 
0ba0b32
bd89e14
0ba0b32
bd89e14
 
 
 
0ba0b32
bd89e14
 
fe4fb5e
0ba0b32
bd89e14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from typing import Dict, Tuple, List, Optional, Callable
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.io as pio

# ======================================
# 設定(添付CSVの既定パス:必要に応じて変更可)
# ======================================
DEFAULT_CSV_PATH = "/mnt/data/mock_data_id_9999.csv"

# ======================================
# ユーティリティ
# ======================================
def normalize(s: str) -> str:
    return str(s).replace("\u3000", " ").replace("\n", "").replace("\r", "").strip()

def try_read_csv_3header(path_or_file) -> pd.DataFrame:
    """
    3行ヘッダーCSVを読み込む(cp932/utf-8-sig フォールバック)。
    1列目は timestamp として datetime 変換。
    2列目以降は (ID, ItemName, ProcessName) の3段。
    """
    last_err = None
    for enc in ["cp932", "utf-8-sig", "utf-8"]:
        try:
            df = pd.read_csv(path_or_file, header=[0, 1, 2], encoding=enc)
            break
        except Exception as e:
            last_err = e
            df = None
    if df is None:
        raise last_err

    # 先頭列を timestamp に
    ts = pd.to_datetime(df.iloc[:, 0], errors="coerce")
    df = df.drop(df.columns[0], axis=1)
    df.insert(0, "timestamp", ts)

    return df

def col_tuple_to_str(col) -> str:
    if isinstance(col, tuple):
        return "_".join([str(x) for x in col if x])
    return str(col)

def build_index_maps(df: pd.DataFrame):
    """
    プロセス(3行目=タプルの3つ目)→ 該当列情報 の辞書を作る。
    各列は (col_tuple, id, item, process, col_str)
    """
    process_map = {}
    for col in df.columns:
        if col == "timestamp":
            continue
        if isinstance(col, tuple) and len(col) >= 3:
            col_id, item_name, process_name = str(col[0]), str(col[1]), str(col[2])
        else:
            parts = str(col).split("_")
            if len(parts) >= 3:
                col_id, item_name, process_name = parts[0], "_".join(parts[1:-1]), parts[-1]
            else:
                continue
        rec = {
            "col_tuple": col,
            "id": col_id,
            "item": item_name,
            "process": process_name,
            "col_str": col_tuple_to_str(col),
        }
        process_map.setdefault(process_name, []).append(rec)
    processes = sorted(list(process_map.keys()), key=lambda x: normalize(x))
    return process_map, processes

def extract_measure_tag(item_name: str) -> str:
    """
    項目名末尾の計測項目タグを抽出。([...]優先→末尾語)
    """
    s = normalize(item_name)
    m = re.search(r"\[([^\[\]]+)\]\s*$", s)
    if m:
        return m.group(1).strip()
    tokens = re.split(r"\s+", s)
    return tokens[-1] if tokens else s

def extract_category(item_name: str) -> str:
    """
    項目名の「最後の '_' 以降」をカテゴリ名として返す。
    例: '除害RO_A処理水_導電率' → '導電率' / '..._圧力' → '圧力'
    '_' が無い場合は「処理水…」の後ろや末尾語を推定。
    """
    s = normalize(item_name)
    if "_" in s:
        return s.split("_")[-1].strip()
    m = re.search(r"処理水[_\s]*(.+)$", s)
    if m:
        return m.group(1).strip()
    toks = re.split(r"\s+", s)
    return toks[-1] if toks else s

# ======================================
# しきい値ハンドリング
# ======================================
def try_read_thresholds_excel(file) -> Optional[pd.DataFrame]:
    """
    しきい値Excel(任意)を読み込み。
    想定カラム: ColumnID, ItemName, ProcessNo_ProcessName, LL, L, H, HH, Important(任意)
    """
    if file is None:
        return None
    df = pd.read_excel(file)
    df.columns = [normalize(c) for c in df.columns]
    needed = {"ColumnID", "ItemName", "ProcessNo_ProcessName"}
    if not needed.issubset(set(df.columns)):
        rename_map = {}
        for k in list(df.columns):
            nk = normalize(str(k))
            if nk.lower() in ["columnid", "colid", "id"]:
                rename_map[k] = "ColumnID"
            elif nk.lower() in ["itemname", "item", "name"]:
                rename_map[k] = "ItemName"
            elif nk.lower() in ["processno_processname", "process", "processname"]:
                rename_map[k] = "ProcessNo_ProcessName"
        if rename_map:
            df = df.rename(columns=rename_map)
    for c in ["LL", "L", "H", "HH"]:
        if c in df.columns:
            df[c] = pd.to_numeric(df[c], errors="coerce")
    if "Important" in df.columns:
        df["Important"] = (
            df["Important"].astype(str).str.upper().map({"TRUE": True, "FALSE": False})
        )
    return df

def build_threshold_lookup(thr_df: Optional[pd.DataFrame]) -> Dict[Tuple[str, str, str], Tuple[float, float, float, float]]:
    """
    キー: (ColumnID, ItemName, ProcessNo_ProcessName) → (LL, L, H, HH)
    """
    lookup = {}
    if thr_df is None or thr_df.empty:
        return lookup
    for _, r in thr_df.iterrows():
        colid = normalize(str(r.get("ColumnID", "")))
        item = normalize(str(r.get("ItemName", "")))
        proc = normalize(str(r.get("ProcessNo_ProcessName", "")))
        LL = r.get("LL", np.nan)
        L  = r.get("L",  np.nan)
        H  = r.get("H",  np.nan)
        HH = r.get("HH", np.nan)
        lookup[(colid, item, proc)] = (LL, L, H, HH)
    return lookup

def auto_threshold(series: pd.Series) -> Tuple[float, float, float, float]:
    """
    自動しきい値: mean ± std(LL/L/H/HH を mean±2sd / ±1sd とする)
    """
    s = series.dropna()
    if len(s) < 5:
        return (np.nan, np.nan, np.nan, np.nan)
    m = float(s.mean())
    sd = float(s.std(ddof=1)) if len(s) >= 2 else 0.0
    return (m - 2*sd, m - sd, m + sd, m + 2*sd)

def judge_status(value, LL, L, H, HH) -> str:
    if pd.notna(LL) and value <= LL:
        return "LL"
    if pd.notna(L) and value <= L:
        return "L"
    if pd.notna(HH) and value >= HH:
        return "HH"
    if pd.notna(H) and value >= H:
        return "H"
    return "OK"

# カラー設定
STATUS_COLOR = {
    "LL": "#2b6cb0",
    "L":  "#63b3ed",
    "OK": "#a0aec0",
    "H":  "#f6ad55",
    "HH": "#e53e3e",
}
LINE_COLOR = "#4a5568"

# ======================================
# 汎用:グループキーに応じて図を作る(サブプロット)
# group_by: "all" / "category" / "item"
# ======================================
def _group_key_func(group_by: str) -> Callable[[dict], str]:
    if group_by == "item":
        return lambda rr: normalize(rr["item"])
    if group_by == "category":
        return lambda rr: extract_category(rr["item"])
    # "all"
    return lambda rr: "ALL"

def make_grouped_figure(
    df: pd.DataFrame,
    process_map: Dict[str, List[dict]],
    process_name: str,
    selected_items: List[str],
    thr_df: Optional[pd.DataFrame],
    thr_mode: str,
    date_min: Optional[str],
    date_max: Optional[str],
    group_by: str,                       # "all" / "category" / "item"
    _force_groups: Optional[List[str]] = None,  # ページ分割用
) -> Optional[go.Figure]:
    if df is None or not process_name:
        return None
    recs = process_map.get(process_name, [])
    if not recs:
        return None
    selected = set([normalize(x) for x in (selected_items or [])])
    recs = [r for r in recs if normalize(r["item"]) in selected]
    if not recs:
        return None

    dfw = df.copy()
    if date_min:
        dfw = dfw[dfw["timestamp"] >= pd.to_datetime(date_min)]
    if date_max:
        dfw = dfw[dfw["timestamp"] <= pd.to_datetime(date_max)]
    if dfw.empty:
        return None

    thr_lookup = build_threshold_lookup(thr_df) if thr_mode == "excel" else {}
    keyfunc = _group_key_func(group_by)

    # グループ化(カテゴリ / 項目 / 一括ALL)
    groups: Dict[str, List[dict]] = {}
    for r in recs:
        groups.setdefault(keyfunc(r), []).append(r)

    group_names = list(groups.keys()) if _force_groups is None else _force_groups
    if not group_names:
        return None

    rows = len(group_names)
    if rows <= 1:
        vspace = 0.03
    else:
        max_vs = (1.0 / (rows - 1)) - 1e-4
        vspace = max(0.0, min(0.03, max_vs))

    # サブタイトル
    if group_by == "all":
        subtitles = [f"{process_name} | すべての項目"]  # 1行
    elif group_by == "category":
        subtitles = [f"{process_name} | 分類: {g}" for g in group_names]
    else:  # item
        subtitles = [f"{process_name} | 項目: {g}" for g in group_names]

    fig = make_subplots(
        rows=rows, cols=1, shared_xaxes=True,
        vertical_spacing=vspace,
        subplot_titles=subtitles
    )

    # 各グループを1行にまとめて複数系列として描画
    row_idx = 1
    for gname in group_names:
        cols = groups.get(gname, [])
        for r in cols:
            col = r["col_tuple"]
            col_str = r["col_str"]
            if col in dfw.columns:
                series = dfw[col]
            elif col_str in dfw.columns:
                series = dfw[col_str]
            else:
                continue

            x = dfw["timestamp"]
            y = pd.to_numeric(series, errors="coerce")

            if thr_mode == "excel":
                key = (normalize(r["id"]), normalize(r["item"]), normalize(r["process"]))
                LL, L, H, HH = thr_lookup.get(key, (np.nan, np.nan, np.nan, np.nan))
                if all(pd.isna(v) for v in [LL, L, H, HH]):
                    LL, L, H, HH = auto_threshold(y)
            else:
                LL, L, H, HH = auto_threshold(y)

            # ライン
            fig.add_trace(
                go.Scatter(
                    x=x, y=y, mode="lines",
                    name=f"{r['item']} ({r['id']})",
                    line=dict(color=LINE_COLOR, width=1.5),
                    hovertemplate="%{x}<br>%{y}<extra>"+f"{r['item']} ({r['id']})"+"</extra>"
                ),
                row=row_idx, col=1
            )
            # マーカー(色分け)
            colors = []
            for v in y:
                if pd.isna(v):
                    colors.append("rgba(0,0,0,0)")
                else:
                    st = judge_status(v, LL, L, H, HH)
                    colors.append(STATUS_COLOR.get(st, STATUS_COLOR["OK"]))
            fig.add_trace(
                go.Scatter(
                    x=x, y=y, mode="markers",
                    name=f"{r['item']} markers",
                    marker=dict(size=6, color=colors),
                    showlegend=False,
                    hovertemplate="%{x}<br>%{y}<extra></extra>"
                ),
                row=row_idx, col=1
            )
        # しきい値ガイドはグループ行に対して一律ではなく、系列ごとに別値になるので省略
        row_idx += 1

    fig.update_layout(
        title=(
            f"{process_name} | "
            + ("一括表示" if group_by == "all"
               else "分類別表示(カテゴリ)" if group_by == "category"
               else "個別表示(項目)")
        ),
        xaxis_title="timestamp",
        showlegend=True,
        margin=dict(l=10, r=10, t=40, b=10),
        hovermode="x unified",
        height=max(420, 260 * rows),
    )
    return fig

# ページ分割(group_byごと)
def make_grouped_figure_paged(
    df: pd.DataFrame,
    process_map: Dict[str, List[dict]],
    process_name: str,
    selected_items: List[str],
    thr_df: Optional[pd.DataFrame],
    thr_mode: str,
    date_min: Optional[str],
    date_max: Optional[str],
    page: int,
    per_page: int,
    group_by: str,  # "category" or "item"
) -> Tuple[Optional[go.Figure], int, List[str]]:
    recs = process_map.get(process_name, [])
    if not recs:
        return None, 0, []
    selected = set([normalize(x) for x in (selected_items or [])])
    recs = [r for r in recs if normalize(r["item"]) in selected]
    if not recs:
        return None, 0, []

    keyfunc = _group_key_func(group_by)
    groups: Dict[str, List[dict]] = {}
    for r in recs:
        groups.setdefault(keyfunc(r), []).append(r)
    all_names = list(groups.keys())
    total_pages = max(1, int(np.ceil(len(all_names) / max(1, per_page))))
    page = int(max(1, min(page, total_pages)))
    start = (page - 1) * per_page
    end = start + per_page
    names_slice = all_names[start:end]

    fig = make_grouped_figure(
        df, process_map, process_name, selected_items, thr_df, thr_mode,
        date_min, date_max, group_by=group_by, _force_groups=names_slice
    )
    return fig, total_pages, all_names

# ======================================
# グローバル状態(UI間共有)
# ======================================
G_DF: Optional[pd.DataFrame] = None
G_PROCESS_MAP = {}
G_PROCESSES = []
G_THRESHOLDS_DF: Optional[pd.DataFrame] = None

# ======================================
# コールバック
# ======================================
def initialize_default_csv():
    """
    起動時にデフォルトCSVが存在すれば読み込む。
    """
    global G_DF, G_PROCESS_MAP, G_PROCESSES
    if os.path.exists(DEFAULT_CSV_PATH):
        try:
            df = try_read_csv_3header(DEFAULT_CSV_PATH)
            G_DF = df
            G_PROCESS_MAP, G_PROCESSES = build_index_maps(df)
            return (
                f"✅ 既定CSVを読み込みました: {DEFAULT_CSV_PATH}",
                gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)),
                G_PROCESSES
            )
        except Exception as e:
            return f"⚠ 既定CSV読み込み失敗: {e}", gr.update(), []
    return "ℹ CSVをアップロードしてください。", gr.update(), []

def on_csv_upload(file):
    """
    CSVアップロード → パース → プロセス候補更新
    """
    global G_DF, G_PROCESS_MAP, G_PROCESSES
    if file is None:
        return "⚠ ファイルが選択されていません。", gr.update(choices=[]), []
    try:
        df = try_read_csv_3header(file.name if hasattr(file, "name") else file)
        G_DF = df
        G_PROCESS_MAP, G_PROCESSES = build_index_maps(df)
        return (
            f"✅ CSV読み込み: {df.shape[0]}行 × {df.shape[1]}列",
            gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)),
            G_PROCESSES
        )
    except Exception as e:
        return f"❌ 読み込みエラー: {e}", gr.update(choices=[]), []

def on_thr_upload(file):
    """
    しきい値Excelアップロード → メモリ更新
    """
    global G_THRESHOLDS_DF
    if file is None:
        G_THRESHOLDS_DF = None
        return "ℹ しきい値ファイルなし(自動しきい値が使われます)"
    try:
        thr = try_read_thresholds_excel(file.name if hasattr(file, "name") else file)
        G_THRESHOLDS_DF = thr
        return f"✅ しきい値を読み込みました({thr.shape[0]}件)"
    except Exception as e:
        G_THRESHOLDS_DF = None
        return f"❌ しきい値読み込みエラー: {e}"

def update_items(process_name: str):
    """
    プロセス選択に応じて、項目(2行目)候補を返す。
    """
    if not process_name or process_name not in G_PROCESS_MAP:
        return gr.update(choices=[], value=[])
    items = sorted(list({rec["item"] for rec in G_PROCESS_MAP[process_name]}), key=lambda x: normalize(x))
    # デフォルトは全選択
    return gr.update(choices=items, value=items)

def render_any(process_name: str, items: List[str], display_mode: str, thr_mode_label: str,
               date_min, date_max, page: int, per_page: int):
    """
    表示モードに応じて Plot を返す。
    - 一括表示: 全選択項目を1枚の行(ALL)にまとめる
    - 分類別表示: 末尾カテゴリごとにサブプロット。多い場合はページ分割
    - 個別表示: 項目ごとにサブプロット。多い場合はページ分割
    """
    if G_DF is None:
        return "⚠ データ未読み込み", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    if not process_name:
        return "⚠ プロセスを選択してください", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    if not items:
        return "⚠ 項目を選択してください", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

    mode = "excel" if str(thr_mode_label).startswith("excel") else "auto"

    # 一括表示
    if str(display_mode).startswith("一括"):
        fig = make_grouped_figure(
            G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode, date_min, date_max, group_by="all"
        )
        if fig is None:
            return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
        return "✅ 一括表示を描画しました", gr.update(value=fig, visible=True), gr.update(visible=False), gr.update(visible=False)

    # 分類別表示(カテゴリ)
    if str(display_mode).startswith("分類"):
        fig, total_pages, all_names = make_grouped_figure_paged(
            G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode,
            date_min, date_max, page=int(page), per_page=int(per_page), group_by="category"
        )
        if fig is None:
            return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
        info = f"分類(カテゴリ)数: {len(all_names)} | ページ {int(max(1,min(page, total_pages)))} / {total_pages} | 件/ページ={int(per_page)}"
        return "✅ 分類別表示(末尾語カテゴリ)を描画しました", gr.update(value=fig, visible=True), gr.update(value=info, visible=True), gr.update(visible=True)

    # 個別表示(項目)
    fig, total_pages, all_names = make_grouped_figure_paged(
        G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode,
        date_min, date_max, page=int(page), per_page=int(per_page), group_by="item"
    )
    if fig is None:
        return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    info = f"項目数: {len(all_names)} | ページ {int(max(1,min(page, total_pages)))} / {total_pages} | 件/ページ={int(per_page)}"
    return "✅ 個別表示(項目)を描画しました", gr.update(value=fig, visible=True), gr.update(value=info, visible=True), gr.update(visible=True)

# ======================================
# UI
# ======================================
init_msg, init_proc_update, _ = initialize_default_csv()
init_value = init_proc_update.get("value") if isinstance(init_proc_update, dict) else None
init_choices = init_proc_update.get("choices") if isinstance(init_proc_update, dict) else []

with gr.Blocks(css="""
.gradio-container {overflow: auto !important;}
""") as demo:
    gr.Markdown("## トレンドグラフ専用アプリ(3行ヘッダー対応・プロセス別・分類/個別・閾値色分け)")

    with gr.Row():
        csv_uploader = gr.File(label="① 時系列CSV(3行ヘッダー)", file_count="single", file_types=[".csv"])
        thr_uploader = gr.File(label="② 閾値Excel(任意: LL/L/H/HH)", file_count="single", file_types=[".xlsx", ".xls"])

    with gr.Row():
        thr_mode = gr.Radio(
            ["excel(アップロード優先・無ければ自動)", "自動(平均±標準偏差)"],
            value="excel(アップロード優先・無ければ自動)",
            label="しきい値モード"
        )
        date_min = gr.Textbox(label="抽出開始日時(任意)例: 2024-07-01 00:00")
        date_max = gr.Textbox(label="抽出終了日時(任意)例: 2024-07-31 23:59")

    # 表示形式の切り替え
    display_mode = gr.Radio(
        ["一括表示", "分類別表示(カテゴリ)", "個別表示(項目)"],
        value="一括表示",
        label="表示形式"
    )

    status_csv = gr.Markdown(init_msg)
    status_thr = gr.Markdown()

    process_dd = gr.Dropdown(label="対象プロセス(3行ヘッダーの3行目)",
                             choices=init_choices, value=init_value)
    items_cb = gr.CheckboxGroup(label="表示する項目(3行ヘッダーの2行目)", choices=[], value=[])

    with gr.Row():
        btn_render = gr.Button("トレンド図を生成", variant="primary")

    msg = gr.Markdown()
    plot = gr.Plot(label="トレンド図", visible=True)

    # ページ分割コントロール(分類別/個別のみ表示)
    with gr.Row():
        per_page = gr.Slider(1, 12, value=8, step=1, label="件/ページ(分類別・個別)", visible=False)
        page_no = gr.Number(value=1, label="ページ(1〜)", precision=0, visible=False)
    page_info = gr.Markdown(visible=False)

    # 2) CSVアップロードで更新
    csv_uploader.change(
        on_csv_upload,
        inputs=[csv_uploader],
        outputs=[status_csv, process_dd, gr.State()],
    )

    # 3) 閾値アップロードで更新
    thr_uploader.change(
        on_thr_upload,
        inputs=[thr_uploader],
        outputs=[status_thr],
    )

    # 4) プロセス選択で項目候補更新
    process_dd.change(
        update_items,
        inputs=[process_dd],
        outputs=[items_cb],
    )

    # 5) 図生成
    btn_render.click(
        fn=lambda proc, items, disp_mode, mode, dmin, dmax, p, pp:
            render_any(proc, items, disp_mode, mode, dmin, dmax, p, pp),
        inputs=[process_dd, items_cb, display_mode, thr_mode, date_min, date_max, page_no, per_page],
        outputs=[msg, plot, page_info, page_no],
    )

    # 6) 表示形式に応じたコントロール表示切替
    def _toggle_page_controls(mode):
        show = not str(mode).startswith("一括")
        return gr.update(visible=show), gr.update(visible=show), gr.update(visible=show)
    display_mode.change(
        _toggle_page_controls,
        inputs=[display_mode],
        outputs=[per_page, page_no, page_info],
    )

if __name__ == "__main__":
    # SSRオフ(Plotly埋め込みや再描画の安定化のため)
    demo.launch(ssr_mode=False)