Implement initial project structure and setup
Browse files
app.py
ADDED
|
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
from typing import Dict, Tuple, List, Optional
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
|
| 9 |
+
# ======================================
|
| 10 |
+
# 設定(添付CSVの既定パス:必要に応じて変更可)
|
| 11 |
+
# ======================================
|
| 12 |
+
DEFAULT_CSV_PATH = "/mnt/data/mock_data_id_9999.csv"
|
| 13 |
+
|
| 14 |
+
# ======================================
|
| 15 |
+
# ユーティリティ
|
| 16 |
+
# ======================================
|
| 17 |
+
def normalize(s: str) -> str:
|
| 18 |
+
return str(s).replace("\u3000", " ").replace("\n", "").replace("\r", "").strip()
|
| 19 |
+
|
| 20 |
+
def try_read_csv_3header(path_or_file) -> pd.DataFrame:
|
| 21 |
+
"""
|
| 22 |
+
3行ヘッダーCSVを読み込む(cp932/utf-8-sig フォールバック)。
|
| 23 |
+
1列目は timestamp として datetime 変換。
|
| 24 |
+
2列目以降は (ID, ItemName, ProcessName) の3段。
|
| 25 |
+
"""
|
| 26 |
+
last_err = None
|
| 27 |
+
for enc in ["cp932", "utf-8-sig", "utf-8"]:
|
| 28 |
+
try:
|
| 29 |
+
df = pd.read_csv(path_or_file, header=[0, 1, 2], encoding=enc)
|
| 30 |
+
break
|
| 31 |
+
except Exception as e:
|
| 32 |
+
last_err = e
|
| 33 |
+
df = None
|
| 34 |
+
if df is None:
|
| 35 |
+
raise last_err
|
| 36 |
+
|
| 37 |
+
# 先頭列を timestamp に
|
| 38 |
+
ts = pd.to_datetime(df.iloc[:, 0], errors="coerce")
|
| 39 |
+
df = df.drop(df.columns[0], axis=1)
|
| 40 |
+
df.insert(0, "timestamp", ts)
|
| 41 |
+
|
| 42 |
+
# 列名はタプルのまま保持(timestampは str)
|
| 43 |
+
# ただし内部処理用に文字列連結も作成できるように関数を用意
|
| 44 |
+
return df
|
| 45 |
+
|
| 46 |
+
def col_tuple_to_str(col) -> str:
|
| 47 |
+
if isinstance(col, tuple):
|
| 48 |
+
return "_".join([str(x) for x in col if x])
|
| 49 |
+
return str(col)
|
| 50 |
+
|
| 51 |
+
def build_index_maps(df: pd.DataFrame):
|
| 52 |
+
"""
|
| 53 |
+
プロセス(3行目=タプルの3つ目)→ 該当列情報 の辞書を作る。
|
| 54 |
+
各列は (col_tuple, id, item, process, col_str)
|
| 55 |
+
"""
|
| 56 |
+
process_map = {}
|
| 57 |
+
for col in df.columns:
|
| 58 |
+
if col == "timestamp":
|
| 59 |
+
continue
|
| 60 |
+
if isinstance(col, tuple) and len(col) >= 3:
|
| 61 |
+
col_id, item_name, process_name = str(col[0]), str(col[1]), str(col[2])
|
| 62 |
+
else:
|
| 63 |
+
# 非タプル(安全策)
|
| 64 |
+
parts = str(col).split("_")
|
| 65 |
+
if len(parts) >= 3:
|
| 66 |
+
col_id, item_name, process_name = parts[0], "_".join(parts[1:-1]), parts[-1]
|
| 67 |
+
else:
|
| 68 |
+
# プロセスが分からない列はスキップ
|
| 69 |
+
continue
|
| 70 |
+
rec = {
|
| 71 |
+
"col_tuple": col,
|
| 72 |
+
"id": col_id,
|
| 73 |
+
"item": item_name,
|
| 74 |
+
"process": process_name,
|
| 75 |
+
"col_str": col_tuple_to_str(col),
|
| 76 |
+
}
|
| 77 |
+
process_map.setdefault(process_name, []).append(rec)
|
| 78 |
+
# プロセス候補・アイテム候補を返すために使う
|
| 79 |
+
processes = sorted(list(process_map.keys()), key=lambda x: normalize(x))
|
| 80 |
+
return process_map, processes
|
| 81 |
+
|
| 82 |
+
def extract_measure_tag(item_name: str) -> str:
|
| 83 |
+
"""
|
| 84 |
+
項目名末尾の計測項目タグを抽出。
|
| 85 |
+
例:
|
| 86 |
+
"処理水 有機物 分析値 [mg/L]" → "mg/L"
|
| 87 |
+
"原水 TOC" → "TOC"
|
| 88 |
+
"導電率(電気伝導度) [mS/cm]" → "mS/cm"
|
| 89 |
+
優先順:
|
| 90 |
+
1) [...] の中身
|
| 91 |
+
2) 全角/半角スペース区切りの末尾語(英字混在や記号含む)
|
| 92 |
+
"""
|
| 93 |
+
s = normalize(item_name)
|
| 94 |
+
m = re.search(r"\[([^\[\]]+)\]\s*$", s)
|
| 95 |
+
if m:
|
| 96 |
+
return m.group(1).strip()
|
| 97 |
+
# 角括弧がなければ末尾語
|
| 98 |
+
tokens = re.split(r"\s+", s)
|
| 99 |
+
if tokens:
|
| 100 |
+
return tokens[-1]
|
| 101 |
+
return s
|
| 102 |
+
|
| 103 |
+
# ======================================
|
| 104 |
+
# しきい値ハンドリング
|
| 105 |
+
# ======================================
|
| 106 |
+
def try_read_thresholds_excel(file) -> Optional[pd.DataFrame]:
|
| 107 |
+
"""
|
| 108 |
+
しきい値Excel(任意)を読み込み。
|
| 109 |
+
想定カラム: ColumnID, ItemName, ProcessNo_ProcessName, LL, L, H, HH, Important(任意)
|
| 110 |
+
"""
|
| 111 |
+
if file is None:
|
| 112 |
+
return None
|
| 113 |
+
df = pd.read_excel(file)
|
| 114 |
+
df.columns = [normalize(c) for c in df.columns]
|
| 115 |
+
# 必須カラム確認(最低限)
|
| 116 |
+
needed = {"ColumnID", "ItemName", "ProcessNo_ProcessName"}
|
| 117 |
+
if not needed.issubset(set(df.columns)):
|
| 118 |
+
# 列名が違う場合の簡易吸収
|
| 119 |
+
rename_map = {}
|
| 120 |
+
for k in list(df.columns):
|
| 121 |
+
nk = normalize(str(k))
|
| 122 |
+
if nk.lower() in ["columnid", "colid", "id"]:
|
| 123 |
+
rename_map[k] = "ColumnID"
|
| 124 |
+
elif nk.lower() in ["itemname", "item", "name"]:
|
| 125 |
+
rename_map[k] = "ItemName"
|
| 126 |
+
elif nk.lower() in ["processno_processname", "process", "processname"]:
|
| 127 |
+
rename_map[k] = "ProcessNo_ProcessName"
|
| 128 |
+
if rename_map:
|
| 129 |
+
df = df.rename(columns=rename_map)
|
| 130 |
+
# 数値化
|
| 131 |
+
for c in ["LL", "L", "H", "HH"]:
|
| 132 |
+
if c in df.columns:
|
| 133 |
+
df[c] = pd.to_numeric(df[c], errors="coerce")
|
| 134 |
+
if "Important" in df.columns:
|
| 135 |
+
df["Important"] = (
|
| 136 |
+
df["Important"].astype(str).str.upper().map({"TRUE": True, "FALSE": False})
|
| 137 |
+
)
|
| 138 |
+
return df
|
| 139 |
+
|
| 140 |
+
def build_threshold_lookup(thr_df: Optional[pd.DataFrame]) -> Dict[Tuple[str, str, str], Tuple[float, float, float, float]]:
|
| 141 |
+
"""
|
| 142 |
+
キー: (ColumnID, ItemName, ProcessNo_ProcessName) → (LL, L, H, HH)
|
| 143 |
+
"""
|
| 144 |
+
lookup = {}
|
| 145 |
+
if thr_df is None or thr_df.empty:
|
| 146 |
+
return lookup
|
| 147 |
+
for _, r in thr_df.iterrows():
|
| 148 |
+
colid = normalize(str(r.get("ColumnID", "")))
|
| 149 |
+
item = normalize(str(r.get("ItemName", "")))
|
| 150 |
+
proc = normalize(str(r.get("ProcessNo_ProcessName", "")))
|
| 151 |
+
LL = r.get("LL", np.nan)
|
| 152 |
+
L = r.get("L", np.nan)
|
| 153 |
+
H = r.get("H", np.nan)
|
| 154 |
+
HH = r.get("HH", np.nan)
|
| 155 |
+
lookup[(colid, item, proc)] = (LL, L, H, HH)
|
| 156 |
+
return lookup
|
| 157 |
+
|
| 158 |
+
def auto_threshold(series: pd.Series) -> Tuple[float, float, float, float]:
|
| 159 |
+
"""
|
| 160 |
+
自動しきい値: mean ± std(LL/L/H/HH の2段に同じ幅を割当)
|
| 161 |
+
例: L=mean-std, LL=mean-2std, H=mean+std, HH=mean+2std
|
| 162 |
+
"""
|
| 163 |
+
s = series.dropna()
|
| 164 |
+
if len(s) < 5:
|
| 165 |
+
return (np.nan, np.nan, np.nan, np.nan)
|
| 166 |
+
m = float(s.mean())
|
| 167 |
+
sd = float(s.std(ddof=1)) if len(s) >= 2 else 0.0
|
| 168 |
+
return (m - 2*sd, m - sd, m + sd, m + 2*sd)
|
| 169 |
+
|
| 170 |
+
def judge_status(value, LL, L, H, HH) -> str:
|
| 171 |
+
if pd.notna(LL) and value <= LL:
|
| 172 |
+
return "LL"
|
| 173 |
+
if pd.notna(L) and value <= L:
|
| 174 |
+
return "L"
|
| 175 |
+
if pd.notna(HH) and value >= HH:
|
| 176 |
+
return "HH"
|
| 177 |
+
if pd.notna(H) and value >= H:
|
| 178 |
+
return "H"
|
| 179 |
+
return "OK"
|
| 180 |
+
|
| 181 |
+
# カラー(点の色):閾値逸脱を強調
|
| 182 |
+
STATUS_COLOR = {
|
| 183 |
+
"LL": "#2b6cb0", # 青系
|
| 184 |
+
"L": "#63b3ed", # 水色
|
| 185 |
+
"OK": "#a0aec0", # グレー
|
| 186 |
+
"H": "#f6ad55", # 橙
|
| 187 |
+
"HH": "#e53e3e", # 赤
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
# 線色(系列ライン):列ごとに安定色
|
| 191 |
+
LINE_COLOR = "#4a5568" # 濃いグレー
|
| 192 |
+
|
| 193 |
+
# ======================================
|
| 194 |
+
# 図作成
|
| 195 |
+
# ======================================
|
| 196 |
+
def make_trend_figs(
|
| 197 |
+
df: pd.DataFrame,
|
| 198 |
+
process_map: Dict[str, List[dict]],
|
| 199 |
+
process_name: str,
|
| 200 |
+
selected_items: List[str],
|
| 201 |
+
thr_df: Optional[pd.DataFrame],
|
| 202 |
+
thr_mode: str, # "excel" or "auto"
|
| 203 |
+
date_min: Optional[str] = None,
|
| 204 |
+
date_max: Optional[str] = None,
|
| 205 |
+
) -> List[go.Figure]:
|
| 206 |
+
"""
|
| 207 |
+
計測項目タグごと(extract_measure_tag)に図を分けて生成。
|
| 208 |
+
selected_items は「2行目(ItemName)」の値。
|
| 209 |
+
"""
|
| 210 |
+
if df is None or process_name is None or process_name == "":
|
| 211 |
+
return []
|
| 212 |
+
|
| 213 |
+
# 対象プロセスの列レコード
|
| 214 |
+
recs = process_map.get(process_name, [])
|
| 215 |
+
if not recs:
|
| 216 |
+
return []
|
| 217 |
+
|
| 218 |
+
# 2行目(ItemName)で絞り込み
|
| 219 |
+
selected_items_set = set([normalize(x) for x in (selected_items or [])])
|
| 220 |
+
recs = [r for r in recs if normalize(r["item"]) in selected_items_set]
|
| 221 |
+
if not recs:
|
| 222 |
+
return []
|
| 223 |
+
|
| 224 |
+
# 日付範囲フィルタ
|
| 225 |
+
dfw = df.copy()
|
| 226 |
+
if date_min:
|
| 227 |
+
dfw = dfw[dfw["timestamp"] >= pd.to_datetime(date_min)]
|
| 228 |
+
if date_max:
|
| 229 |
+
dfw = dfw[dfw["timestamp"] <= pd.to_datetime(date_max)]
|
| 230 |
+
if dfw.empty:
|
| 231 |
+
return []
|
| 232 |
+
|
| 233 |
+
# しきい値参照
|
| 234 |
+
thr_lookup = build_threshold_lookup(thr_df) if thr_mode == "excel" else {}
|
| 235 |
+
|
| 236 |
+
# 測定項目タグごとにグループ化
|
| 237 |
+
groups: Dict[str, List[dict]] = {}
|
| 238 |
+
for r in recs:
|
| 239 |
+
tag = extract_measure_tag(r["item"])
|
| 240 |
+
groups.setdefault(tag, []).append(r)
|
| 241 |
+
|
| 242 |
+
figs = []
|
| 243 |
+
for tag, cols in groups.items():
|
| 244 |
+
fig = go.Figure()
|
| 245 |
+
# 各列を描画
|
| 246 |
+
for r in cols:
|
| 247 |
+
col = r["col_tuple"]
|
| 248 |
+
col_str = r["col_str"]
|
| 249 |
+
if col not in dfw.columns:
|
| 250 |
+
# まれにヘッダー崩れなど
|
| 251 |
+
if col_str in dfw.columns:
|
| 252 |
+
series = dfw[col_str]
|
| 253 |
+
else:
|
| 254 |
+
continue
|
| 255 |
+
else:
|
| 256 |
+
series = dfw[col]
|
| 257 |
+
|
| 258 |
+
# 値
|
| 259 |
+
x = dfw["timestamp"]
|
| 260 |
+
y = pd.to_numeric(series, errors="coerce")
|
| 261 |
+
|
| 262 |
+
# しきい値決定
|
| 263 |
+
if thr_mode == "excel":
|
| 264 |
+
key = (normalize(r["id"]), normalize(r["item"]), normalize(r["process"]))
|
| 265 |
+
LL, L, H, HH = thr_lookup.get(key, (np.nan, np.nan, np.nan, np.nan))
|
| 266 |
+
# Excelに見つからない場合は自動にフォールバック
|
| 267 |
+
if all(pd.isna(v) for v in [LL, L, H, HH]):
|
| 268 |
+
LL, L, H, HH = auto_threshold(y)
|
| 269 |
+
else:
|
| 270 |
+
LL, L, H, HH = auto_threshold(y)
|
| 271 |
+
|
| 272 |
+
# 状態ごとに点色を決める
|
| 273 |
+
colors = []
|
| 274 |
+
for v in y:
|
| 275 |
+
if pd.isna(v):
|
| 276 |
+
colors.append("rgba(0,0,0,0)")
|
| 277 |
+
else:
|
| 278 |
+
st = judge_status(v, LL, L, H, HH)
|
| 279 |
+
colors.append(STATUS_COLOR.get(st, STATUS_COLOR["OK"]))
|
| 280 |
+
|
| 281 |
+
# 下地のライン(視認性のため薄色)
|
| 282 |
+
fig.add_trace(go.Scatter(
|
| 283 |
+
x=x, y=y, mode="lines",
|
| 284 |
+
name=f"{r['item']} ({r['id']})",
|
| 285 |
+
line=dict(color=LINE_COLOR, width=1.5),
|
| 286 |
+
hovertemplate="%{x}<br>%{y}<extra>"+f"{r['item']} ({r['id']})"+"</extra>"
|
| 287 |
+
))
|
| 288 |
+
# 色付きマーカーで逸脱強調
|
| 289 |
+
fig.add_trace(go.Scatter(
|
| 290 |
+
x=x, y=y, mode="markers",
|
| 291 |
+
name=f"{r['item']} markers",
|
| 292 |
+
marker=dict(size=6, color=colors),
|
| 293 |
+
showlegend=False,
|
| 294 |
+
hovertemplate="%{x}<br>%{y}<extra></extra>"
|
| 295 |
+
))
|
| 296 |
+
|
| 297 |
+
# しきい値ガイド(あれば)
|
| 298 |
+
def add_hline(val, label):
|
| 299 |
+
if pd.notna(val):
|
| 300 |
+
fig.add_hline(y=float(val), line=dict(width=1, dash="dot"),
|
| 301 |
+
annotation_text=label, annotation_position="top left")
|
| 302 |
+
|
| 303 |
+
add_hline(LL, "LL")
|
| 304 |
+
add_hline(L, "L")
|
| 305 |
+
add_hline(H, "H")
|
| 306 |
+
add_hline(HH, "HH")
|
| 307 |
+
|
| 308 |
+
fig.update_layout(
|
| 309 |
+
title=f"{process_name} | 計測項目: {tag}",
|
| 310 |
+
xaxis_title="timestamp",
|
| 311 |
+
yaxis_title=tag,
|
| 312 |
+
legend_title="系列",
|
| 313 |
+
margin=dict(l=10, r=10, t=40, b=10),
|
| 314 |
+
hovermode="x unified",
|
| 315 |
+
)
|
| 316 |
+
figs.append(fig)
|
| 317 |
+
|
| 318 |
+
return figs
|
| 319 |
+
|
| 320 |
+
# ======================================
|
| 321 |
+
# グローバル状態(UI間共有)
|
| 322 |
+
# ======================================
|
| 323 |
+
G_DF: Optional[pd.DataFrame] = None
|
| 324 |
+
G_PROCESS_MAP = {}
|
| 325 |
+
G_PROCESSES = []
|
| 326 |
+
G_THRESHOLDS_DF: Optional[pd.DataFrame] = None
|
| 327 |
+
|
| 328 |
+
# ======================================
|
| 329 |
+
# コールバック
|
| 330 |
+
# ======================================
|
| 331 |
+
def initialize_default_csv():
|
| 332 |
+
"""
|
| 333 |
+
起動時にデフォルトCSVが存在すれば読み込む。
|
| 334 |
+
"""
|
| 335 |
+
global G_DF, G_PROCESS_MAP, G_PROCESSES
|
| 336 |
+
if os.path.exists(DEFAULT_CSV_PATH):
|
| 337 |
+
try:
|
| 338 |
+
df = try_read_csv_3header(DEFAULT_CSV_PATH)
|
| 339 |
+
G_DF = df
|
| 340 |
+
G_PROCESS_MAP, G_PROCESSES = build_index_maps(df)
|
| 341 |
+
return f"✅ 既定CSVを読み込みました: {DEFAULT_CSV_PATH}", gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)), G_PROCESSES
|
| 342 |
+
except Exception as e:
|
| 343 |
+
return f"⚠ 既定CSV読み込み失敗: {e}", gr.update(), []
|
| 344 |
+
return "ℹ CSVをアップロードしてください。", gr.update(), []
|
| 345 |
+
|
| 346 |
+
def on_csv_upload(file):
|
| 347 |
+
"""
|
| 348 |
+
CSVアップロード → パース → プロセス候補更新
|
| 349 |
+
"""
|
| 350 |
+
global G_DF, G_PROCESS_MAP, G_PROCESSES
|
| 351 |
+
if file is None:
|
| 352 |
+
return "⚠ ファイルが選択されていません。", gr.update(choices=[]), []
|
| 353 |
+
try:
|
| 354 |
+
df = try_read_csv_3header(file.name if hasattr(file, "name") else file)
|
| 355 |
+
G_DF = df
|
| 356 |
+
G_PROCESS_MAP, G_PROCESSES = build_index_maps(df)
|
| 357 |
+
return f"✅ CSV読み込み: {df.shape[0]}行 × {df.shape[1]}列", gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)), G_PROCESSES
|
| 358 |
+
except Exception as e:
|
| 359 |
+
return f"❌ 読み込みエラー: {e}", gr.update(choices=[]), []
|
| 360 |
+
|
| 361 |
+
def on_thr_upload(file):
|
| 362 |
+
"""
|
| 363 |
+
しきい値Excelアップロード → メモリ更新
|
| 364 |
+
"""
|
| 365 |
+
global G_THRESHOLDS_DF
|
| 366 |
+
if file is None:
|
| 367 |
+
G_THRESHOLDS_DF = None
|
| 368 |
+
return "ℹ しきい値ファイルなし(自動しきい値が使われます)"
|
| 369 |
+
try:
|
| 370 |
+
thr = try_read_thresholds_excel(file.name if hasattr(file, "name") else file)
|
| 371 |
+
G_THRESHOLDS_DF = thr
|
| 372 |
+
return f"✅ しきい値を読み込みました({thr.shape[0]}件)"
|
| 373 |
+
except Exception as e:
|
| 374 |
+
G_THRESHOLDS_DF = None
|
| 375 |
+
return f"❌ しきい値読み込みエラー: {e}"
|
| 376 |
+
|
| 377 |
+
def update_items(process_name: str):
|
| 378 |
+
"""
|
| 379 |
+
プロセス選択に応じて、項目(2行目)候補を返す。
|
| 380 |
+
"""
|
| 381 |
+
if not process_name or process_name not in G_PROCESS_MAP:
|
| 382 |
+
return gr.update(choices=[], value=[])
|
| 383 |
+
items = sorted(list({rec["item"] for rec in G_PROCESS_MAP[process_name]}), key=lambda x: normalize(x))
|
| 384 |
+
# デフォルトは全選択
|
| 385 |
+
return gr.update(choices=items, value=items)
|
| 386 |
+
|
| 387 |
+
def render_figs(process_name: str, items: List[str], thr_mode: str, date_min, date_max):
|
| 388 |
+
"""
|
| 389 |
+
図を生成して返す(複数図)。GradioではList[plotly.Figure]を直接返せる。
|
| 390 |
+
"""
|
| 391 |
+
if G_DF is None:
|
| 392 |
+
return "⚠ データ未読み込み", []
|
| 393 |
+
if not process_name:
|
| 394 |
+
return "⚠ プロセスを選択してください", []
|
| 395 |
+
if not items:
|
| 396 |
+
return "⚠ 項目を選択してください", []
|
| 397 |
+
|
| 398 |
+
figs = make_trend_figs(
|
| 399 |
+
G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, thr_mode, date_min, date_max
|
| 400 |
+
)
|
| 401 |
+
if not figs:
|
| 402 |
+
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", []
|
| 403 |
+
return f"✅ {process_name}: {len(figs)}枚のトレンド図を生成しました(計測項目タグごと)", figs
|
| 404 |
+
|
| 405 |
+
# ======================================
|
| 406 |
+
# UI
|
| 407 |
+
# ======================================
|
| 408 |
+
with gr.Blocks(css="""
|
| 409 |
+
.gradio-container {overflow: auto !important;}
|
| 410 |
+
""") as demo:
|
| 411 |
+
gr.Markdown("## トレンドグラフ専用アプリ(3行ヘッダー対応・プロセス別・計測項目タグ別・閾値色分け)")
|
| 412 |
+
|
| 413 |
+
with gr.Row():
|
| 414 |
+
csv_uploader = gr.File(label="① 時系列CSV(3行ヘッダー)", file_count="single", file_types=[".csv"])
|
| 415 |
+
thr_uploader = gr.File(label="② 閾値Excel(任意: LL/L/H/HH)", file_count="single", file_types=[".xlsx", ".xls"])
|
| 416 |
+
|
| 417 |
+
with gr.Row():
|
| 418 |
+
thr_mode = gr.Radio(
|
| 419 |
+
["excel(アップロード優先・無ければ自動)", "自動(平均±標準偏差)"],
|
| 420 |
+
value="excel(アップロード優先・無ければ自動)",
|
| 421 |
+
label="しきい値モード"
|
| 422 |
+
)
|
| 423 |
+
date_min = gr.Textbox(label="抽出開始日時(任意)例: 2024-07-01 00:00")
|
| 424 |
+
date_max = gr.Textbox(label="抽出終了日時(任意)例: 2024-07-31 23:59")
|
| 425 |
+
|
| 426 |
+
status_csv = gr.Markdown()
|
| 427 |
+
status_thr = gr.Markdown()
|
| 428 |
+
|
| 429 |
+
process_dd = gr.Dropdown(label="対象プロセス(3行ヘッダーの3行目)", choices=[])
|
| 430 |
+
items_cb = gr.CheckboxGroup(label="表示する項目(3行ヘッダーの2行目)", choices=[], value=[])
|
| 431 |
+
|
| 432 |
+
with gr.Row():
|
| 433 |
+
btn_render = gr.Button("トレンド図を生成", variant="primary")
|
| 434 |
+
|
| 435 |
+
msg = gr.Markdown()
|
| 436 |
+
plots = gr.Plotly(label="トレンド図(計測項目タグごとに複数枚)", height=540, every=1, interactive=True, show_label=True, scale=100, container=True, visible=True, elem_id="plot_container", elem_classes=["w-full"], )
|
| 437 |
+
|
| 438 |
+
# コールバック接続
|
| 439 |
+
# 1) 既定CSVの自動ロード
|
| 440 |
+
init_msg, init_proc_update, _ = initialize_default_csv()
|
| 441 |
+
status_csv.value = init_msg
|
| 442 |
+
process_dd.value = init_proc_update.value
|
| 443 |
+
process_dd.choices = init_proc_update.choices
|
| 444 |
+
|
| 445 |
+
# 2) CSVアップロードで更新
|
| 446 |
+
csv_uploader.change(
|
| 447 |
+
on_csv_upload,
|
| 448 |
+
inputs=[csv_uploader],
|
| 449 |
+
outputs=[status_csv, process_dd, gr.State()],
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
# 3) 閾値アップロードで更新
|
| 453 |
+
thr_uploader.change(
|
| 454 |
+
on_thr_upload,
|
| 455 |
+
inputs=[thr_uploader],
|
| 456 |
+
outputs=[status_thr],
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
# 4) プロセス選択で項目候補更新
|
| 460 |
+
process_dd.change(
|
| 461 |
+
update_items,
|
| 462 |
+
inputs=[process_dd],
|
| 463 |
+
outputs=[items_cb],
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
# 5) 図生成
|
| 467 |
+
def _thr_mode_key(s):
|
| 468 |
+
return "excel" if s.startswith("excel") else "auto"
|
| 469 |
+
|
| 470 |
+
btn_render.click(
|
| 471 |
+
fn=lambda proc, items, mode, dmin, dmax: render_figs(proc, items, _thr_mode_key(mode), dmin, dmax),
|
| 472 |
+
inputs=[process_dd, items_cb, thr_mode, date_min, date_max],
|
| 473 |
+
outputs=[msg, plots],
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
if __name__ == "__main__":
|
| 477 |
+
# gradio>=4 で Plotly がそのままレンダリング可能
|
| 478 |
+
demo.launch()
|