Add new functions for generating trend figures: single subplot and individual figures by tag. Update UI for display mode selection and enhance rendering logic.
Browse files
app.py
CHANGED
|
@@ -5,6 +5,8 @@ import os
|
|
| 5 |
import re
|
| 6 |
from typing import Dict, Tuple, List, Optional
|
| 7 |
import plotly.graph_objects as go
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# ======================================
|
| 10 |
# 設定(添付CSVの既定パス:必要に応じて変更可)
|
|
@@ -191,7 +193,7 @@ STATUS_COLOR = {
|
|
| 191 |
LINE_COLOR = "#4a5568" # 濃いグレー
|
| 192 |
|
| 193 |
# ======================================
|
| 194 |
-
#
|
| 195 |
# ======================================
|
| 196 |
def make_trend_figs(
|
| 197 |
df: pd.DataFrame,
|
|
@@ -317,6 +319,240 @@ def make_trend_figs(
|
|
| 317 |
|
| 318 |
return figs
|
| 319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
# ======================================
|
| 321 |
# グローバル状態(UI間共有)
|
| 322 |
# ======================================
|
|
@@ -386,7 +622,7 @@ def update_items(process_name: str):
|
|
| 386 |
|
| 387 |
def render_figs(process_name: str, items: List[str], thr_mode: str, date_min, date_max):
|
| 388 |
"""
|
| 389 |
-
|
| 390 |
"""
|
| 391 |
if G_DF is None:
|
| 392 |
return "⚠ データ未読み込み", []
|
|
@@ -402,6 +638,31 @@ def render_figs(process_name: str, items: List[str], thr_mode: str, date_min, da
|
|
| 402 |
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", []
|
| 403 |
return f"✅ {process_name}: {len(figs)}枚のトレンド図を生成しました(計測項目タグごと)", figs
|
| 404 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
# ======================================
|
| 406 |
# UI
|
| 407 |
# ======================================
|
|
@@ -412,7 +673,7 @@ with gr.Blocks(css="""
|
|
| 412 |
|
| 413 |
with gr.Row():
|
| 414 |
csv_uploader = gr.File(label="① 時系列CSV(3行ヘッダー)", file_count="single", file_types=[".csv"])
|
| 415 |
-
thr_uploader = gr.File(label="② 閾値Excel(任意: LL/L/
|
| 416 |
|
| 417 |
with gr.Row():
|
| 418 |
thr_mode = gr.Radio(
|
|
@@ -423,6 +684,13 @@ with gr.Blocks(css="""
|
|
| 423 |
date_min = gr.Textbox(label="抽出開始日時(任意)例: 2024-07-01 00:00")
|
| 424 |
date_max = gr.Textbox(label="抽出終了日時(任意)例: 2024-07-31 23:59")
|
| 425 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
status_csv = gr.Markdown()
|
| 427 |
status_thr = gr.Markdown()
|
| 428 |
|
|
@@ -433,7 +701,10 @@ with gr.Blocks(css="""
|
|
| 433 |
btn_render = gr.Button("トレンド図を生成", variant="primary")
|
| 434 |
|
| 435 |
msg = gr.Markdown()
|
| 436 |
-
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
# コールバック接続
|
| 439 |
# 1) 既定CSVの自動ロード
|
|
@@ -464,15 +735,12 @@ with gr.Blocks(css="""
|
|
| 464 |
)
|
| 465 |
|
| 466 |
# 5) 図生成
|
| 467 |
-
def _thr_mode_key(s):
|
| 468 |
-
return "excel" if s.startswith("excel") else "auto"
|
| 469 |
-
|
| 470 |
btn_render.click(
|
| 471 |
-
fn=lambda proc, items, mode, dmin, dmax:
|
| 472 |
-
inputs=[process_dd, items_cb, thr_mode, date_min, date_max],
|
| 473 |
-
outputs=[msg,
|
| 474 |
)
|
| 475 |
|
| 476 |
if __name__ == "__main__":
|
| 477 |
-
# gradio>=
|
| 478 |
demo.launch()
|
|
|
|
| 5 |
import re
|
| 6 |
from typing import Dict, Tuple, List, Optional
|
| 7 |
import plotly.graph_objects as go
|
| 8 |
+
from plotly.subplots import make_subplots
|
| 9 |
+
import plotly.io as pio
|
| 10 |
|
| 11 |
# ======================================
|
| 12 |
# 設定(添付CSVの既定パス:必要に応じて変更可)
|
|
|
|
| 193 |
LINE_COLOR = "#4a5568" # 濃いグレー
|
| 194 |
|
| 195 |
# ======================================
|
| 196 |
+
# 図作成(既存:グルーピングごとに個別のFigureを返す)
|
| 197 |
# ======================================
|
| 198 |
def make_trend_figs(
|
| 199 |
df: pd.DataFrame,
|
|
|
|
| 319 |
|
| 320 |
return figs
|
| 321 |
|
| 322 |
+
# ======================================
|
| 323 |
+
# 新規:サブプロット1枚でまとめる図
|
| 324 |
+
# ======================================
|
| 325 |
+
def make_trend_figure(
|
| 326 |
+
df: pd.DataFrame,
|
| 327 |
+
process_map: Dict[str, List[dict]],
|
| 328 |
+
process_name: str,
|
| 329 |
+
selected_items: List[str],
|
| 330 |
+
thr_df: Optional[pd.DataFrame],
|
| 331 |
+
thr_mode: str, # "excel" or "auto"
|
| 332 |
+
date_min: Optional[str] = None,
|
| 333 |
+
date_max: Optional[str] = None,
|
| 334 |
+
) -> Optional[go.Figure]:
|
| 335 |
+
if df is None or not process_name:
|
| 336 |
+
return None
|
| 337 |
+
recs = process_map.get(process_name, [])
|
| 338 |
+
if not recs:
|
| 339 |
+
return None
|
| 340 |
+
selected_items_set = set([normalize(x) for x in (selected_items or [])])
|
| 341 |
+
recs = [r for r in recs if normalize(r["item"]) in selected_items_set]
|
| 342 |
+
if not recs:
|
| 343 |
+
return None
|
| 344 |
+
|
| 345 |
+
dfw = df.copy()
|
| 346 |
+
if date_min:
|
| 347 |
+
dfw = dfw[dfw["timestamp"] >= pd.to_datetime(date_min)]
|
| 348 |
+
if date_max:
|
| 349 |
+
dfw = dfw[dfw["timestamp"] <= pd.to_datetime(date_max)]
|
| 350 |
+
if dfw.empty:
|
| 351 |
+
return None
|
| 352 |
+
|
| 353 |
+
thr_lookup = build_threshold_lookup(thr_df) if thr_mode == "excel" else {}
|
| 354 |
+
|
| 355 |
+
# 計測項目タグでグルーピング
|
| 356 |
+
groups: Dict[str, List[dict]] = {}
|
| 357 |
+
for r in recs:
|
| 358 |
+
tag = extract_measure_tag(r["item"])
|
| 359 |
+
groups.setdefault(tag, []).append(r)
|
| 360 |
+
tags = list(groups.keys())
|
| 361 |
+
if not tags:
|
| 362 |
+
return None
|
| 363 |
+
|
| 364 |
+
fig = make_subplots(
|
| 365 |
+
rows=len(tags), cols=1, shared_xaxes=True,
|
| 366 |
+
vertical_spacing=0.03,
|
| 367 |
+
subplot_titles=[f"{process_name} | 計測項目: {t}" for t in tags]
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
row_idx = 1
|
| 371 |
+
for tag in tags:
|
| 372 |
+
cols = groups[tag]
|
| 373 |
+
for r in cols:
|
| 374 |
+
col = r["col_tuple"]
|
| 375 |
+
col_str = r["col_str"]
|
| 376 |
+
if col in dfw.columns:
|
| 377 |
+
series = dfw[col]
|
| 378 |
+
elif col_str in dfw.columns:
|
| 379 |
+
series = dfw[col_str]
|
| 380 |
+
else:
|
| 381 |
+
continue
|
| 382 |
+
|
| 383 |
+
x = dfw["timestamp"]
|
| 384 |
+
y = pd.to_numeric(series, errors="coerce")
|
| 385 |
+
|
| 386 |
+
if thr_mode == "excel":
|
| 387 |
+
key = (normalize(r["id"]), normalize(r["item"]), normalize(r["process"]))
|
| 388 |
+
LL, L, H, HH = thr_lookup.get(key, (np.nan, np.nan, np.nan, np.nan))
|
| 389 |
+
if all(pd.isna(v) for v in [LL, L, H, HH]):
|
| 390 |
+
LL, L, H, HH = auto_threshold(y)
|
| 391 |
+
else:
|
| 392 |
+
LL, L, H, HH = auto_threshold(y)
|
| 393 |
+
|
| 394 |
+
# ライン
|
| 395 |
+
fig.add_trace(
|
| 396 |
+
go.Scatter(
|
| 397 |
+
x=x, y=y, mode="lines",
|
| 398 |
+
name=f"{r['item']} ({r['id']})",
|
| 399 |
+
line=dict(color=LINE_COLOR, width=1.5),
|
| 400 |
+
hovertemplate="%{x}<br>%{y}<extra>"+f"{r['item']} ({r['id']})"+"</extra>"
|
| 401 |
+
),
|
| 402 |
+
row=row_idx, col=1
|
| 403 |
+
)
|
| 404 |
+
# マーカー(色分け)
|
| 405 |
+
colors = []
|
| 406 |
+
for v in y:
|
| 407 |
+
if pd.isna(v):
|
| 408 |
+
colors.append("rgba(0,0,0,0)")
|
| 409 |
+
else:
|
| 410 |
+
st = judge_status(v, LL, L, H, HH)
|
| 411 |
+
colors.append(STATUS_COLOR.get(st, STATUS_COLOR["OK"]))
|
| 412 |
+
fig.add_trace(
|
| 413 |
+
go.Scatter(
|
| 414 |
+
x=x, y=y, mode="markers",
|
| 415 |
+
name=f"{r['item']} markers",
|
| 416 |
+
marker=dict(size=6, color=colors),
|
| 417 |
+
showlegend=False,
|
| 418 |
+
hovertemplate="%{x}<br>%{y}<extra></extra>"
|
| 419 |
+
),
|
| 420 |
+
row=row_idx, col=1
|
| 421 |
+
)
|
| 422 |
+
# しきい値ガイド
|
| 423 |
+
for val, label in [(LL, "LL"), (L, "L"), (H, "H"), (HH, "HH")]:
|
| 424 |
+
if pd.notna(val):
|
| 425 |
+
fig.add_hline(
|
| 426 |
+
y=float(val), line=dict(width=1, dash="dot"),
|
| 427 |
+
annotation_text=label, annotation_position="top left",
|
| 428 |
+
row=row_idx, col=1
|
| 429 |
+
)
|
| 430 |
+
row_idx += 1
|
| 431 |
+
|
| 432 |
+
fig.update_layout(
|
| 433 |
+
title=f"{process_name} | 計測項目タグごとのトレンド",
|
| 434 |
+
xaxis_title="timestamp",
|
| 435 |
+
showlegend=True,
|
| 436 |
+
margin=dict(l=10, r=10, t=40, b=10),
|
| 437 |
+
hovermode="x unified",
|
| 438 |
+
height=max(400, 260 * len(tags)),
|
| 439 |
+
)
|
| 440 |
+
return fig
|
| 441 |
+
|
| 442 |
+
# ======================================
|
| 443 |
+
# 新規:計測項目タグごとに個別Figure
|
| 444 |
+
# ======================================
|
| 445 |
+
def make_trend_figs_by_tag(
|
| 446 |
+
df: pd.DataFrame,
|
| 447 |
+
process_map: Dict[str, List[dict]],
|
| 448 |
+
process_name: str,
|
| 449 |
+
selected_items: List[str],
|
| 450 |
+
thr_df: Optional[pd.DataFrame],
|
| 451 |
+
thr_mode: str,
|
| 452 |
+
date_min: Optional[str] = None,
|
| 453 |
+
date_max: Optional[str] = None,
|
| 454 |
+
) -> Dict[str, go.Figure]:
|
| 455 |
+
if df is None or not process_name:
|
| 456 |
+
return {}
|
| 457 |
+
recs = process_map.get(process_name, [])
|
| 458 |
+
if not recs:
|
| 459 |
+
return {}
|
| 460 |
+
selected_items_set = set([normalize(x) for x in (selected_items or [])])
|
| 461 |
+
recs = [r for r in recs if normalize(r["item"]) in selected_items_set]
|
| 462 |
+
if not recs:
|
| 463 |
+
return {}
|
| 464 |
+
|
| 465 |
+
dfw = df.copy()
|
| 466 |
+
if date_min:
|
| 467 |
+
dfw = dfw[dfw["timestamp"] >= pd.to_datetime(date_min)]
|
| 468 |
+
if date_max:
|
| 469 |
+
dfw = dfw[dfw["timestamp"] <= pd.to_datetime(date_max)]
|
| 470 |
+
if dfw.empty:
|
| 471 |
+
return {}
|
| 472 |
+
|
| 473 |
+
thr_lookup = build_threshold_lookup(thr_df) if thr_mode == "excel" else {}
|
| 474 |
+
|
| 475 |
+
groups: Dict[str, List[dict]] = {}
|
| 476 |
+
for r in recs:
|
| 477 |
+
tag = extract_measure_tag(r["item"])
|
| 478 |
+
groups.setdefault(tag, []).append(r)
|
| 479 |
+
|
| 480 |
+
out: Dict[str, go.Figure] = {}
|
| 481 |
+
for tag, cols in groups.items():
|
| 482 |
+
fig = go.Figure()
|
| 483 |
+
for r in cols:
|
| 484 |
+
col = r["col_tuple"]
|
| 485 |
+
col_str = r["col_str"]
|
| 486 |
+
if col in dfw.columns:
|
| 487 |
+
series = dfw[col]
|
| 488 |
+
elif col_str in dfw.columns:
|
| 489 |
+
series = dfw[col_str]
|
| 490 |
+
else:
|
| 491 |
+
continue
|
| 492 |
+
|
| 493 |
+
x = dfw["timestamp"]
|
| 494 |
+
y = pd.to_numeric(series, errors="coerce")
|
| 495 |
+
|
| 496 |
+
if thr_mode == "excel":
|
| 497 |
+
key = (normalize(r["id"]), normalize(r["item"]), normalize(r["process"]))
|
| 498 |
+
LL, L, H, HH = thr_lookup.get(key, (np.nan, np.nan, np.nan, np.nan))
|
| 499 |
+
if all(pd.isna(v) for v in [LL, L, H, HH]):
|
| 500 |
+
LL, L, H, HH = auto_threshold(y)
|
| 501 |
+
else:
|
| 502 |
+
LL, L, H, HH = auto_threshold(y)
|
| 503 |
+
|
| 504 |
+
fig.add_trace(go.Scatter(
|
| 505 |
+
x=x, y=y, mode="lines",
|
| 506 |
+
name=f"{r['item']} ({r['id']})",
|
| 507 |
+
line=dict(color=LINE_COLOR, width=1.5),
|
| 508 |
+
hovertemplate="%{x}<br>%{y}<extra>"+f"{r['item']} ({r['id']})"+"</extra>"
|
| 509 |
+
))
|
| 510 |
+
|
| 511 |
+
colors = []
|
| 512 |
+
for v in y:
|
| 513 |
+
if pd.isna(v):
|
| 514 |
+
colors.append("rgba(0,0,0,0)")
|
| 515 |
+
else:
|
| 516 |
+
st = judge_status(v, LL, L, H, HH)
|
| 517 |
+
colors.append(STATUS_COLOR.get(st, STATUS_COLOR["OK"]))
|
| 518 |
+
|
| 519 |
+
fig.add_trace(go.Scatter(
|
| 520 |
+
x=x, y=y, mode="markers",
|
| 521 |
+
name=f"{r['item']} markers",
|
| 522 |
+
marker=dict(size=6, color=colors),
|
| 523 |
+
showlegend=False,
|
| 524 |
+
hovertemplate="%{x}<br>%{y}<extra></extra>"
|
| 525 |
+
))
|
| 526 |
+
|
| 527 |
+
for val, label in [(LL, "LL"), (L, "L"), (H, "H"), (HH, "HH")]:
|
| 528 |
+
if pd.notna(val):
|
| 529 |
+
fig.add_hline(y=float(val), line=dict(width=1, dash="dot"),
|
| 530 |
+
annotation_text=label, annotation_position="top left")
|
| 531 |
+
|
| 532 |
+
fig.update_layout(
|
| 533 |
+
title=f"{process_name} | 計測項目: {tag}",
|
| 534 |
+
xaxis_title="timestamp",
|
| 535 |
+
yaxis_title=tag,
|
| 536 |
+
legend_title="系列",
|
| 537 |
+
margin=dict(l=10, r=10, t=40, b=10),
|
| 538 |
+
hovermode="x unified",
|
| 539 |
+
)
|
| 540 |
+
out[tag] = fig
|
| 541 |
+
return out
|
| 542 |
+
|
| 543 |
+
def figures_to_html(figs_by_tag: Dict[str, go.Figure]) -> str:
|
| 544 |
+
"""
|
| 545 |
+
各 Figure を <div> で順番に並べた HTML を返す。
|
| 546 |
+
最初の図だけ PlotlyJS をCDNで同梱し、以降はスリムに。
|
| 547 |
+
"""
|
| 548 |
+
parts = []
|
| 549 |
+
first = True
|
| 550 |
+
for tag, fig in figs_by_tag.items():
|
| 551 |
+
html = pio.to_html(fig, include_plotlyjs='cdn' if first else False, full_html=False)
|
| 552 |
+
parts.append(html)
|
| 553 |
+
first = False
|
| 554 |
+
return "<br>".join(parts) if parts else "<p>図がありません。</p>"
|
| 555 |
+
|
| 556 |
# ======================================
|
| 557 |
# グローバル状態(UI間共有)
|
| 558 |
# ======================================
|
|
|
|
| 622 |
|
| 623 |
def render_figs(process_name: str, items: List[str], thr_mode: str, date_min, date_max):
|
| 624 |
"""
|
| 625 |
+
(旧)図を生成して返す(複数図)。今は未使用だが残置。
|
| 626 |
"""
|
| 627 |
if G_DF is None:
|
| 628 |
return "⚠ データ未読み込み", []
|
|
|
|
| 638 |
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", []
|
| 639 |
return f"✅ {process_name}: {len(figs)}枚のトレンド図を生成しました(計測項目タグごと)", figs
|
| 640 |
|
| 641 |
+
def render_any(process_name: str, items: List[str], display_mode: str, thr_mode_label: str, date_min, date_max):
|
| 642 |
+
"""
|
| 643 |
+
表示形式に応じて Plot(サブプロット1枚)または HTML(個別複数枚)を返す。
|
| 644 |
+
"""
|
| 645 |
+
if G_DF is None:
|
| 646 |
+
return "⚠ データ未読み込み", gr.update(visible=False), gr.update(value="", visible=False)
|
| 647 |
+
if not process_name:
|
| 648 |
+
return "⚠ プロセスを選択してください", gr.update(visible=False), gr.update(value="", visible=False)
|
| 649 |
+
if not items:
|
| 650 |
+
return "⚠ 項目を選択してください", gr.update(visible=False), gr.update(value="", visible=False)
|
| 651 |
+
|
| 652 |
+
mode = "excel" if str(thr_mode_label).startswith("excel") else "auto"
|
| 653 |
+
|
| 654 |
+
if str(display_mode).startswith("サブプロット"):
|
| 655 |
+
fig = make_trend_figure(G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode, date_min, date_max)
|
| 656 |
+
if fig is None:
|
| 657 |
+
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(value="", visible=False)
|
| 658 |
+
return "✅ トレンド図(1枚サブプロット)を生成しました", gr.update(value=fig, visible=True), gr.update(value="", visible=False)
|
| 659 |
+
else:
|
| 660 |
+
figs_by_tag = make_trend_figs_by_tag(G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode, date_min, date_max)
|
| 661 |
+
if not figs_by_tag:
|
| 662 |
+
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(value="", visible=False)
|
| 663 |
+
html = figures_to_html(figs_by_tag)
|
| 664 |
+
return f"✅ 個別トレンド図 {len(figs_by_tag)} 枚を生成しました", gr.update(visible=False), gr.update(value=html, visible=True)
|
| 665 |
+
|
| 666 |
# ======================================
|
| 667 |
# UI
|
| 668 |
# ======================================
|
|
|
|
| 673 |
|
| 674 |
with gr.Row():
|
| 675 |
csv_uploader = gr.File(label="① 時系列CSV(3行ヘッダー)", file_count="single", file_types=[".csv"])
|
| 676 |
+
thr_uploader = gr.File(label="② 閾値Excel(任意: LL/L/HH/HH)", file_count="single", file_types=[".xlsx", ".xls"])
|
| 677 |
|
| 678 |
with gr.Row():
|
| 679 |
thr_mode = gr.Radio(
|
|
|
|
| 684 |
date_min = gr.Textbox(label="抽出開始日時(任意)例: 2024-07-01 00:00")
|
| 685 |
date_max = gr.Textbox(label="抽出終了日時(任意)例: 2024-07-31 23:59")
|
| 686 |
|
| 687 |
+
# 表示形式の切り替え
|
| 688 |
+
display_mode = gr.Radio(
|
| 689 |
+
["サブプロット(1枚)", "個別(複数枚)"],
|
| 690 |
+
value="サブプロット(1枚)",
|
| 691 |
+
label="表示形式"
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
status_csv = gr.Markdown()
|
| 695 |
status_thr = gr.Markdown()
|
| 696 |
|
|
|
|
| 701 |
btn_render = gr.Button("トレンド図を生成", variant="primary")
|
| 702 |
|
| 703 |
msg = gr.Markdown()
|
| 704 |
+
# サブプロット用(1枚)
|
| 705 |
+
plot = gr.Plot(label="トレンド図(タグ別サブプロット)", height=540, show_label=True, visible=True)
|
| 706 |
+
# 個別(複数枚)用
|
| 707 |
+
html_multi = gr.HTML(label="個別トレンド図(複数枚)", visible=False)
|
| 708 |
|
| 709 |
# コールバック接続
|
| 710 |
# 1) 既定CSVの自動ロード
|
|
|
|
| 735 |
)
|
| 736 |
|
| 737 |
# 5) 図生成
|
|
|
|
|
|
|
|
|
|
| 738 |
btn_render.click(
|
| 739 |
+
fn=lambda proc, items, disp_mode, mode, dmin, dmax: render_any(proc, items, disp_mode, mode, dmin, dmax),
|
| 740 |
+
inputs=[process_dd, items_cb, display_mode, thr_mode, date_min, date_max],
|
| 741 |
+
outputs=[msg, plot, html_multi],
|
| 742 |
)
|
| 743 |
|
| 744 |
if __name__ == "__main__":
|
| 745 |
+
# gradio>=5: gr.Plot で Plotly Figure を直接表示可
|
| 746 |
demo.launch()
|