File size: 27,931 Bytes
fe4fb5e 9e48adf fe4fb5e 9e48adf fe4fb5e 9e48adf fe4fb5e 9e48adf fe4fb5e 9e48adf fe4fb5e 9e48adf fe4fb5e 9e48adf fe4fb5e 9e48adf 92c476d 9e48adf fe4fb5e 9e48adf fe4fb5e 9e48adf fe4fb5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from typing import Dict, Tuple, List, Optional
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import plotly.io as pio
# ======================================
# 設定(添付CSVの既定パス:必要に応じて変更可)
# ======================================
DEFAULT_CSV_PATH = "/mnt/data/mock_data_id_9999.csv"
# ======================================
# ユーティリティ
# ======================================
def normalize(s: str) -> str:
return str(s).replace("\u3000", " ").replace("\n", "").replace("\r", "").strip()
def try_read_csv_3header(path_or_file) -> pd.DataFrame:
"""
3行ヘッダーCSVを読み込む(cp932/utf-8-sig フォールバック)。
1列目は timestamp として datetime 変換。
2列目以降は (ID, ItemName, ProcessName) の3段。
"""
last_err = None
for enc in ["cp932", "utf-8-sig", "utf-8"]:
try:
df = pd.read_csv(path_or_file, header=[0, 1, 2], encoding=enc)
break
except Exception as e:
last_err = e
df = None
if df is None:
raise last_err
# 先頭列を timestamp に
ts = pd.to_datetime(df.iloc[:, 0], errors="coerce")
df = df.drop(df.columns[0], axis=1)
df.insert(0, "timestamp", ts)
# 列名はタプルのまま保持(timestampは str)
# ただし内部処理用に文字列連結も作成できるように関数を用意
return df
def col_tuple_to_str(col) -> str:
if isinstance(col, tuple):
return "_".join([str(x) for x in col if x])
return str(col)
def build_index_maps(df: pd.DataFrame):
"""
プロセス(3行目=タプルの3つ目)→ 該当列情報 の辞書を作る。
各列は (col_tuple, id, item, process, col_str)
"""
process_map = {}
for col in df.columns:
if col == "timestamp":
continue
if isinstance(col, tuple) and len(col) >= 3:
col_id, item_name, process_name = str(col[0]), str(col[1]), str(col[2])
else:
# 非タプル(安全策)
parts = str(col).split("_")
if len(parts) >= 3:
col_id, item_name, process_name = parts[0], "_".join(parts[1:-1]), parts[-1]
else:
# プロセスが分からない列はスキップ
continue
rec = {
"col_tuple": col,
"id": col_id,
"item": item_name,
"process": process_name,
"col_str": col_tuple_to_str(col),
}
process_map.setdefault(process_name, []).append(rec)
# プロセス候補・アイテム候補を返すために使う
processes = sorted(list(process_map.keys()), key=lambda x: normalize(x))
return process_map, processes
def extract_measure_tag(item_name: str) -> str:
"""
項目名末尾の計測項目タグを抽出。
例:
"処理水 有機物 分析値 [mg/L]" → "mg/L"
"原水 TOC" → "TOC"
"導電率(電気伝導度) [mS/cm]" → "mS/cm"
優先順:
1) [...] の中身
2) 全角/半角スペース区切りの末尾語(英字混在や記号含む)
"""
s = normalize(item_name)
m = re.search(r"\[([^\[\]]+)\]\s*$", s)
if m:
return m.group(1).strip()
# 角括弧がなければ末尾語
tokens = re.split(r"\s+", s)
if tokens:
return tokens[-1]
return s
# ======================================
# しきい値ハンドリング
# ======================================
def try_read_thresholds_excel(file) -> Optional[pd.DataFrame]:
"""
しきい値Excel(任意)を読み込み。
想定カラム: ColumnID, ItemName, ProcessNo_ProcessName, LL, L, H, HH, Important(任意)
"""
if file is None:
return None
df = pd.read_excel(file)
df.columns = [normalize(c) for c in df.columns]
# 必須カラム確認(最低限)
needed = {"ColumnID", "ItemName", "ProcessNo_ProcessName"}
if not needed.issubset(set(df.columns)):
# 列名が違う場合の簡易吸収
rename_map = {}
for k in list(df.columns):
nk = normalize(str(k))
if nk.lower() in ["columnid", "colid", "id"]:
rename_map[k] = "ColumnID"
elif nk.lower() in ["itemname", "item", "name"]:
rename_map[k] = "ItemName"
elif nk.lower() in ["processno_processname", "process", "processname"]:
rename_map[k] = "ProcessNo_ProcessName"
if rename_map:
df = df.rename(columns=rename_map)
# 数値化
for c in ["LL", "L", "H", "HH"]:
if c in df.columns:
df[c] = pd.to_numeric(df[c], errors="coerce")
if "Important" in df.columns:
df["Important"] = (
df["Important"].astype(str).str.upper().map({"TRUE": True, "FALSE": False})
)
return df
def build_threshold_lookup(thr_df: Optional[pd.DataFrame]) -> Dict[Tuple[str, str, str], Tuple[float, float, float, float]]:
"""
キー: (ColumnID, ItemName, ProcessNo_ProcessName) → (LL, L, H, HH)
"""
lookup = {}
if thr_df is None or thr_df.empty:
return lookup
for _, r in thr_df.iterrows():
colid = normalize(str(r.get("ColumnID", "")))
item = normalize(str(r.get("ItemName", "")))
proc = normalize(str(r.get("ProcessNo_ProcessName", "")))
LL = r.get("LL", np.nan)
L = r.get("L", np.nan)
H = r.get("H", np.nan)
HH = r.get("HH", np.nan)
lookup[(colid, item, proc)] = (LL, L, H, HH)
return lookup
def auto_threshold(series: pd.Series) -> Tuple[float, float, float, float]:
"""
自動しきい値: mean ± std(LL/L/H/HH の2段に同じ幅を割当)
例: L=mean-std, LL=mean-2std, H=mean+std, HH=mean+2std
"""
s = series.dropna()
if len(s) < 5:
return (np.nan, np.nan, np.nan, np.nan)
m = float(s.mean())
sd = float(s.std(ddof=1)) if len(s) >= 2 else 0.0
return (m - 2*sd, m - sd, m + sd, m + 2*sd)
def judge_status(value, LL, L, H, HH) -> str:
if pd.notna(LL) and value <= LL:
return "LL"
if pd.notna(L) and value <= L:
return "L"
if pd.notna(HH) and value >= HH:
return "HH"
if pd.notna(H) and value >= H:
return "H"
return "OK"
# カラー(点の色):閾値逸脱を強調
STATUS_COLOR = {
"LL": "#2b6cb0", # 青系
"L": "#63b3ed", # 水色
"OK": "#a0aec0", # グレー
"H": "#f6ad55", # 橙
"HH": "#e53e3e", # 赤
}
# 線色(系列ライン):列ごとに安定色
LINE_COLOR = "#4a5568" # 濃いグレー
# ======================================
# 図作成(既存:グルーピングごとに個別のFigureを返す)
# ======================================
def make_trend_figs(
df: pd.DataFrame,
process_map: Dict[str, List[dict]],
process_name: str,
selected_items: List[str],
thr_df: Optional[pd.DataFrame],
thr_mode: str, # "excel" or "auto"
date_min: Optional[str] = None,
date_max: Optional[str] = None,
) -> List[go.Figure]:
"""
計測項目タグごと(extract_measure_tag)に図を分けて生成。
selected_items は「2行目(ItemName)」の値。
"""
if df is None or process_name is None or process_name == "":
return []
# 対象プロセスの列レコード
recs = process_map.get(process_name, [])
if not recs:
return []
# 2行目(ItemName)で絞り込み
selected_items_set = set([normalize(x) for x in (selected_items or [])])
recs = [r for r in recs if normalize(r["item"]) in selected_items_set]
if not recs:
return []
# 日付範囲フィルタ
dfw = df.copy()
if date_min:
dfw = dfw[dfw["timestamp"] >= pd.to_datetime(date_min)]
if date_max:
dfw = dfw[dfw["timestamp"] <= pd.to_datetime(date_max)]
if dfw.empty:
return []
# しきい値参照
thr_lookup = build_threshold_lookup(thr_df) if thr_mode == "excel" else {}
# 測定項目タグごとにグループ化
groups: Dict[str, List[dict]] = {}
for r in recs:
tag = extract_measure_tag(r["item"])
groups.setdefault(tag, []).append(r)
figs = []
for tag, cols in groups.items():
fig = go.Figure()
# 各列を描画
for r in cols:
col = r["col_tuple"]
col_str = r["col_str"]
if col not in dfw.columns:
# まれにヘッダー崩れなど
if col_str in dfw.columns:
series = dfw[col_str]
else:
continue
else:
series = dfw[col]
# 値
x = dfw["timestamp"]
y = pd.to_numeric(series, errors="coerce")
# しきい値決定
if thr_mode == "excel":
key = (normalize(r["id"]), normalize(r["item"]), normalize(r["process"]))
LL, L, H, HH = thr_lookup.get(key, (np.nan, np.nan, np.nan, np.nan))
# Excelに見つからない場合は自動にフォールバック
if all(pd.isna(v) for v in [LL, L, H, HH]):
LL, L, H, HH = auto_threshold(y)
else:
LL, L, H, HH = auto_threshold(y)
# 状態ごとに点色を決める
colors = []
for v in y:
if pd.isna(v):
colors.append("rgba(0,0,0,0)")
else:
st = judge_status(v, LL, L, H, HH)
colors.append(STATUS_COLOR.get(st, STATUS_COLOR["OK"]))
# 下地のライン(視認性のため薄色)
fig.add_trace(go.Scatter(
x=x, y=y, mode="lines",
name=f"{r['item']} ({r['id']})",
line=dict(color=LINE_COLOR, width=1.5),
hovertemplate="%{x}<br>%{y}<extra>"+f"{r['item']} ({r['id']})"+"</extra>"
))
# 色付きマーカーで逸脱強調
fig.add_trace(go.Scatter(
x=x, y=y, mode="markers",
name=f"{r['item']} markers",
marker=dict(size=6, color=colors),
showlegend=False,
hovertemplate="%{x}<br>%{y}<extra></extra>"
))
# しきい値ガイド(あれば)
def add_hline(val, label):
if pd.notna(val):
fig.add_hline(y=float(val), line=dict(width=1, dash="dot"),
annotation_text=label, annotation_position="top left")
add_hline(LL, "LL")
add_hline(L, "L")
add_hline(H, "H")
add_hline(HH, "HH")
fig.update_layout(
title=f"{process_name} | 計測項目: {tag}",
xaxis_title="timestamp",
yaxis_title=tag,
legend_title="系列",
margin=dict(l=10, r=10, t=40, b=10),
hovermode="x unified",
)
figs.append(fig)
return figs
# ======================================
# 新規:サブプロット1枚でまとめる図
# ======================================
def make_trend_figure(
df: pd.DataFrame,
process_map: Dict[str, List[dict]],
process_name: str,
selected_items: List[str],
thr_df: Optional[pd.DataFrame],
thr_mode: str, # "excel" or "auto"
date_min: Optional[str] = None,
date_max: Optional[str] = None,
) -> Optional[go.Figure]:
if df is None or not process_name:
return None
recs = process_map.get(process_name, [])
if not recs:
return None
selected_items_set = set([normalize(x) for x in (selected_items or [])])
recs = [r for r in recs if normalize(r["item"]) in selected_items_set]
if not recs:
return None
dfw = df.copy()
if date_min:
dfw = dfw[dfw["timestamp"] >= pd.to_datetime(date_min)]
if date_max:
dfw = dfw[dfw["timestamp"] <= pd.to_datetime(date_max)]
if dfw.empty:
return None
thr_lookup = build_threshold_lookup(thr_df) if thr_mode == "excel" else {}
# 計測項目タグでグルーピング
groups: Dict[str, List[dict]] = {}
for r in recs:
tag = extract_measure_tag(r["item"])
groups.setdefault(tag, []).append(r)
tags = list(groups.keys())
if not tags:
return None
fig = make_subplots(
rows=len(tags), cols=1, shared_xaxes=True,
vertical_spacing=0.03,
subplot_titles=[f"{process_name} | 計測項目: {t}" for t in tags]
)
row_idx = 1
for tag in tags:
cols = groups[tag]
for r in cols:
col = r["col_tuple"]
col_str = r["col_str"]
if col in dfw.columns:
series = dfw[col]
elif col_str in dfw.columns:
series = dfw[col_str]
else:
continue
x = dfw["timestamp"]
y = pd.to_numeric(series, errors="coerce")
if thr_mode == "excel":
key = (normalize(r["id"]), normalize(r["item"]), normalize(r["process"]))
LL, L, H, HH = thr_lookup.get(key, (np.nan, np.nan, np.nan, np.nan))
if all(pd.isna(v) for v in [LL, L, H, HH]):
LL, L, H, HH = auto_threshold(y)
else:
LL, L, H, HH = auto_threshold(y)
# ライン
fig.add_trace(
go.Scatter(
x=x, y=y, mode="lines",
name=f"{r['item']} ({r['id']})",
line=dict(color=LINE_COLOR, width=1.5),
hovertemplate="%{x}<br>%{y}<extra>"+f"{r['item']} ({r['id']})"+"</extra>"
),
row=row_idx, col=1
)
# マーカー(色分け)
colors = []
for v in y:
if pd.isna(v):
colors.append("rgba(0,0,0,0)")
else:
st = judge_status(v, LL, L, H, HH)
colors.append(STATUS_COLOR.get(st, STATUS_COLOR["OK"]))
fig.add_trace(
go.Scatter(
x=x, y=y, mode="markers",
name=f"{r['item']} markers",
marker=dict(size=6, color=colors),
showlegend=False,
hovertemplate="%{x}<br>%{y}<extra></extra>"
),
row=row_idx, col=1
)
# しきい値ガイド
for val, label in [(LL, "LL"), (L, "L"), (H, "H"), (HH, "HH")]:
if pd.notna(val):
fig.add_hline(
y=float(val), line=dict(width=1, dash="dot"),
annotation_text=label, annotation_position="top left",
row=row_idx, col=1
)
row_idx += 1
fig.update_layout(
title=f"{process_name} | 計測項目タグごとのトレンド",
xaxis_title="timestamp",
showlegend=True,
margin=dict(l=10, r=10, t=40, b=10),
hovermode="x unified",
height=max(400, 260 * len(tags)),
)
return fig
# ======================================
# 新規:計測項目タグごとに個別Figure
# ======================================
def make_trend_figs_by_tag(
df: pd.DataFrame,
process_map: Dict[str, List[dict]],
process_name: str,
selected_items: List[str],
thr_df: Optional[pd.DataFrame],
thr_mode: str,
date_min: Optional[str] = None,
date_max: Optional[str] = None,
) -> Dict[str, go.Figure]:
if df is None or not process_name:
return {}
recs = process_map.get(process_name, [])
if not recs:
return {}
selected_items_set = set([normalize(x) for x in (selected_items or [])])
recs = [r for r in recs if normalize(r["item"]) in selected_items_set]
if not recs:
return {}
dfw = df.copy()
if date_min:
dfw = dfw[dfw["timestamp"] >= pd.to_datetime(date_min)]
if date_max:
dfw = dfw[dfw["timestamp"] <= pd.to_datetime(date_max)]
if dfw.empty:
return {}
thr_lookup = build_threshold_lookup(thr_df) if thr_mode == "excel" else {}
groups: Dict[str, List[dict]] = {}
for r in recs:
tag = extract_measure_tag(r["item"])
groups.setdefault(tag, []).append(r)
out: Dict[str, go.Figure] = {}
for tag, cols in groups.items():
fig = go.Figure()
for r in cols:
col = r["col_tuple"]
col_str = r["col_str"]
if col in dfw.columns:
series = dfw[col]
elif col_str in dfw.columns:
series = dfw[col_str]
else:
continue
x = dfw["timestamp"]
y = pd.to_numeric(series, errors="coerce")
if thr_mode == "excel":
key = (normalize(r["id"]), normalize(r["item"]), normalize(r["process"]))
LL, L, H, HH = thr_lookup.get(key, (np.nan, np.nan, np.nan, np.nan))
if all(pd.isna(v) for v in [LL, L, H, HH]):
LL, L, H, HH = auto_threshold(y)
else:
LL, L, H, HH = auto_threshold(y)
fig.add_trace(go.Scatter(
x=x, y=y, mode="lines",
name=f"{r['item']} ({r['id']})",
line=dict(color=LINE_COLOR, width=1.5),
hovertemplate="%{x}<br>%{y}<extra>"+f"{r['item']} ({r['id']})"+"</extra>"
))
colors = []
for v in y:
if pd.isna(v):
colors.append("rgba(0,0,0,0)")
else:
st = judge_status(v, LL, L, H, HH)
colors.append(STATUS_COLOR.get(st, STATUS_COLOR["OK"]))
fig.add_trace(go.Scatter(
x=x, y=y, mode="markers",
name=f"{r['item']} markers",
marker=dict(size=6, color=colors),
showlegend=False,
hovertemplate="%{x}<br>%{y}<extra></extra>"
))
for val, label in [(LL, "LL"), (L, "L"), (H, "H"), (HH, "HH")]:
if pd.notna(val):
fig.add_hline(y=float(val), line=dict(width=1, dash="dot"),
annotation_text=label, annotation_position="top left")
fig.update_layout(
title=f"{process_name} | 計測項目: {tag}",
xaxis_title="timestamp",
yaxis_title=tag,
legend_title="系列",
margin=dict(l=10, r=10, t=40, b=10),
hovermode="x unified",
)
out[tag] = fig
return out
def figures_to_html(figs_by_tag: Dict[str, go.Figure]) -> str:
"""
各 Figure を <div> で順番に並べた HTML を返す。
最初の図だけ PlotlyJS をCDNで同梱し、以降はスリムに。
"""
parts = []
first = True
for tag, fig in figs_by_tag.items():
html = pio.to_html(fig, include_plotlyjs='cdn' if first else False, full_html=False)
parts.append(html)
first = False
return "<br>".join(parts) if parts else "<p>図がありません。</p>"
# ======================================
# グローバル状態(UI間共有)
# ======================================
G_DF: Optional[pd.DataFrame] = None
G_PROCESS_MAP = {}
G_PROCESSES = []
G_THRESHOLDS_DF: Optional[pd.DataFrame] = None
# ======================================
# コールバック
# ======================================
def initialize_default_csv():
"""
起動時にデフォルトCSVが存在すれば読み込む。
"""
global G_DF, G_PROCESS_MAP, G_PROCESSES
if os.path.exists(DEFAULT_CSV_PATH):
try:
df = try_read_csv_3header(DEFAULT_CSV_PATH)
G_DF = df
G_PROCESS_MAP, G_PROCESSES = build_index_maps(df)
return f"✅ 既定CSVを読み込みました: {DEFAULT_CSV_PATH}", gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)), G_PROCESSES
except Exception as e:
return f"⚠ 既定CSV読み込み失敗: {e}", gr.update(), []
return "ℹ CSVをアップロードしてください。", gr.update(), []
def on_csv_upload(file):
"""
CSVアップロード → パース → プロセス候補更新
"""
global G_DF, G_PROCESS_MAP, G_PROCESSES
if file is None:
return "⚠ ファイルが選択されていません。", gr.update(choices=[]), []
try:
df = try_read_csv_3header(file.name if hasattr(file, "name") else file)
G_DF = df
G_PROCESS_MAP, G_PROCESSES = build_index_maps(df)
return f"✅ CSV読み込み: {df.shape[0]}行 × {df.shape[1]}列", gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)), G_PROCESSES
except Exception as e:
return f"❌ 読み込みエラー: {e}", gr.update(choices=[]), []
def on_thr_upload(file):
"""
しきい値Excelアップロード → メモリ更新
"""
global G_THRESHOLDS_DF
if file is None:
G_THRESHOLDS_DF = None
return "ℹ しきい値ファイルなし(自動しきい値が使われます)"
try:
thr = try_read_thresholds_excel(file.name if hasattr(file, "name") else file)
G_THRESHOLDS_DF = thr
return f"✅ しきい値を読み込みました({thr.shape[0]}件)"
except Exception as e:
G_THRESHOLDS_DF = None
return f"❌ しきい値読み込みエラー: {e}"
def update_items(process_name: str):
"""
プロセス選択に応じて、項目(2行目)候補を返す。
"""
if not process_name or process_name not in G_PROCESS_MAP:
return gr.update(choices=[], value=[])
items = sorted(list({rec["item"] for rec in G_PROCESS_MAP[process_name]}), key=lambda x: normalize(x))
# デフォルトは全選択
return gr.update(choices=items, value=items)
def render_figs(process_name: str, items: List[str], thr_mode: str, date_min, date_max):
"""
(旧)図を生成して返す(複数図)。今は未使用だが残置。
"""
if G_DF is None:
return "⚠ データ未読み込み", []
if not process_name:
return "⚠ プロセスを選択してください", []
if not items:
return "⚠ 項目を選択してください", []
figs = make_trend_figs(
G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, thr_mode, date_min, date_max
)
if not figs:
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", []
return f"✅ {process_name}: {len(figs)}枚のトレンド図を生成しました(計測項目タグごと)", figs
def render_any(process_name: str, items: List[str], display_mode: str, thr_mode_label: str, date_min, date_max):
"""
表示形式に応じて Plot(サブプロット1枚)または HTML(個別複数枚)を返す。
"""
if G_DF is None:
return "⚠ データ未読み込み", gr.update(visible=False), gr.update(value="", visible=False)
if not process_name:
return "⚠ プロセスを選択してください", gr.update(visible=False), gr.update(value="", visible=False)
if not items:
return "⚠ 項目を選択してください", gr.update(visible=False), gr.update(value="", visible=False)
mode = "excel" if str(thr_mode_label).startswith("excel") else "auto"
if str(display_mode).startswith("サブプロット"):
fig = make_trend_figure(G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode, date_min, date_max)
if fig is None:
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(value="", visible=False)
return "✅ トレンド図(1枚サブプロット)を生成しました", gr.update(value=fig, visible=True), gr.update(value="", visible=False)
else:
figs_by_tag = make_trend_figs_by_tag(G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode, date_min, date_max)
if not figs_by_tag:
return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(value="", visible=False)
html = figures_to_html(figs_by_tag)
return f"✅ 個別トレンド図 {len(figs_by_tag)} 枚を生成しました", gr.update(visible=False), gr.update(value=html, visible=True)
# ======================================
# UI
# ======================================
with gr.Blocks(css="""
.gradio-container {overflow: auto !important;}
""") as demo:
gr.Markdown("## トレンドグラフ専用アプリ(3行ヘッダー対応・プロセス別・計測項目タグ別・閾値色分け)")
with gr.Row():
csv_uploader = gr.File(label="① 時系列CSV(3行ヘッダー)", file_count="single", file_types=[".csv"])
thr_uploader = gr.File(label="② 閾値Excel(任意: LL/L/HH/HH)", file_count="single", file_types=[".xlsx", ".xls"])
with gr.Row():
thr_mode = gr.Radio(
["excel(アップロード優先・無ければ自動)", "自動(平均±標準偏差)"],
value="excel(アップロード優先・無ければ自動)",
label="しきい値モード"
)
date_min = gr.Textbox(label="抽出開始日時(任意)例: 2024-07-01 00:00")
date_max = gr.Textbox(label="抽出終了日時(任意)例: 2024-07-31 23:59")
# 表示形式の切り替え
display_mode = gr.Radio(
["サブプロット(1枚)", "個別(複数枚)"],
value="サブプロット(1枚)",
label="表示形式"
)
status_csv = gr.Markdown()
status_thr = gr.Markdown()
process_dd = gr.Dropdown(label="対象プロセス(3行ヘッダーの3行目)", choices=[])
items_cb = gr.CheckboxGroup(label="表示する項目(3行ヘッダーの2行目)", choices=[], value=[])
with gr.Row():
btn_render = gr.Button("トレンド図を生成", variant="primary")
msg = gr.Markdown()
# サブプロット用(1枚)
plot = gr.Plot(label="トレンド図(タグ別サブプロット)", show_label=True, visible=True)
# 個別(複数枚)用
html_multi = gr.HTML(label="個別トレンド図(複数枚)", visible=False)
# コールバック接続
# 1) 既定CSVの自動ロード
init_msg, init_proc_update, _ = initialize_default_csv()
status_csv.value = init_msg
process_dd.value = init_proc_update.value
process_dd.choices = init_proc_update.choices
# 2) CSVアップロードで更新
csv_uploader.change(
on_csv_upload,
inputs=[csv_uploader],
outputs=[status_csv, process_dd, gr.State()],
)
# 3) 閾値アップロードで更新
thr_uploader.change(
on_thr_upload,
inputs=[thr_uploader],
outputs=[status_thr],
)
# 4) プロセス選択で項目候補更新
process_dd.change(
update_items,
inputs=[process_dd],
outputs=[items_cb],
)
# 5) 図生成
btn_render.click(
fn=lambda proc, items, disp_mode, mode, dmin, dmax: render_any(proc, items, disp_mode, mode, dmin, dmax),
inputs=[process_dd, items_cb, display_mode, thr_mode, date_min, date_max],
outputs=[msg, plot, html_multi],
)
if __name__ == "__main__":
# gradio>=5: gr.Plot で Plotly Figure を直接表示可
demo.launch()
|