YOLOv5 / README.md
Willaaaaaaa's picture
upload yolov5 and ax650 example
e6fca26
metadata
license: mit
language:
  - en
pipeline_tag: object-detection
tags:
  - Ultralytics
  - YOLOv5

YOLOv5

This version of YOLOv5 has been converted to run on the Axera NPU using w8a16 quantization.

This model has been optimized with the following LoRA:

Compatible with Pulsar2 version: 3.4

Convert tools links:

For those who are interested in model conversion, you can try to export axmodel through

Support Platform

Chips cost
AX650 6.32 ms
AX630C TBD ms

How to use

Download all files from this repository to the device

root@ax650 ~/yolov5 # tree -L 2
.
├── ax650
│   └── yolov5s.axmodel
├── ax_aarch64
│   └── ax_yolov5s
├── config.json
├── ssd_horse.jpg
├── README.md
├── yolov5_config.json
├── yolov5s-cut.onnx
├── yolov5s.onnx
└── yolov5s_out.jpg

3 directories, 9 files

Inference

Input image:

Inference with AX650 Host, such as M4N-Dock(爱芯派Pro)

root@ax650 ~/yolov5 # ./ax_yolov5s -m yolov5s.axmodel -i ssd_horse.jpg
--------------------------------------
model file : yolov5s.axmodel
image file : ssd_horse.jpg
img_h, img_w : 640 640
--------------------------------------
Engine creating handle is done.
Engine creating context is done.
Engine get io info is done.
Engine alloc io is done.
Engine push input is done.
--------------------------------------
post process cost time:1.91 ms
--------------------------------------
Repeat 1 times, avg time 6.32 ms, max_time 6.32 ms, min_time 6.32 ms
--------------------------------------
detection num: 6
 0:  83%, [ 270,   13,  352,  228], person
17:  83%, [ 213,   60,  431,  363], horse
16:  79%, [ 143,  197,  195,  351], dog
 0:  74%, [ 431,  125,  450,  177], person
 7:  73%, [   0,  103,  136,  199], truck
 0:  47%, [ 402,  130,  411,  148], person
--------------------------------------

Output image: