--- license: mit language: - en pipeline_tag: object-detection tags: - Ultralytics - YOLOv5 --- # YOLOv5 This version of YOLOv5 has been converted to run on the Axera NPU using **w8a16** quantization. This model has been optimized with the following LoRA: Compatible with Pulsar2 version: 3.4 ## Convert tools links: For those who are interested in model conversion, you can try to export axmodel through - [The repo of ax-samples](https://github.com/AXERA-TECH/ax-samples), which you can get the how to build the `ax_yolov5s` - [The repo of axcl-samples](https://github.com/AXERA-TECH/axcl-samples), which you can get the how to build the `axcl_yolov5s` - [Pulsar2 Link, How to Convert ONNX to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/pulsar2/introduction.html) ## Support Platform - AX650 - [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html) - [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html) - AX630C - [爱芯派2](https://axera-pi-2-docs-cn.readthedocs.io/zh-cn/latest/index.html) - [Module-LLM](https://docs.m5stack.com/zh_CN/module/Module-LLM) - [LLM630 Compute Kit](https://docs.m5stack.com/zh_CN/core/LLM630%20Compute%20Kit) |Chips|cost| |--|--| |AX650| 6.32 ms | |AX630C| TBD ms | ## How to use Download all files from this repository to the device ``` root@ax650 ~/yolov5 # tree -L 2 . ├── ax650 │   └── yolov5s.axmodel ├── ax_aarch64 │   └── ax_yolov5s ├── config.json ├── ssd_horse.jpg ├── README.md ├── yolov5_config.json ├── yolov5s-cut.onnx ├── yolov5s.onnx └── yolov5s_out.jpg 3 directories, 9 files ``` ### Inference Input image: ![](./ssd_horse.jpg) #### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) ``` root@ax650 ~/yolov5 # ./ax_yolov5s -m yolov5s.axmodel -i ssd_horse.jpg -------------------------------------- model file : yolov5s.axmodel image file : ssd_horse.jpg img_h, img_w : 640 640 -------------------------------------- Engine creating handle is done. Engine creating context is done. Engine get io info is done. Engine alloc io is done. Engine push input is done. -------------------------------------- post process cost time:1.91 ms -------------------------------------- Repeat 1 times, avg time 6.32 ms, max_time 6.32 ms, min_time 6.32 ms -------------------------------------- detection num: 6 0: 83%, [ 270, 13, 352, 228], person 17: 83%, [ 213, 60, 431, 363], horse 16: 79%, [ 143, 197, 195, 351], dog 0: 74%, [ 431, 125, 450, 177], person 7: 73%, [ 0, 103, 136, 199], truck 0: 47%, [ 402, 130, 411, 148], person -------------------------------------- ``` Output image: ![](./yolov5s_out.jpg)