Chronos: Learning the Language of Time Series
Paper
•
2403.07815
•
Published
•
47
TS Arena wrapper for Amazon Chronos T5-Small time series forecasting model.
Chronos is a family of pretrained time series forecasting models based on language model architectures. It tokenizes time series values using scaling and quantization, then uses a T5 model to generate probabilistic forecasts.
| Attribute | Value |
|---|---|
| Parameters | 46M |
| Architecture | T5 Encoder-Decoder |
| Original Repo | amazon/chronos-t5-small |
| Paper | Chronos: Learning the Language of Time Series |
| Task | Time Series Forecasting |
import ts_arena
# Load model
model = ts_arena.load_model("chronos-t5-small")
# Generate forecasts
import numpy as np
context = np.random.randn(96) # 96 timesteps of history
output = model.predict(context, prediction_length=24, num_samples=20)
# Access results
print(output.predictions.shape) # Point forecasts (median)
print(output.quantiles[0.5].shape) # Median forecast
print(output.quantiles[0.1].shape) # 10th percentile
print(output.quantiles[0.9].shape) # 90th percentile
from chronos import ChronosPipeline
import torch
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-small",
device_map="cuda",
torch_dtype=torch.bfloat16,
)
context = torch.randn(1, 96) # (batch, time)
forecast = pipeline.predict(context, prediction_length=24, num_samples=20)
| Metric | Value |
|---|---|
| MSE | 4.37 |
| MAE | 1.66 |
| RMSE | 2.09 |
@article{ansari2024chronos,
title={Chronos: Learning the Language of Time Series},
author={Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan and others},
journal={arXiv preprint arXiv:2403.07815},
year={2024}
}
Apache-2.0 (following the original Chronos license)