Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from vinai/phobert-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/stag_123")
# Run inference
sentences = [
'Câu trả lời đơn giản là có, chồi hoa trên rau diếp là một dấu hiệu chắc chắn của việc bắt vít.',
'Có vẻ như nó đã bắt đầu bắt đầu.',
'Hai người đàn ông đang đợi một chuyến đi bên lề đường đất.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sts-evaluatorEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.5793 |
| spearman_cosine | 0.5985 |
| pearson_manhattan | 0.7081 |
| spearman_manhattan | 0.7154 |
| pearson_euclidean | 0.4588 |
| spearman_euclidean | 0.529 |
| pearson_dot | 0.3239 |
| spearman_dot | 0.5079 |
| pearson_max | 0.7081 |
| spearman_max | 0.7154 |
overwrite_output_dir: Trueeval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128gradient_accumulation_steps: 2learning_rate: 1e-05num_train_epochs: 15lr_scheduler_type: cosine_with_restartswarmup_ratio: 0.1fp16: Trueload_best_model_at_end: Truegradient_checkpointing: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Truedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 15max_steps: -1lr_scheduler_type: cosine_with_restartslr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | stage1 loss | stage2 loss | stage3 loss | sts-evaluator_spearman_max |
|---|---|---|---|---|---|---|
| 0 | 0 | - | - | - | - | 0.6643 |
| 0.0877 | 100 | 4.3054 | - | - | - | - |
| 0.1754 | 200 | 3.93 | - | - | - | - |
| 0.2632 | 300 | 3.585 | - | - | - | - |
| 0.3509 | 400 | 3.4482 | - | - | - | - |
| 0.4386 | 500 | 3.1858 | 4.3297 | 2.6006 | 0.1494 | 0.7527 |
| 0.5263 | 600 | 3.141 | - | - | - | - |
| 0.6140 | 700 | 2.9477 | - | - | - | - |
| 0.7018 | 800 | 2.6271 | - | - | - | - |
| 0.7895 | 900 | 2.6175 | - | - | - | - |
| 0.8772 | 1000 | 2.4931 | 2.9001 | 2.3487 | 0.1593 | 0.6907 |
| 0.9649 | 1100 | 2.4516 | - | - | - | - |
| 1.0526 | 1200 | 2.4662 | - | - | - | - |
| 1.1404 | 1300 | 2.5022 | - | - | - | - |
| 1.2281 | 1400 | 2.4325 | - | - | - | - |
| 1.3158 | 1500 | 2.4058 | 2.7163 | 2.1658 | 0.1392 | 0.7121 |
| 1.4035 | 1600 | 2.3305 | - | - | - | - |
| 1.4912 | 1700 | 2.2677 | - | - | - | - |
| 1.5789 | 1800 | 2.2555 | - | - | - | - |
| 1.6667 | 1900 | 2.2275 | - | - | - | - |
| 1.7544 | 2000 | 2.1846 | 2.5441 | 2.1172 | 0.1293 | 0.6781 |
| 1.8421 | 2100 | 2.2007 | - | - | - | - |
| 1.9298 | 2200 | 2.192 | - | - | - | - |
| 2.0175 | 2300 | 2.1491 | - | - | - | - |
| 2.1053 | 2400 | 2.2419 | - | - | - | - |
| 2.1930 | 2500 | 2.1822 | 2.4765 | 2.0476 | 0.1055 | 0.6893 |
| 2.2807 | 2600 | 2.1384 | - | - | - | - |
| 2.3684 | 2700 | 2.1379 | - | - | - | - |
| 2.4561 | 2800 | 2.0558 | - | - | - | - |
| 2.5439 | 2900 | 2.057 | - | - | - | - |
| 2.6316 | 3000 | 2.0263 | 2.4108 | 2.0751 | 0.0904 | 0.7016 |
| 2.7193 | 3100 | 1.9587 | - | - | - | - |
| 2.8070 | 3200 | 2.0702 | - | - | - | - |
| 2.8947 | 3300 | 2.0058 | - | - | - | - |
| 2.9825 | 3400 | 2.0093 | - | - | - | - |
| 3.0702 | 3500 | 2.0347 | 2.3948 | 1.9958 | 0.0937 | 0.7131 |
| 3.1579 | 3600 | 2.0071 | - | - | - | - |
| 3.2456 | 3700 | 1.9708 | - | - | - | - |
| 3.3333 | 3800 | 2.027 | - | - | - | - |
| 3.4211 | 3900 | 1.9432 | - | - | - | - |
| 3.5088 | 4000 | 1.9245 | 2.3858 | 2.0274 | 0.0831 | 0.7197 |
| 3.5965 | 4100 | 1.8814 | - | - | - | - |
| 3.6842 | 4200 | 1.8619 | - | - | - | - |
| 3.7719 | 4300 | 1.8987 | - | - | - | - |
| 3.8596 | 4400 | 1.8764 | - | - | - | - |
| 3.9474 | 4500 | 1.8908 | 2.3753 | 2.0066 | 0.0872 | 0.7052 |
| 4.0351 | 4600 | 1.8737 | - | - | - | - |
| 4.1228 | 4700 | 1.9289 | - | - | - | - |
| 4.2105 | 4800 | 1.8755 | - | - | - | - |
| 4.2982 | 4900 | 1.8542 | - | - | - | - |
| 4.3860 | 5000 | 1.8514 | 2.3731 | 2.0023 | 0.0824 | 0.7191 |
| 4.4737 | 5100 | 1.7939 | - | - | - | - |
| 4.5614 | 5200 | 1.8126 | - | - | - | - |
| 4.6491 | 5300 | 1.7662 | - | - | - | - |
| 4.7368 | 5400 | 1.7448 | - | - | - | - |
| 4.8246 | 5500 | 1.7736 | 2.3703 | 2.0038 | 0.0768 | 0.7044 |
| 4.9123 | 5600 | 1.7993 | - | - | - | - |
| 5.0 | 5700 | 1.7811 | - | - | - | - |
| 5.0877 | 5800 | 1.7905 | - | - | - | - |
| 5.1754 | 5900 | 1.7539 | - | - | - | - |
| 5.2632 | 6000 | 1.7393 | 2.3568 | 2.0173 | 0.0853 | 0.7263 |
| 5.3509 | 6100 | 1.7882 | - | - | - | - |
| 5.4386 | 6200 | 1.682 | - | - | - | - |
| 5.5263 | 6300 | 1.7175 | - | - | - | - |
| 5.6140 | 6400 | 1.6806 | - | - | - | - |
| 5.7018 | 6500 | 1.6243 | 2.3715 | 2.0202 | 0.0770 | 0.7085 |
| 5.7895 | 6600 | 1.7079 | - | - | - | - |
| 5.8772 | 6700 | 1.6743 | - | - | - | - |
| 5.9649 | 6800 | 1.6897 | - | - | - | - |
| 6.0526 | 6900 | 1.668 | - | - | - | - |
| 6.1404 | 7000 | 1.6806 | 2.3826 | 1.9925 | 0.0943 | 0.7072 |
| 6.2281 | 7100 | 1.6394 | - | - | - | - |
| 6.3158 | 7200 | 1.6738 | - | - | - | - |
| 6.4035 | 7300 | 1.6382 | - | - | - | - |
| 6.4912 | 7400 | 1.6109 | - | - | - | - |
| 6.5789 | 7500 | 1.5864 | 2.3849 | 2.0064 | 0.0831 | 0.7200 |
| 6.6667 | 7600 | 1.5838 | - | - | - | - |
| 6.7544 | 7700 | 1.5776 | - | - | - | - |
| 6.8421 | 7800 | 1.5904 | - | - | - | - |
| 6.9298 | 7900 | 1.6198 | - | - | - | - |
| 7.0175 | 8000 | 1.5661 | 2.3917 | 2.0038 | 0.0746 | 0.7131 |
| 7.1053 | 8100 | 1.6253 | - | - | - | - |
| 7.1930 | 8200 | 1.5564 | - | - | - | - |
| 7.2807 | 8300 | 1.5947 | - | - | - | - |
| 7.3684 | 8400 | 1.5982 | - | - | - | - |
| 7.4561 | 8500 | 1.53 | 2.3761 | 2.0162 | 0.0775 | 0.7189 |
| 7.5439 | 8600 | 1.5412 | - | - | - | - |
| 7.6316 | 8700 | 1.5287 | - | - | - | - |
| 7.7193 | 8800 | 1.4652 | - | - | - | - |
| 7.8070 | 8900 | 1.5611 | - | - | - | - |
| 7.8947 | 9000 | 1.5258 | 2.3870 | 1.9896 | 0.0828 | 0.7126 |
| 7.9825 | 9100 | 1.552 | - | - | - | - |
| 8.0702 | 9200 | 1.5287 | - | - | - | - |
| 8.1579 | 9300 | 1.4889 | - | - | - | - |
| 8.2456 | 9400 | 1.4893 | - | - | - | - |
| 8.3333 | 9500 | 1.5538 | 2.3810 | 1.9956 | 0.0772 | 0.7181 |
| 8.4211 | 9600 | 1.4863 | - | - | - | - |
| 8.5088 | 9700 | 1.4894 | - | - | - | - |
| 8.5965 | 9800 | 1.4516 | - | - | - | - |
| 8.6842 | 9900 | 1.4399 | - | - | - | - |
| 8.7719 | 10000 | 1.4699 | 2.3991 | 1.9760 | 0.0894 | 0.7122 |
| 8.8596 | 10100 | 1.4653 | - | - | - | - |
| 8.9474 | 10200 | 1.4849 | - | - | - | - |
| 9.0351 | 10300 | 1.4584 | - | - | - | - |
| 9.1228 | 10400 | 1.4672 | - | - | - | - |
| 9.2105 | 10500 | 1.4353 | 2.3906 | 2.0104 | 0.0760 | 0.7154 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
vinai/phobert-base-v2