Spaces:
Build error
Build error
| import cv2 | |
| import numpy as np | |
| import face_recognition | |
| import os | |
| from datetime import datetime | |
| # from PIL import ImageGrab | |
| path = 'Training_images' | |
| images = [] | |
| classNames = [] | |
| myList = os.listdir(path) | |
| print(myList) | |
| for cl in myList: | |
| curImg = cv2.imread(f'{path}/{cl}') | |
| images.append(curImg) | |
| classNames.append(os.path.splitext(cl)[0]) | |
| print(classNames) | |
| def findEncodings(images): | |
| encodeList = [] | |
| for img in images: | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| encode = face_recognition.face_encodings(img)[0] | |
| encodeList.append(encode) | |
| return encodeList | |
| def markAttendance(name): | |
| with open('Attendance.csv', 'r+') as f: | |
| myDataList = f.readlines() | |
| nameList = [] | |
| for line in myDataList: | |
| entry = line.split(',') | |
| nameList.append(entry[0]) | |
| if name not in nameList: | |
| now = datetime.now() | |
| dtString = now.strftime('%H:%M:%S') | |
| f.writelines(f'\n{name},{dtString}') | |
| #### FOR CAPTURING SCREEN RATHER THAN WEBCAM | |
| # def captureScreen(bbox=(300,300,690+300,530+300)): | |
| # capScr = np.array(ImageGrab.grab(bbox)) | |
| # capScr = cv2.cvtColor(capScr, cv2.COLOR_RGB2BGR) | |
| # return capScr | |
| encodeListKnown = findEncodings(images) | |
| print('Encoding Complete') | |
| cap = cv2.VideoCapture(0) | |
| while True: | |
| success, img = cap.read() | |
| # img = captureScreen() | |
| imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25) | |
| imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB) | |
| facesCurFrame = face_recognition.face_locations(imgS) | |
| encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame) | |
| for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame): | |
| matches = face_recognition.compare_faces(encodeListKnown, encodeFace) | |
| faceDis = face_recognition.face_distance(encodeListKnown, encodeFace) | |
| # print(faceDis) | |
| matchIndex = np.argmin(faceDis) | |
| if matches[matchIndex]: | |
| name = classNames[matchIndex].upper() | |
| # print(name) | |
| y1, x2, y2, x1 = faceLoc | |
| y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4 | |
| cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
| cv2.rectangle(img, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED) | |
| cv2.putText(img, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) | |
| markAttendance(name) | |
| cv2.imshow('Webcam', img) | |
| cv2.waitKey(1) |