Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,249 +1,83 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
import cv2
|
|
|
|
| 3 |
import face_recognition
|
| 4 |
import os
|
| 5 |
from datetime import datetime
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
if face_encodings:
|
| 85 |
-
self.encodings.append(face_encodings[0])
|
| 86 |
-
else:
|
| 87 |
-
logger.warning("No face found in image")
|
| 88 |
-
except Exception as e:
|
| 89 |
-
logger.error(f"Error encoding faces: {e}")
|
| 90 |
-
st.error("Error encoding faces. Please check image quality.")
|
| 91 |
-
|
| 92 |
-
def add_new_face(self):
|
| 93 |
-
"""Add a new face to the system."""
|
| 94 |
-
st.subheader("Add New Face")
|
| 95 |
-
|
| 96 |
-
col1, col2 = st.columns(2)
|
| 97 |
-
with col1:
|
| 98 |
-
new_name = st.text_input("Enter your name:")
|
| 99 |
-
with col2:
|
| 100 |
-
roll_no = st.text_input("Enter your roll number:")
|
| 101 |
-
|
| 102 |
-
img_file_buffer = st.camera_input("Take a picture")
|
| 103 |
-
|
| 104 |
-
if img_file_buffer and new_name and roll_no:
|
| 105 |
-
try:
|
| 106 |
-
image = np.array(Image.open(img_file_buffer))
|
| 107 |
-
photos_dir = Path("Photos")
|
| 108 |
-
img_path = photos_dir / f"{new_name}_{roll_no}.jpg"
|
| 109 |
-
|
| 110 |
-
# Save image
|
| 111 |
-
cv2.imwrite(str(img_path), cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
|
| 112 |
-
|
| 113 |
-
# Update known faces
|
| 114 |
-
self.load_known_faces()
|
| 115 |
-
|
| 116 |
-
# Record registration
|
| 117 |
-
self.record_attendance(new_name, roll_no, 'Registered')
|
| 118 |
-
st.success(f"Successfully registered {new_name}")
|
| 119 |
-
except Exception as e:
|
| 120 |
-
logger.error(f"Error adding new face: {e}")
|
| 121 |
-
st.error("Error adding new face. Please try again.")
|
| 122 |
-
|
| 123 |
-
def recognize_face(self):
|
| 124 |
-
"""Perform face recognition and mark attendance."""
|
| 125 |
-
st.subheader("Face Recognition")
|
| 126 |
-
img_file_buffer = st.camera_input("Take a picture")
|
| 127 |
-
|
| 128 |
-
if img_file_buffer:
|
| 129 |
-
try:
|
| 130 |
-
image = np.array(Image.open(img_file_buffer))
|
| 131 |
-
small_image = cv2.resize(image, (0, 0), None, 0.25, 0.25)
|
| 132 |
-
rgb_small_image = cv2.cvtColor(small_image, cv2.COLOR_BGR2RGB)
|
| 133 |
-
|
| 134 |
-
face_locations = face_recognition.face_locations(rgb_small_image)
|
| 135 |
-
face_encodings = face_recognition.face_encodings(rgb_small_image, face_locations)
|
| 136 |
-
|
| 137 |
-
for encodeFace, faceLoc in zip(face_encodings, face_locations):
|
| 138 |
-
matches = face_recognition.compare_faces(self.encodings, encodeFace, tolerance=0.6)
|
| 139 |
-
face_distances = face_recognition.face_distance(self.encodings, encodeFace)
|
| 140 |
-
|
| 141 |
-
if len(face_distances) > 0:
|
| 142 |
-
best_match_index = np.argmin(face_distances)
|
| 143 |
-
if matches[best_match_index]:
|
| 144 |
-
name, roll_no = self.classnames[best_match_index].split("_")
|
| 145 |
-
self.draw_face_box(image, faceLoc, name)
|
| 146 |
-
|
| 147 |
-
if not self.check_duplicate_attendance(name):
|
| 148 |
-
status = st.radio("Mark Attendance:", ("Present", "Absent"))
|
| 149 |
-
if st.button("Confirm Attendance"):
|
| 150 |
-
self.record_attendance(name, roll_no, status)
|
| 151 |
-
else:
|
| 152 |
-
st.warning("Face not recognized")
|
| 153 |
-
|
| 154 |
-
st.image(image, caption="Recognized Face", use_container_width=True)
|
| 155 |
-
except Exception as e:
|
| 156 |
-
logger.error(f"Error in face recognition: {e}")
|
| 157 |
-
st.error("Error processing image. Please try again.")
|
| 158 |
-
|
| 159 |
-
def draw_face_box(self, image, face_location, name):
|
| 160 |
-
"""Draw bounding box and name for recognized face."""
|
| 161 |
-
y1, x2, y2, x1 = [coord * 4 for coord in face_location]
|
| 162 |
-
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 163 |
-
cv2.rectangle(image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
|
| 164 |
-
cv2.putText(image, name, (x1 + 6, y2 - 6),
|
| 165 |
-
cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
|
| 166 |
-
|
| 167 |
-
def check_duplicate_attendance(self, name):
|
| 168 |
-
"""Check if attendance has already been marked today."""
|
| 169 |
-
today = datetime.now().strftime('%Y-%m-%d')
|
| 170 |
-
self.cursor.execute(
|
| 171 |
-
"SELECT * FROM attendance WHERE name=? AND date=?",
|
| 172 |
-
(name, today)
|
| 173 |
-
)
|
| 174 |
-
return bool(self.cursor.fetchone())
|
| 175 |
-
|
| 176 |
-
def record_attendance(self, name, roll_no, status):
|
| 177 |
-
"""Record attendance in the database."""
|
| 178 |
-
try:
|
| 179 |
-
current_time = datetime.now()
|
| 180 |
-
self.cursor.execute(
|
| 181 |
-
"""INSERT INTO attendance (name, roll_no, date, time, status)
|
| 182 |
-
VALUES (?, ?, ?, ?, ?)""",
|
| 183 |
-
(name, roll_no, current_time.strftime('%Y-%m-%d'),
|
| 184 |
-
current_time.strftime('%H:%M:%S'), status)
|
| 185 |
-
)
|
| 186 |
-
self.conn.commit()
|
| 187 |
-
st.success(f"Attendance recorded for {name}")
|
| 188 |
-
except Exception as e:
|
| 189 |
-
logger.error(f"Error recording attendance: {e}")
|
| 190 |
-
st.error("Error recording attendance. Please try again.")
|
| 191 |
-
|
| 192 |
-
def view_attendance_records(self):
|
| 193 |
-
"""Display attendance records."""
|
| 194 |
-
st.subheader("Attendance Records")
|
| 195 |
-
try:
|
| 196 |
-
self.cursor.execute(
|
| 197 |
-
"SELECT * FROM attendance ORDER BY date DESC, time DESC"
|
| 198 |
-
)
|
| 199 |
-
records = self.cursor.fetchall()
|
| 200 |
-
|
| 201 |
-
if records:
|
| 202 |
-
df = pd.DataFrame(
|
| 203 |
-
records,
|
| 204 |
-
columns=["ID", "Name", "Roll No", "Date", "Time", "Status"]
|
| 205 |
-
)
|
| 206 |
-
st.dataframe(df)
|
| 207 |
-
else:
|
| 208 |
-
st.info("No attendance records found")
|
| 209 |
-
except Exception as e:
|
| 210 |
-
logger.error(f"Error viewing records: {e}")
|
| 211 |
-
st.error("Error loading attendance records")
|
| 212 |
-
|
| 213 |
-
def run(self):
|
| 214 |
-
"""Run the main application."""
|
| 215 |
-
st.title("Face Recognition Attendance System")
|
| 216 |
-
|
| 217 |
-
# Simple authentication
|
| 218 |
-
if not self.authenticate():
|
| 219 |
-
return
|
| 220 |
-
|
| 221 |
-
# Navigation
|
| 222 |
-
app_mode = st.sidebar.selectbox(
|
| 223 |
-
"Select Mode",
|
| 224 |
-
["Recognize", "Add New Face", "View Records"]
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
# Route to appropriate function
|
| 228 |
-
if app_mode == "Recognize":
|
| 229 |
-
self.recognize_face()
|
| 230 |
-
elif app_mode == "Add New Face":
|
| 231 |
-
self.add_new_face()
|
| 232 |
-
elif app_mode == "View Records":
|
| 233 |
-
self.view_attendance_records()
|
| 234 |
-
|
| 235 |
-
def authenticate(self):
|
| 236 |
-
"""Simple authentication system."""
|
| 237 |
-
password = st.sidebar.text_input("Enter password", type="password")
|
| 238 |
-
return password == "123"
|
| 239 |
-
|
| 240 |
-
def __del__(self):
|
| 241 |
-
"""Cleanup database connection."""
|
| 242 |
-
try:
|
| 243 |
-
self.conn.close()
|
| 244 |
-
except:
|
| 245 |
-
pass
|
| 246 |
-
|
| 247 |
-
if __name__ == "__main__":
|
| 248 |
-
app = AttendanceSystem()
|
| 249 |
-
app.run()
|
|
|
|
|
|
|
| 1 |
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
import face_recognition
|
| 4 |
import os
|
| 5 |
from datetime import datetime
|
| 6 |
+
|
| 7 |
+
# from PIL import ImageGrab
|
| 8 |
+
|
| 9 |
+
path = 'Training_images'
|
| 10 |
+
images = []
|
| 11 |
+
classNames = []
|
| 12 |
+
myList = os.listdir(path)
|
| 13 |
+
print(myList)
|
| 14 |
+
for cl in myList:
|
| 15 |
+
curImg = cv2.imread(f'{path}/{cl}')
|
| 16 |
+
images.append(curImg)
|
| 17 |
+
classNames.append(os.path.splitext(cl)[0])
|
| 18 |
+
print(classNames)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def findEncodings(images):
|
| 22 |
+
encodeList = []
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
for img in images:
|
| 26 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 27 |
+
encode = face_recognition.face_encodings(img)[0]
|
| 28 |
+
encodeList.append(encode)
|
| 29 |
+
return encodeList
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def markAttendance(name):
|
| 33 |
+
with open('Attendance.csv', 'r+') as f:
|
| 34 |
+
myDataList = f.readlines()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
nameList = []
|
| 38 |
+
for line in myDataList:
|
| 39 |
+
entry = line.split(',')
|
| 40 |
+
nameList.append(entry[0])
|
| 41 |
+
if name not in nameList:
|
| 42 |
+
now = datetime.now()
|
| 43 |
+
dtString = now.strftime('%H:%M:%S')
|
| 44 |
+
f.writelines(f'\n{name},{dtString}')
|
| 45 |
+
|
| 46 |
+
#### FOR CAPTURING SCREEN RATHER THAN WEBCAM
|
| 47 |
+
# def captureScreen(bbox=(300,300,690+300,530+300)):
|
| 48 |
+
# capScr = np.array(ImageGrab.grab(bbox))
|
| 49 |
+
# capScr = cv2.cvtColor(capScr, cv2.COLOR_RGB2BGR)
|
| 50 |
+
# return capScr
|
| 51 |
+
|
| 52 |
+
encodeListKnown = findEncodings(images)
|
| 53 |
+
print('Encoding Complete')
|
| 54 |
+
|
| 55 |
+
cap = cv2.VideoCapture(0)
|
| 56 |
+
|
| 57 |
+
while True:
|
| 58 |
+
success, img = cap.read()
|
| 59 |
+
# img = captureScreen()
|
| 60 |
+
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
|
| 61 |
+
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
| 62 |
+
|
| 63 |
+
facesCurFrame = face_recognition.face_locations(imgS)
|
| 64 |
+
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
|
| 65 |
+
|
| 66 |
+
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
|
| 67 |
+
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
|
| 68 |
+
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
|
| 69 |
+
# print(faceDis)
|
| 70 |
+
matchIndex = np.argmin(faceDis)
|
| 71 |
+
|
| 72 |
+
if matches[matchIndex]:
|
| 73 |
+
name = classNames[matchIndex].upper()
|
| 74 |
+
# print(name)
|
| 75 |
+
y1, x2, y2, x1 = faceLoc
|
| 76 |
+
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
|
| 77 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 78 |
+
cv2.rectangle(img, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
|
| 79 |
+
cv2.putText(img, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
|
| 80 |
+
markAttendance(name)
|
| 81 |
+
|
| 82 |
+
cv2.imshow('Webcam', img)
|
| 83 |
+
cv2.waitKey(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|