fbmc-chronos2 / src /data_collection /collect_entsoe.py
Evgueni Poloukarov
fix: ENTSO-E data quality - sub-hourly resampling + redundancy cleanup (464→296 features)
4d742bd
"""ENTSO-E Transparency Platform Data Collection with Rate Limiting
Collects generation, load, and cross-border flow data from ENTSO-E API.
Implements proper rate limiting to avoid temporary bans.
ENTSO-E Rate Limits (OFFICIAL):
- 60 requests per 60 seconds (hard limit - exceeding triggers 10-min ban)
- Screen scraping >60 requests/min leads to temporary IP ban
Strategy:
- 27 requests/minute (45% of 60 limit - safe)
- 1 request every ~2.2 seconds
- Request data in monthly chunks to minimize API calls
"""
import polars as pl
from pathlib import Path
from datetime import datetime, timedelta
from dotenv import load_dotenv
import os
import time
from typing import List, Tuple
from tqdm import tqdm
from entsoe import EntsoePandasClient
import pandas as pd
import zipfile
from io import BytesIO
import xml.etree.ElementTree as ET
# Load environment variables
load_dotenv()
# FBMC Bidding Zones (12 zones from project plan)
BIDDING_ZONES = {
'AT': 'Austria',
'BE': 'Belgium',
'HR': 'Croatia',
'CZ': 'Czech Republic',
'FR': 'France',
'DE_LU': 'Germany-Luxembourg',
'HU': 'Hungary',
'NL': 'Netherlands',
'PL': 'Poland',
'RO': 'Romania',
'SK': 'Slovakia',
'SI': 'Slovenia',
}
# FBMC Cross-Border Flows (~20 major borders)
BORDERS = [
('DE_LU', 'NL'),
('DE_LU', 'FR'),
('DE_LU', 'BE'),
('DE_LU', 'AT'),
('DE_LU', 'CZ'),
('DE_LU', 'PL'),
('FR', 'BE'),
('FR', 'ES'), # External but affects FBMC
('FR', 'CH'), # External but affects FBMC
('AT', 'CZ'),
('AT', 'HU'),
('AT', 'SI'),
('AT', 'CH'), # External but affects FBMC
('CZ', 'SK'),
('CZ', 'PL'),
('HU', 'SK'),
('HU', 'RO'),
('HU', 'HR'),
('SI', 'HR'),
('PL', 'SK'),
('PL', 'CZ'),
]
# FBMC Bidding Zone EIC Codes (for asset-specific outages)
BIDDING_ZONE_EICS = {
'AT': '10YAT-APG------L',
'BE': '10YBE----------2',
'HR': '10YHR-HEP------M',
'CZ': '10YCZ-CEPS-----N',
'FR': '10YFR-RTE------C',
'DE_LU': '10Y1001A1001A82H',
'HU': '10YHU-MAVIR----U',
'NL': '10YNL----------L',
'PL': '10YPL-AREA-----S',
'RO': '10YRO-TEL------P',
'SK': '10YSK-SEPS-----K',
'SI': '10YSI-ELES-----O',
'CH': '10YCH-SWISSGRIDZ',
}
# PSR Types for generation data collection
PSR_TYPES = {
'B01': 'Biomass',
'B02': 'Fossil Brown coal/Lignite',
'B03': 'Fossil Coal-derived gas',
'B04': 'Fossil Gas',
'B05': 'Fossil Hard coal',
'B06': 'Fossil Oil',
'B07': 'Fossil Oil shale',
'B08': 'Fossil Peat',
'B09': 'Geothermal',
'B10': 'Hydro Pumped Storage',
'B11': 'Hydro Run-of-river and poundage',
'B12': 'Hydro Water Reservoir',
'B13': 'Marine',
'B14': 'Nuclear',
'B15': 'Other renewable',
'B16': 'Solar',
'B17': 'Waste',
'B18': 'Wind Offshore',
'B19': 'Wind Onshore',
'B20': 'Other',
}
# Zones with significant pumped storage capacity
PUMPED_STORAGE_ZONES = ['CH', 'AT', 'DE_LU', 'FR', 'HU', 'PL', 'RO']
# Zones with significant hydro reservoir capacity
HYDRO_RESERVOIR_ZONES = ['CH', 'AT', 'FR', 'RO', 'SI', 'HR', 'SK']
# Zones with nuclear generation
NUCLEAR_ZONES = ['FR', 'BE', 'CZ', 'HU', 'RO', 'SI', 'SK']
class EntsoECollector:
"""Collect ENTSO-E data with proper rate limiting."""
def __init__(self, requests_per_minute: int = 27):
"""Initialize collector with rate limiting.
Args:
requests_per_minute: Max requests per minute (default: 27 = 45% of 60 limit)
"""
api_key = os.getenv('ENTSOE_API_KEY')
if not api_key or 'your_entsoe' in api_key.lower():
raise ValueError("ENTSO-E API key not configured in .env file")
self.client = EntsoePandasClient(api_key=api_key)
self.requests_per_minute = requests_per_minute
self.delay_seconds = 60.0 / requests_per_minute
self.request_count = 0
print(f"ENTSO-E Collector initialized")
print(f"Rate limit: {self.requests_per_minute} requests/minute")
print(f"Delay between requests: {self.delay_seconds:.2f}s")
def _rate_limit(self):
"""Apply rate limiting delay."""
time.sleep(self.delay_seconds)
self.request_count += 1
def _generate_monthly_chunks(
self,
start_date: str,
end_date: str
) -> List[Tuple[pd.Timestamp, pd.Timestamp]]:
"""Generate monthly date chunks for API requests.
For most data types, ENTSO-E API supports up to 1 year per request.
However, for generation outages (A77), large nuclear fleets can have
hundreds of outage documents per year, exceeding the 200 element limit.
Monthly chunks ensure each request stays under API pagination limits
while balancing API call efficiency.
Args:
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
List of (start, end) timestamp tuples (monthly periods)
"""
start_dt = pd.Timestamp(start_date, tz='UTC')
end_dt = pd.Timestamp(end_date, tz='UTC')
chunks = []
current = start_dt
while current < end_dt:
# Get end of month or end_date, whichever is earlier
# Add 1 month then subtract 1 day to get last day of current month
month_end = (current + pd.offsets.MonthEnd(1)).replace(hour=23, minute=59, second=59)
chunk_end = min(month_end, end_dt)
chunks.append((current, chunk_end))
# Start next chunk at beginning of next month
current = chunk_end + pd.Timedelta(hours=1)
return chunks
def _generate_weekly_chunks(
self,
start_date: str,
end_date: str
) -> List[Tuple[pd.Timestamp, pd.Timestamp]]:
"""Generate weekly date chunks for API requests.
For generation outages (A77), even monthly chunks can exceed the 200
element limit for high-activity zones (France nuclear: 228-263 docs/month).
Weekly chunks ensure reliable data collection:
- ~30-60 documents per week (well under 200 limit)
- Handles peak outage periods (spring/summer maintenance)
Args:
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
List of (start, end) timestamp tuples (weekly periods)
"""
start_dt = pd.Timestamp(start_date, tz='UTC')
end_dt = pd.Timestamp(end_date, tz='UTC')
chunks = []
current = start_dt
while current < end_dt:
# Get end of week (6 days from start, Sunday to Saturday)
week_end = (current + pd.Timedelta(days=6)).replace(hour=23, minute=59, second=59)
chunk_end = min(week_end, end_dt)
chunks.append((current, chunk_end))
# Start next chunk at beginning of next week
current = chunk_end + pd.Timedelta(hours=1)
return chunks
def collect_generation_per_type(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect generation by production type for a bidding zone.
Args:
zone: Bidding zone code (e.g., 'DE_LU', 'FR')
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with generation data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} generation", leave=False):
try:
# Fetch generation data
df = self.client.query_generation(
zone,
start=start_chunk,
end=end_chunk,
psr_type=None # Get all production types
)
if df is not None and not df.empty:
# Convert to long format
df_reset = df.reset_index()
df_melted = df_reset.melt(
id_vars=['index'],
var_name='production_type',
value_name='generation_mw'
)
df_melted = df_melted.rename(columns={'index': 'timestamp'})
df_melted['zone'] = zone
# Convert to Polars
pl_df = pl.from_pandas(df_melted)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" ❌ Failed {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_load(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect load (demand) data for a bidding zone.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with load data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} load", leave=False):
try:
# Fetch load data
series = self.client.query_load(
zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'load_mw': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" [ERROR] Failed {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_cross_border_flows(
self,
from_zone: str,
to_zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect cross-border flow data between two zones.
Args:
from_zone: From bidding zone
to_zone: To bidding zone
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with flow data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
border_id = f"{from_zone}_{to_zone}"
for start_chunk, end_chunk in tqdm(chunks, desc=f" {border_id}", leave=False):
try:
# Fetch cross-border flow
series = self.client.query_crossborder_flows(
from_zone,
to_zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
df = pd.DataFrame({
'timestamp': series.index,
'flow_mw': series.values,
'from_zone': from_zone,
'to_zone': to_zone,
'border': border_id
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" ❌ Failed {border_id} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_transmission_outages_asset_specific(
self,
cnec_eics: List[str],
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect asset-specific transmission outages using XML parsing.
Uses validated Phase 1C/1D methodology: Query border-level outages,
parse ZIP/XML to extract Asset_RegisteredResource.mRID elements,
filter to CNEC EIC codes.
Args:
cnec_eics: List of CNEC EIC codes to filter (e.g., 200 critical CNECs)
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with outage events
Columns: asset_eic, asset_name, start_time, end_time,
businesstype, from_zone, to_zone, border
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_outages = []
# Query all FBMC borders for transmission outages
for zone1, zone2 in tqdm(BORDERS, desc="Transmission outages (borders)"):
zone1_eic = BIDDING_ZONE_EICS.get(zone1)
zone2_eic = BIDDING_ZONE_EICS.get(zone2)
if not zone1_eic or not zone2_eic:
continue
for start_chunk, end_chunk in chunks:
try:
# Query border-level outages (raw bytes)
response = self.client._base_request(
params={
'documentType': 'A78', # Transmission unavailability
'in_Domain': zone2_eic,
'out_Domain': zone1_eic
},
start=start_chunk,
end=end_chunk
)
outages_zip = response.content
# Parse ZIP and extract Asset_RegisteredResource.mRID
with zipfile.ZipFile(BytesIO(outages_zip), 'r') as zf:
xml_files = [f for f in zf.namelist() if f.endswith('.xml')]
for xml_file in xml_files:
with zf.open(xml_file) as xf:
xml_content = xf.read()
root = ET.fromstring(xml_content)
# Get namespace
nsmap = dict([node for _, node in ET.iterparse(
BytesIO(xml_content), events=['start-ns']
)])
ns_uri = nsmap.get('', None)
# Find TimeSeries elements
if ns_uri:
timeseries_found = root.findall('.//{' + ns_uri + '}TimeSeries')
else:
timeseries_found = root.findall('.//TimeSeries')
for ts in timeseries_found:
# Extract Asset_RegisteredResource.mRID
if ns_uri:
reg_resource = ts.find('.//{' + ns_uri + '}Asset_RegisteredResource')
else:
reg_resource = ts.find('.//Asset_RegisteredResource')
if reg_resource is not None:
# Get asset EIC
if ns_uri:
mrid_elem = reg_resource.find('.//{' + ns_uri + '}mRID')
name_elem = reg_resource.find('.//{' + ns_uri + '}name')
else:
mrid_elem = reg_resource.find('.//mRID')
name_elem = reg_resource.find('.//name')
if mrid_elem is not None:
asset_eic = mrid_elem.text
# Filter to CNEC list
if asset_eic in cnec_eics:
asset_name = name_elem.text if name_elem is not None else ''
# Extract outage periods
if ns_uri:
periods = ts.findall('.//{' + ns_uri + '}Available_Period')
else:
periods = ts.findall('.//Available_Period')
for period in periods:
if ns_uri:
time_interval = period.find('.//{' + ns_uri + '}timeInterval')
else:
time_interval = period.find('.//timeInterval')
if time_interval is not None:
if ns_uri:
start_elem = time_interval.find('.//{' + ns_uri + '}start')
end_elem = time_interval.find('.//{' + ns_uri + '}end')
else:
start_elem = time_interval.find('.//start')
end_elem = time_interval.find('.//end')
if start_elem is not None and end_elem is not None:
# Extract business type from root
if ns_uri:
business_type_elem = root.find('.//{' + ns_uri + '}businessType')
else:
business_type_elem = root.find('.//businessType')
business_type = business_type_elem.text if business_type_elem is not None else 'Unknown'
all_outages.append({
'asset_eic': asset_eic,
'asset_name': asset_name,
'start_time': pd.Timestamp(start_elem.text),
'end_time': pd.Timestamp(end_elem.text),
'businesstype': business_type,
'from_zone': zone1,
'to_zone': zone2,
'border': f"{zone1}_{zone2}"
})
self._rate_limit()
except Exception as e:
# Empty response or no outages is OK
if "empty" not in str(e).lower():
print(f" Warning: {zone1}->{zone2} {start_chunk.date()}: {e}")
self._rate_limit()
continue
if all_outages:
return pl.DataFrame(all_outages)
else:
return pl.DataFrame()
def collect_day_ahead_prices(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect day-ahead electricity prices.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with price data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} prices", leave=False):
try:
series = self.client.query_day_ahead_prices(
zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'price_eur_mwh': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_hydro_reservoir_storage(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect hydro reservoir storage levels (weekly data).
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with reservoir storage data (weekly)
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} hydro storage", leave=False):
try:
series = self.client.query_aggregate_water_reservoirs_and_hydro_storage(
zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'storage_mwh': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_pumped_storage_generation(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect pumped storage generation (B10 PSR type).
Note: Consumption data not separately available from ENTSO-E API.
Returns generation-only data.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with pumped storage generation
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} pumped storage", leave=False):
try:
series = self.client.query_generation(
zone,
start=start_chunk,
end=end_chunk,
psr_type='B10' # Hydro Pumped Storage
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
# If multiple columns, take first
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'generation_mw': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_load_forecast(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect load forecast data.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with load forecast
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} load forecast", leave=False):
try:
series = self.client.query_load_forecast(
zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'forecast_mw': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_generation_outages(
self,
zone: str,
start_date: str,
end_date: str,
psr_type: str = None
) -> pl.DataFrame:
"""Collect generation/production unit outages.
Uses document type A77 (unavailability of generation units).
Particularly important for nuclear planned outages which are known
months in advance and significantly impact cross-border flows.
Weekly chunks are used to avoid API pagination limits (200 docs/request).
France nuclear can have 228+ outage documents per month during peak periods.
Deduplication: More recent reports of the same outage overwrite earlier ones.
The API may return the same outage across multiple weekly queries as updates
are published. We keep only the most recent version per unique outage.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
psr_type: Optional PSR type filter (B14=Nuclear, B04=Gas, B05=Coal, etc.)
Returns:
Polars DataFrame with generation unit outages
Columns: unit_name, psr_type, psr_name, capacity_mw,
start_time, end_time, businesstype, zone, collection_order
"""
chunks = self._generate_weekly_chunks(start_date, end_date)
all_outages = []
collection_order = 0 # Track order for deduplication (later = more recent)
zone_eic = BIDDING_ZONE_EICS.get(zone)
if not zone_eic:
return pl.DataFrame()
psr_name = PSR_TYPES.get(psr_type, psr_type) if psr_type else 'All'
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} {psr_name} outages", leave=False):
collection_order += 1
try:
# Build query parameters
params = {
'documentType': 'A77', # Generation unavailability
'biddingZone_Domain': zone_eic
}
# Add PSR type filter if specified
if psr_type:
params['psrType'] = psr_type
# Query generation unavailability
response = self.client._base_request(
params=params,
start=start_chunk,
end=end_chunk
)
outages_zip = response.content
# Parse ZIP and extract outage information
with zipfile.ZipFile(BytesIO(outages_zip), 'r') as zf:
xml_files = [f for f in zf.namelist() if f.endswith('.xml')]
for xml_file in xml_files:
with zf.open(xml_file) as xf:
xml_content = xf.read()
root = ET.fromstring(xml_content)
# Get namespace
nsmap = dict([node for _, node in ET.iterparse(
BytesIO(xml_content), events=['start-ns']
)])
ns_uri = nsmap.get('', None)
# Find TimeSeries elements
if ns_uri:
timeseries_found = root.findall('.//{' + ns_uri + '}TimeSeries')
else:
timeseries_found = root.findall('.//TimeSeries')
for ts in timeseries_found:
# Extract production unit information
if ns_uri:
prod_unit = ts.find('.//{' + ns_uri + '}Production_RegisteredResource')
else:
prod_unit = ts.find('.//Production_RegisteredResource')
if prod_unit is not None:
# Get unit details
if ns_uri:
name_elem = prod_unit.find('.//{' + ns_uri + '}name')
psr_elem = prod_unit.find('.//{' + ns_uri + '}psrType')
else:
name_elem = prod_unit.find('.//name')
psr_elem = prod_unit.find('.//psrType')
unit_name = name_elem.text if name_elem is not None else 'Unknown'
unit_psr = psr_elem.text if psr_elem is not None else psr_type
# Extract outage periods and capacity
if ns_uri:
periods = ts.findall('.//{' + ns_uri + '}Unavailable_Period')
else:
periods = ts.findall('.//Unavailable_Period')
for period in periods:
if ns_uri:
time_interval = period.find('.//{' + ns_uri + '}timeInterval')
quantity_elem = period.find('.//{' + ns_uri + '}quantity')
else:
time_interval = period.find('.//timeInterval')
quantity_elem = period.find('.//quantity')
if time_interval is not None:
if ns_uri:
start_elem = time_interval.find('.//{' + ns_uri + '}start')
end_elem = time_interval.find('.//{' + ns_uri + '}end')
else:
start_elem = time_interval.find('.//start')
end_elem = time_interval.find('.//end')
if start_elem is not None and end_elem is not None:
# Get business type
if ns_uri:
business_type_elem = root.find('.//{' + ns_uri + '}businessType')
else:
business_type_elem = root.find('.//businessType')
business_type = business_type_elem.text if business_type_elem is not None else 'Unknown'
# Get capacity
capacity_mw = float(quantity_elem.text) if quantity_elem is not None else 0.0
all_outages.append({
'unit_name': unit_name,
'psr_type': unit_psr,
'psr_name': PSR_TYPES.get(unit_psr, unit_psr),
'capacity_mw': capacity_mw,
'start_time': pd.Timestamp(start_elem.text),
'end_time': pd.Timestamp(end_elem.text),
'businesstype': business_type,
'zone': zone,
'collection_order': collection_order
})
self._rate_limit()
except Exception as e:
# Empty response is OK (no outages)
if "empty" not in str(e).lower():
print(f" Warning: {zone} {psr_name} {start_chunk.date()}: {e}")
self._rate_limit()
continue
if all_outages:
df = pl.DataFrame(all_outages)
# Deduplicate: Keep only most recent report of each unique outage
# More recent collections (higher collection_order) overwrite earlier ones
# Unique outage = same unit_name + start_time + end_time
df = df.sort('collection_order', descending=True) # Most recent first
df = df.unique(subset=['unit_name', 'start_time', 'end_time'], keep='first')
# Remove collection_order column (no longer needed)
df = df.drop('collection_order')
return df
else:
return pl.DataFrame()
def collect_generation_by_psr_type(
self,
zone: str,
psr_type: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect generation for a specific PSR type.
Args:
zone: Bidding zone code
psr_type: PSR type code (e.g., 'B04' for Gas, 'B14' for Nuclear)
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with generation data for the PSR type
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
psr_name = PSR_TYPES.get(psr_type, psr_type)
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} {psr_name}", leave=False):
try:
series = self.client.query_generation(
zone,
start=start_chunk,
end=end_chunk,
psr_type=psr_type
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC')
df = pd.DataFrame({
'timestamp': timestamp_index,
'generation_mw': series.values,
'zone': zone,
'psr_type': psr_type,
'psr_name': psr_name
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {psr_name} {start_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_all(
self,
start_date: str,
end_date: str,
output_dir: Path
) -> dict:
"""Collect all ENTSO-E data with rate limiting.
Args:
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
output_dir: Directory to save Parquet files
Returns:
Dictionary with paths to saved files
"""
output_dir.mkdir(parents=True, exist_ok=True)
# Calculate total requests
months = len(self._generate_monthly_chunks(start_date, end_date))
total_requests = (
len(BIDDING_ZONES) * months * 2 + # Generation + load
len(BORDERS) * months # Flows
)
estimated_minutes = total_requests / self.requests_per_minute
print("=" * 70)
print("ENTSO-E Data Collection")
print("=" * 70)
print(f"Date range: {start_date} to {end_date}")
print(f"Bidding zones: {len(BIDDING_ZONES)}")
print(f"Cross-border flows: {len(BORDERS)}")
print(f"Monthly chunks: {months}")
print(f"Total requests: ~{total_requests}")
print(f"Rate limit: {self.requests_per_minute} requests/minute (45% of 60 max)")
print(f"Estimated time: {estimated_minutes:.1f} minutes")
print()
results = {}
# 1. Collect Generation Data
print("[1/3] Collecting generation data by production type...")
generation_data = []
for zone in tqdm(BIDDING_ZONES.keys(), desc="Generation"):
df = self.collect_generation_per_type(zone, start_date, end_date)
if not df.is_empty():
generation_data.append(df)
if generation_data:
generation_df = pl.concat(generation_data)
gen_path = output_dir / "entsoe_generation_2024_2025.parquet"
generation_df.write_parquet(gen_path)
results['generation'] = gen_path
print(f"✅ Generation: {generation_df.shape[0]:,} records → {gen_path}")
# 2. Collect Load Data
print("\n[2/3] Collecting load (demand) data...")
load_data = []
for zone in tqdm(BIDDING_ZONES.keys(), desc="Load"):
df = self.collect_load(zone, start_date, end_date)
if not df.is_empty():
load_data.append(df)
if load_data:
load_df = pl.concat(load_data)
load_path = output_dir / "entsoe_load_2024_2025.parquet"
load_df.write_parquet(load_path)
results['load'] = load_path
print(f"✅ Load: {load_df.shape[0]:,} records → {load_path}")
# 3. Collect Cross-Border Flows
print("\n[3/3] Collecting cross-border flows...")
flow_data = []
for from_zone, to_zone in tqdm(BORDERS, desc="Flows"):
df = self.collect_cross_border_flows(from_zone, to_zone, start_date, end_date)
if not df.is_empty():
flow_data.append(df)
if flow_data:
flow_df = pl.concat(flow_data)
flow_path = output_dir / "entsoe_flows_2024_2025.parquet"
flow_df.write_parquet(flow_path)
results['flows'] = flow_path
print(f"✅ Flows: {flow_df.shape[0]:,} records → {flow_path}")
print()
print("=" * 70)
print("ENTSO-E Collection Complete")
print("=" * 70)
print(f"Total API requests made: {self.request_count}")
print(f"Files created: {len(results)}")
for data_type, path in results.items():
file_size = path.stat().st_size / (1024**2)
print(f" - {data_type}: {file_size:.1f} MB")
return results
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Collect ENTSO-E data with proper rate limiting")
parser.add_argument(
'--start-date',
default='2024-10-01',
help='Start date (YYYY-MM-DD)'
)
parser.add_argument(
'--end-date',
default='2025-09-30',
help='End date (YYYY-MM-DD)'
)
parser.add_argument(
'--output-dir',
type=Path,
default=Path('data/raw'),
help='Output directory for Parquet files'
)
parser.add_argument(
'--requests-per-minute',
type=int,
default=27,
help='Requests per minute (default: 27 = 45%% of 60 limit)'
)
args = parser.parse_args()
# Initialize collector and run
collector = EntsoECollector(requests_per_minute=args.requests_per_minute)
collector.collect_all(
start_date=args.start_date,
end_date=args.end_date,
output_dir=args.output_dir
)