Spaces:
Sleeping
Sleeping
File size: 44,481 Bytes
4202f60 d4939ce 4202f60 d4939ce 4202f60 4d742bd d4939ce 4d742bd 4202f60 4d742bd 4202f60 4d742bd 4202f60 4d742bd 4202f60 d4939ce 4202f60 d4939ce 4202f60 d4939ce 4202f60 d4939ce 4d742bd d4939ce 4d742bd d4939ce 4d742bd d4939ce 4d742bd d4939ce 4d742bd d4939ce 4d742bd d4939ce 4d742bd d4939ce 4202f60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 |
"""ENTSO-E Transparency Platform Data Collection with Rate Limiting
Collects generation, load, and cross-border flow data from ENTSO-E API.
Implements proper rate limiting to avoid temporary bans.
ENTSO-E Rate Limits (OFFICIAL):
- 60 requests per 60 seconds (hard limit - exceeding triggers 10-min ban)
- Screen scraping >60 requests/min leads to temporary IP ban
Strategy:
- 27 requests/minute (45% of 60 limit - safe)
- 1 request every ~2.2 seconds
- Request data in monthly chunks to minimize API calls
"""
import polars as pl
from pathlib import Path
from datetime import datetime, timedelta
from dotenv import load_dotenv
import os
import time
from typing import List, Tuple
from tqdm import tqdm
from entsoe import EntsoePandasClient
import pandas as pd
import zipfile
from io import BytesIO
import xml.etree.ElementTree as ET
# Load environment variables
load_dotenv()
# FBMC Bidding Zones (12 zones from project plan)
BIDDING_ZONES = {
'AT': 'Austria',
'BE': 'Belgium',
'HR': 'Croatia',
'CZ': 'Czech Republic',
'FR': 'France',
'DE_LU': 'Germany-Luxembourg',
'HU': 'Hungary',
'NL': 'Netherlands',
'PL': 'Poland',
'RO': 'Romania',
'SK': 'Slovakia',
'SI': 'Slovenia',
}
# FBMC Cross-Border Flows (~20 major borders)
BORDERS = [
('DE_LU', 'NL'),
('DE_LU', 'FR'),
('DE_LU', 'BE'),
('DE_LU', 'AT'),
('DE_LU', 'CZ'),
('DE_LU', 'PL'),
('FR', 'BE'),
('FR', 'ES'), # External but affects FBMC
('FR', 'CH'), # External but affects FBMC
('AT', 'CZ'),
('AT', 'HU'),
('AT', 'SI'),
('AT', 'CH'), # External but affects FBMC
('CZ', 'SK'),
('CZ', 'PL'),
('HU', 'SK'),
('HU', 'RO'),
('HU', 'HR'),
('SI', 'HR'),
('PL', 'SK'),
('PL', 'CZ'),
]
# FBMC Bidding Zone EIC Codes (for asset-specific outages)
BIDDING_ZONE_EICS = {
'AT': '10YAT-APG------L',
'BE': '10YBE----------2',
'HR': '10YHR-HEP------M',
'CZ': '10YCZ-CEPS-----N',
'FR': '10YFR-RTE------C',
'DE_LU': '10Y1001A1001A82H',
'HU': '10YHU-MAVIR----U',
'NL': '10YNL----------L',
'PL': '10YPL-AREA-----S',
'RO': '10YRO-TEL------P',
'SK': '10YSK-SEPS-----K',
'SI': '10YSI-ELES-----O',
'CH': '10YCH-SWISSGRIDZ',
}
# PSR Types for generation data collection
PSR_TYPES = {
'B01': 'Biomass',
'B02': 'Fossil Brown coal/Lignite',
'B03': 'Fossil Coal-derived gas',
'B04': 'Fossil Gas',
'B05': 'Fossil Hard coal',
'B06': 'Fossil Oil',
'B07': 'Fossil Oil shale',
'B08': 'Fossil Peat',
'B09': 'Geothermal',
'B10': 'Hydro Pumped Storage',
'B11': 'Hydro Run-of-river and poundage',
'B12': 'Hydro Water Reservoir',
'B13': 'Marine',
'B14': 'Nuclear',
'B15': 'Other renewable',
'B16': 'Solar',
'B17': 'Waste',
'B18': 'Wind Offshore',
'B19': 'Wind Onshore',
'B20': 'Other',
}
# Zones with significant pumped storage capacity
PUMPED_STORAGE_ZONES = ['CH', 'AT', 'DE_LU', 'FR', 'HU', 'PL', 'RO']
# Zones with significant hydro reservoir capacity
HYDRO_RESERVOIR_ZONES = ['CH', 'AT', 'FR', 'RO', 'SI', 'HR', 'SK']
# Zones with nuclear generation
NUCLEAR_ZONES = ['FR', 'BE', 'CZ', 'HU', 'RO', 'SI', 'SK']
class EntsoECollector:
"""Collect ENTSO-E data with proper rate limiting."""
def __init__(self, requests_per_minute: int = 27):
"""Initialize collector with rate limiting.
Args:
requests_per_minute: Max requests per minute (default: 27 = 45% of 60 limit)
"""
api_key = os.getenv('ENTSOE_API_KEY')
if not api_key or 'your_entsoe' in api_key.lower():
raise ValueError("ENTSO-E API key not configured in .env file")
self.client = EntsoePandasClient(api_key=api_key)
self.requests_per_minute = requests_per_minute
self.delay_seconds = 60.0 / requests_per_minute
self.request_count = 0
print(f"ENTSO-E Collector initialized")
print(f"Rate limit: {self.requests_per_minute} requests/minute")
print(f"Delay between requests: {self.delay_seconds:.2f}s")
def _rate_limit(self):
"""Apply rate limiting delay."""
time.sleep(self.delay_seconds)
self.request_count += 1
def _generate_monthly_chunks(
self,
start_date: str,
end_date: str
) -> List[Tuple[pd.Timestamp, pd.Timestamp]]:
"""Generate monthly date chunks for API requests.
For most data types, ENTSO-E API supports up to 1 year per request.
However, for generation outages (A77), large nuclear fleets can have
hundreds of outage documents per year, exceeding the 200 element limit.
Monthly chunks ensure each request stays under API pagination limits
while balancing API call efficiency.
Args:
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
List of (start, end) timestamp tuples (monthly periods)
"""
start_dt = pd.Timestamp(start_date, tz='UTC')
end_dt = pd.Timestamp(end_date, tz='UTC')
chunks = []
current = start_dt
while current < end_dt:
# Get end of month or end_date, whichever is earlier
# Add 1 month then subtract 1 day to get last day of current month
month_end = (current + pd.offsets.MonthEnd(1)).replace(hour=23, minute=59, second=59)
chunk_end = min(month_end, end_dt)
chunks.append((current, chunk_end))
# Start next chunk at beginning of next month
current = chunk_end + pd.Timedelta(hours=1)
return chunks
def _generate_weekly_chunks(
self,
start_date: str,
end_date: str
) -> List[Tuple[pd.Timestamp, pd.Timestamp]]:
"""Generate weekly date chunks for API requests.
For generation outages (A77), even monthly chunks can exceed the 200
element limit for high-activity zones (France nuclear: 228-263 docs/month).
Weekly chunks ensure reliable data collection:
- ~30-60 documents per week (well under 200 limit)
- Handles peak outage periods (spring/summer maintenance)
Args:
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
List of (start, end) timestamp tuples (weekly periods)
"""
start_dt = pd.Timestamp(start_date, tz='UTC')
end_dt = pd.Timestamp(end_date, tz='UTC')
chunks = []
current = start_dt
while current < end_dt:
# Get end of week (6 days from start, Sunday to Saturday)
week_end = (current + pd.Timedelta(days=6)).replace(hour=23, minute=59, second=59)
chunk_end = min(week_end, end_dt)
chunks.append((current, chunk_end))
# Start next chunk at beginning of next week
current = chunk_end + pd.Timedelta(hours=1)
return chunks
def collect_generation_per_type(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect generation by production type for a bidding zone.
Args:
zone: Bidding zone code (e.g., 'DE_LU', 'FR')
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with generation data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} generation", leave=False):
try:
# Fetch generation data
df = self.client.query_generation(
zone,
start=start_chunk,
end=end_chunk,
psr_type=None # Get all production types
)
if df is not None and not df.empty:
# Convert to long format
df_reset = df.reset_index()
df_melted = df_reset.melt(
id_vars=['index'],
var_name='production_type',
value_name='generation_mw'
)
df_melted = df_melted.rename(columns={'index': 'timestamp'})
df_melted['zone'] = zone
# Convert to Polars
pl_df = pl.from_pandas(df_melted)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" ❌ Failed {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_load(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect load (demand) data for a bidding zone.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with load data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} load", leave=False):
try:
# Fetch load data
series = self.client.query_load(
zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'load_mw': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" [ERROR] Failed {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_cross_border_flows(
self,
from_zone: str,
to_zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect cross-border flow data between two zones.
Args:
from_zone: From bidding zone
to_zone: To bidding zone
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with flow data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
border_id = f"{from_zone}_{to_zone}"
for start_chunk, end_chunk in tqdm(chunks, desc=f" {border_id}", leave=False):
try:
# Fetch cross-border flow
series = self.client.query_crossborder_flows(
from_zone,
to_zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
df = pd.DataFrame({
'timestamp': series.index,
'flow_mw': series.values,
'from_zone': from_zone,
'to_zone': to_zone,
'border': border_id
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" ❌ Failed {border_id} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_transmission_outages_asset_specific(
self,
cnec_eics: List[str],
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect asset-specific transmission outages using XML parsing.
Uses validated Phase 1C/1D methodology: Query border-level outages,
parse ZIP/XML to extract Asset_RegisteredResource.mRID elements,
filter to CNEC EIC codes.
Args:
cnec_eics: List of CNEC EIC codes to filter (e.g., 200 critical CNECs)
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with outage events
Columns: asset_eic, asset_name, start_time, end_time,
businesstype, from_zone, to_zone, border
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_outages = []
# Query all FBMC borders for transmission outages
for zone1, zone2 in tqdm(BORDERS, desc="Transmission outages (borders)"):
zone1_eic = BIDDING_ZONE_EICS.get(zone1)
zone2_eic = BIDDING_ZONE_EICS.get(zone2)
if not zone1_eic or not zone2_eic:
continue
for start_chunk, end_chunk in chunks:
try:
# Query border-level outages (raw bytes)
response = self.client._base_request(
params={
'documentType': 'A78', # Transmission unavailability
'in_Domain': zone2_eic,
'out_Domain': zone1_eic
},
start=start_chunk,
end=end_chunk
)
outages_zip = response.content
# Parse ZIP and extract Asset_RegisteredResource.mRID
with zipfile.ZipFile(BytesIO(outages_zip), 'r') as zf:
xml_files = [f for f in zf.namelist() if f.endswith('.xml')]
for xml_file in xml_files:
with zf.open(xml_file) as xf:
xml_content = xf.read()
root = ET.fromstring(xml_content)
# Get namespace
nsmap = dict([node for _, node in ET.iterparse(
BytesIO(xml_content), events=['start-ns']
)])
ns_uri = nsmap.get('', None)
# Find TimeSeries elements
if ns_uri:
timeseries_found = root.findall('.//{' + ns_uri + '}TimeSeries')
else:
timeseries_found = root.findall('.//TimeSeries')
for ts in timeseries_found:
# Extract Asset_RegisteredResource.mRID
if ns_uri:
reg_resource = ts.find('.//{' + ns_uri + '}Asset_RegisteredResource')
else:
reg_resource = ts.find('.//Asset_RegisteredResource')
if reg_resource is not None:
# Get asset EIC
if ns_uri:
mrid_elem = reg_resource.find('.//{' + ns_uri + '}mRID')
name_elem = reg_resource.find('.//{' + ns_uri + '}name')
else:
mrid_elem = reg_resource.find('.//mRID')
name_elem = reg_resource.find('.//name')
if mrid_elem is not None:
asset_eic = mrid_elem.text
# Filter to CNEC list
if asset_eic in cnec_eics:
asset_name = name_elem.text if name_elem is not None else ''
# Extract outage periods
if ns_uri:
periods = ts.findall('.//{' + ns_uri + '}Available_Period')
else:
periods = ts.findall('.//Available_Period')
for period in periods:
if ns_uri:
time_interval = period.find('.//{' + ns_uri + '}timeInterval')
else:
time_interval = period.find('.//timeInterval')
if time_interval is not None:
if ns_uri:
start_elem = time_interval.find('.//{' + ns_uri + '}start')
end_elem = time_interval.find('.//{' + ns_uri + '}end')
else:
start_elem = time_interval.find('.//start')
end_elem = time_interval.find('.//end')
if start_elem is not None and end_elem is not None:
# Extract business type from root
if ns_uri:
business_type_elem = root.find('.//{' + ns_uri + '}businessType')
else:
business_type_elem = root.find('.//businessType')
business_type = business_type_elem.text if business_type_elem is not None else 'Unknown'
all_outages.append({
'asset_eic': asset_eic,
'asset_name': asset_name,
'start_time': pd.Timestamp(start_elem.text),
'end_time': pd.Timestamp(end_elem.text),
'businesstype': business_type,
'from_zone': zone1,
'to_zone': zone2,
'border': f"{zone1}_{zone2}"
})
self._rate_limit()
except Exception as e:
# Empty response or no outages is OK
if "empty" not in str(e).lower():
print(f" Warning: {zone1}->{zone2} {start_chunk.date()}: {e}")
self._rate_limit()
continue
if all_outages:
return pl.DataFrame(all_outages)
else:
return pl.DataFrame()
def collect_day_ahead_prices(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect day-ahead electricity prices.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with price data
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} prices", leave=False):
try:
series = self.client.query_day_ahead_prices(
zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'price_eur_mwh': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_hydro_reservoir_storage(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect hydro reservoir storage levels (weekly data).
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with reservoir storage data (weekly)
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} hydro storage", leave=False):
try:
series = self.client.query_aggregate_water_reservoirs_and_hydro_storage(
zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'storage_mwh': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_pumped_storage_generation(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect pumped storage generation (B10 PSR type).
Note: Consumption data not separately available from ENTSO-E API.
Returns generation-only data.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with pumped storage generation
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} pumped storage", leave=False):
try:
series = self.client.query_generation(
zone,
start=start_chunk,
end=end_chunk,
psr_type='B10' # Hydro Pumped Storage
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
# If multiple columns, take first
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'generation_mw': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_load_forecast(
self,
zone: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect load forecast data.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with load forecast
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} load forecast", leave=False):
try:
series = self.client.query_load_forecast(
zone,
start=start_chunk,
end=end_chunk
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC and remove timezone to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC').tz_localize(None)
df = pd.DataFrame({
'timestamp': timestamp_index,
'forecast_mw': series.values,
'zone': zone
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {start_chunk.date()} to {end_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_generation_outages(
self,
zone: str,
start_date: str,
end_date: str,
psr_type: str = None
) -> pl.DataFrame:
"""Collect generation/production unit outages.
Uses document type A77 (unavailability of generation units).
Particularly important for nuclear planned outages which are known
months in advance and significantly impact cross-border flows.
Weekly chunks are used to avoid API pagination limits (200 docs/request).
France nuclear can have 228+ outage documents per month during peak periods.
Deduplication: More recent reports of the same outage overwrite earlier ones.
The API may return the same outage across multiple weekly queries as updates
are published. We keep only the most recent version per unique outage.
Args:
zone: Bidding zone code
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
psr_type: Optional PSR type filter (B14=Nuclear, B04=Gas, B05=Coal, etc.)
Returns:
Polars DataFrame with generation unit outages
Columns: unit_name, psr_type, psr_name, capacity_mw,
start_time, end_time, businesstype, zone, collection_order
"""
chunks = self._generate_weekly_chunks(start_date, end_date)
all_outages = []
collection_order = 0 # Track order for deduplication (later = more recent)
zone_eic = BIDDING_ZONE_EICS.get(zone)
if not zone_eic:
return pl.DataFrame()
psr_name = PSR_TYPES.get(psr_type, psr_type) if psr_type else 'All'
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} {psr_name} outages", leave=False):
collection_order += 1
try:
# Build query parameters
params = {
'documentType': 'A77', # Generation unavailability
'biddingZone_Domain': zone_eic
}
# Add PSR type filter if specified
if psr_type:
params['psrType'] = psr_type
# Query generation unavailability
response = self.client._base_request(
params=params,
start=start_chunk,
end=end_chunk
)
outages_zip = response.content
# Parse ZIP and extract outage information
with zipfile.ZipFile(BytesIO(outages_zip), 'r') as zf:
xml_files = [f for f in zf.namelist() if f.endswith('.xml')]
for xml_file in xml_files:
with zf.open(xml_file) as xf:
xml_content = xf.read()
root = ET.fromstring(xml_content)
# Get namespace
nsmap = dict([node for _, node in ET.iterparse(
BytesIO(xml_content), events=['start-ns']
)])
ns_uri = nsmap.get('', None)
# Find TimeSeries elements
if ns_uri:
timeseries_found = root.findall('.//{' + ns_uri + '}TimeSeries')
else:
timeseries_found = root.findall('.//TimeSeries')
for ts in timeseries_found:
# Extract production unit information
if ns_uri:
prod_unit = ts.find('.//{' + ns_uri + '}Production_RegisteredResource')
else:
prod_unit = ts.find('.//Production_RegisteredResource')
if prod_unit is not None:
# Get unit details
if ns_uri:
name_elem = prod_unit.find('.//{' + ns_uri + '}name')
psr_elem = prod_unit.find('.//{' + ns_uri + '}psrType')
else:
name_elem = prod_unit.find('.//name')
psr_elem = prod_unit.find('.//psrType')
unit_name = name_elem.text if name_elem is not None else 'Unknown'
unit_psr = psr_elem.text if psr_elem is not None else psr_type
# Extract outage periods and capacity
if ns_uri:
periods = ts.findall('.//{' + ns_uri + '}Unavailable_Period')
else:
periods = ts.findall('.//Unavailable_Period')
for period in periods:
if ns_uri:
time_interval = period.find('.//{' + ns_uri + '}timeInterval')
quantity_elem = period.find('.//{' + ns_uri + '}quantity')
else:
time_interval = period.find('.//timeInterval')
quantity_elem = period.find('.//quantity')
if time_interval is not None:
if ns_uri:
start_elem = time_interval.find('.//{' + ns_uri + '}start')
end_elem = time_interval.find('.//{' + ns_uri + '}end')
else:
start_elem = time_interval.find('.//start')
end_elem = time_interval.find('.//end')
if start_elem is not None and end_elem is not None:
# Get business type
if ns_uri:
business_type_elem = root.find('.//{' + ns_uri + '}businessType')
else:
business_type_elem = root.find('.//businessType')
business_type = business_type_elem.text if business_type_elem is not None else 'Unknown'
# Get capacity
capacity_mw = float(quantity_elem.text) if quantity_elem is not None else 0.0
all_outages.append({
'unit_name': unit_name,
'psr_type': unit_psr,
'psr_name': PSR_TYPES.get(unit_psr, unit_psr),
'capacity_mw': capacity_mw,
'start_time': pd.Timestamp(start_elem.text),
'end_time': pd.Timestamp(end_elem.text),
'businesstype': business_type,
'zone': zone,
'collection_order': collection_order
})
self._rate_limit()
except Exception as e:
# Empty response is OK (no outages)
if "empty" not in str(e).lower():
print(f" Warning: {zone} {psr_name} {start_chunk.date()}: {e}")
self._rate_limit()
continue
if all_outages:
df = pl.DataFrame(all_outages)
# Deduplicate: Keep only most recent report of each unique outage
# More recent collections (higher collection_order) overwrite earlier ones
# Unique outage = same unit_name + start_time + end_time
df = df.sort('collection_order', descending=True) # Most recent first
df = df.unique(subset=['unit_name', 'start_time', 'end_time'], keep='first')
# Remove collection_order column (no longer needed)
df = df.drop('collection_order')
return df
else:
return pl.DataFrame()
def collect_generation_by_psr_type(
self,
zone: str,
psr_type: str,
start_date: str,
end_date: str
) -> pl.DataFrame:
"""Collect generation for a specific PSR type.
Args:
zone: Bidding zone code
psr_type: PSR type code (e.g., 'B04' for Gas, 'B14' for Nuclear)
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
Returns:
Polars DataFrame with generation data for the PSR type
"""
chunks = self._generate_monthly_chunks(start_date, end_date)
all_data = []
psr_name = PSR_TYPES.get(psr_type, psr_type)
for start_chunk, end_chunk in tqdm(chunks, desc=f" {zone} {psr_name}", leave=False):
try:
series = self.client.query_generation(
zone,
start=start_chunk,
end=end_chunk,
psr_type=psr_type
)
if series is not None and not series.empty:
# Handle both Series and DataFrame returns
if isinstance(series, pd.DataFrame):
series = series.iloc[:, 0]
# Convert timestamp index to UTC to avoid timezone mismatch on concat
timestamp_index = series.index
if hasattr(timestamp_index, 'tz_convert'):
timestamp_index = timestamp_index.tz_convert('UTC')
df = pd.DataFrame({
'timestamp': timestamp_index,
'generation_mw': series.values,
'zone': zone,
'psr_type': psr_type,
'psr_name': psr_name
})
pl_df = pl.from_pandas(df)
all_data.append(pl_df)
self._rate_limit()
except Exception as e:
print(f" Warning: {zone} {psr_name} {start_chunk.date()}: {e}")
self._rate_limit()
continue
if all_data:
return pl.concat(all_data)
else:
return pl.DataFrame()
def collect_all(
self,
start_date: str,
end_date: str,
output_dir: Path
) -> dict:
"""Collect all ENTSO-E data with rate limiting.
Args:
start_date: Start date (YYYY-MM-DD)
end_date: End date (YYYY-MM-DD)
output_dir: Directory to save Parquet files
Returns:
Dictionary with paths to saved files
"""
output_dir.mkdir(parents=True, exist_ok=True)
# Calculate total requests
months = len(self._generate_monthly_chunks(start_date, end_date))
total_requests = (
len(BIDDING_ZONES) * months * 2 + # Generation + load
len(BORDERS) * months # Flows
)
estimated_minutes = total_requests / self.requests_per_minute
print("=" * 70)
print("ENTSO-E Data Collection")
print("=" * 70)
print(f"Date range: {start_date} to {end_date}")
print(f"Bidding zones: {len(BIDDING_ZONES)}")
print(f"Cross-border flows: {len(BORDERS)}")
print(f"Monthly chunks: {months}")
print(f"Total requests: ~{total_requests}")
print(f"Rate limit: {self.requests_per_minute} requests/minute (45% of 60 max)")
print(f"Estimated time: {estimated_minutes:.1f} minutes")
print()
results = {}
# 1. Collect Generation Data
print("[1/3] Collecting generation data by production type...")
generation_data = []
for zone in tqdm(BIDDING_ZONES.keys(), desc="Generation"):
df = self.collect_generation_per_type(zone, start_date, end_date)
if not df.is_empty():
generation_data.append(df)
if generation_data:
generation_df = pl.concat(generation_data)
gen_path = output_dir / "entsoe_generation_2024_2025.parquet"
generation_df.write_parquet(gen_path)
results['generation'] = gen_path
print(f"✅ Generation: {generation_df.shape[0]:,} records → {gen_path}")
# 2. Collect Load Data
print("\n[2/3] Collecting load (demand) data...")
load_data = []
for zone in tqdm(BIDDING_ZONES.keys(), desc="Load"):
df = self.collect_load(zone, start_date, end_date)
if not df.is_empty():
load_data.append(df)
if load_data:
load_df = pl.concat(load_data)
load_path = output_dir / "entsoe_load_2024_2025.parquet"
load_df.write_parquet(load_path)
results['load'] = load_path
print(f"✅ Load: {load_df.shape[0]:,} records → {load_path}")
# 3. Collect Cross-Border Flows
print("\n[3/3] Collecting cross-border flows...")
flow_data = []
for from_zone, to_zone in tqdm(BORDERS, desc="Flows"):
df = self.collect_cross_border_flows(from_zone, to_zone, start_date, end_date)
if not df.is_empty():
flow_data.append(df)
if flow_data:
flow_df = pl.concat(flow_data)
flow_path = output_dir / "entsoe_flows_2024_2025.parquet"
flow_df.write_parquet(flow_path)
results['flows'] = flow_path
print(f"✅ Flows: {flow_df.shape[0]:,} records → {flow_path}")
print()
print("=" * 70)
print("ENTSO-E Collection Complete")
print("=" * 70)
print(f"Total API requests made: {self.request_count}")
print(f"Files created: {len(results)}")
for data_type, path in results.items():
file_size = path.stat().st_size / (1024**2)
print(f" - {data_type}: {file_size:.1f} MB")
return results
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Collect ENTSO-E data with proper rate limiting")
parser.add_argument(
'--start-date',
default='2024-10-01',
help='Start date (YYYY-MM-DD)'
)
parser.add_argument(
'--end-date',
default='2025-09-30',
help='End date (YYYY-MM-DD)'
)
parser.add_argument(
'--output-dir',
type=Path,
default=Path('data/raw'),
help='Output directory for Parquet files'
)
parser.add_argument(
'--requests-per-minute',
type=int,
default=27,
help='Requests per minute (default: 27 = 45%% of 60 limit)'
)
args = parser.parse_args()
# Initialize collector and run
collector = EntsoECollector(requests_per_minute=args.requests_per_minute)
collector.collect_all(
start_date=args.start_date,
end_date=args.end_date,
output_dir=args.output_dir
)
|