Spaces:
Sleeping
Sleeping
File size: 24,554 Bytes
7aabe91 b3908ac 4fe3afe 7aabe91 b3908ac 7aabe91 6282cbe 7aabe91 6282cbe b3908ac 7aabe91 6a2ca60 e119d3b 6282cbe 7aabe91 6282cbe 7aabe91 6282cbe 7aabe91 b3908ac e119d3b b3908ac e119d3b b3908ac 4fe3afe 7aabe91 4fe3afe 6282cbe b3908ac 4fe3afe b3908ac 6282cbe 4fe3afe 6282cbe 4fe3afe 6282cbe 4fe3afe 6282cbe 4fe3afe 7aabe91 6282cbe 7aabe91 6282cbe 4fe3afe 6282cbe 4fe3afe 6282cbe 4fe3afe 7aabe91 4fe3afe 7aabe91 6282cbe 4fe3afe 6282cbe 7aabe91 b3908ac 7aabe91 b3908ac 7aabe91 b3908ac 7aabe91 b3908ac 7aabe91 afb90e6 6282cbe 7aabe91 afb90e6 7aabe91 afb90e6 7aabe91 afb90e6 6282cbe b3908ac 6282cbe afb90e6 6282cbe b3908ac 6282cbe afb90e6 6282cbe b3908ac 7aabe91 afb90e6 6282cbe 7aabe91 afb90e6 7aabe91 6282cbe 7aabe91 b3908ac 7aabe91 b3908ac 7aabe91 b3908ac 7aabe91 6282cbe 7aabe91 b3908ac 6282cbe 7aabe91 b3908ac 7aabe91 b3908ac 7aabe91 b3908ac 7aabe91 6282cbe b3908ac 7aabe91 b3908ac 7aabe91 b3908ac 7aabe91 b3908ac 7aabe91 6282cbe b3908ac 7aabe91 6282cbe b3908ac 7aabe91 b3908ac 7aabe91 b3908ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
import os, uuid, datetime, traceback
from pathlib import Path
import html as _py_html
import pandas as pd
import gradio as gr
from huggingface_hub import hf_hub_download
from urllib.parse import unquote # add at top
# ----------- HF DATASET CONFIG -----------
HF_DATASET_REPO = "akazemian/audio-html" # <-- change if needed
INDEX_FILENAME = "index.csv"
# -----------------------------------------
DB_PATH = "library.csv"
ALLOWED_EXTS = {".html"}
# Columns in DB
EXTRA_COLS = ["category", "dataset", "hf_path"] # <-- add hf_path here
BASE_COLS = ["id","filename","path","tags","keywords","notes","uploaded_at"]
ALL_DB_COLS = BASE_COLS + EXTRA_COLS
# Columns shown in the table (don't show hf_path)
TABLE_COLS = ["id","filename","category","dataset",
"tags","keywords","notes","uploaded_at"]
# At top-level config
HF_INDEX_REPO_ID = "akazemian/audio-library" # where index.csv lives *now*
HF_INDEX_REPO_TYPE = "space" # <β it's a Space, not a dataset
INDEX_FILENAME = "index.csv"
from huggingface_hub import hf_hub_download
# ---------- DB helpers ----------
def _load_db() -> pd.DataFrame:
if os.path.exists(DB_PATH):
df = pd.read_csv(DB_PATH)
for c in ALL_DB_COLS:
if c not in df.columns:
df[c] = ""
for c in ["tags","keywords","notes","category","dataset","hf_path","path","filename","id","uploaded_at"]:
df[c] = df[c].fillna("").astype(str)
return df[ALL_DB_COLS]
return pd.DataFrame(columns=ALL_DB_COLS)
def _save_db(df: pd.DataFrame):
df.to_csv(DB_PATH, index=False)
# ---------- Table normalizer ----------
def _df_from_table_value(table_value):
cols = TABLE_COLS
if isinstance(table_value, pd.DataFrame):
for c in cols:
if c not in table_value.columns:
table_value[c] = ""
return table_value[cols]
if isinstance(table_value, list):
if not table_value:
return pd.DataFrame(columns=cols)
first = table_value[0]
if isinstance(first, dict):
df = pd.DataFrame(table_value)
for c in cols:
if c not in df.columns:
df[c] = ""
return df[cols]
else:
return pd.DataFrame(table_value, columns=cols)
return pd.DataFrame(columns=cols)
# ---------- Load HF index ----------
def _load_hf_index() -> pd.DataFrame:
"""
Download + read index.csv from the HF dataset repo.
Required columns: id, filename, relpath, category, dataset, tags, keywords, notes, uploaded_at
"""
local = hf_hub_download(
repo_id=HF_INDEX_REPO_ID,
repo_type=HF_INDEX_REPO_TYPE,
filename=INDEX_FILENAME,
)
df = pd.read_csv(local)
for c in ["id","filename","relpath","category","dataset","tags","keywords","notes","uploaded_at"]:
if c not in df.columns:
df[c] = ""
# normalize types
for c in ["id","filename","relpath","category","dataset","tags","keywords","notes","uploaded_at"]:
df[c] = df[c].fillna("").astype(str)
return df
# ---------- Sync by model (prefix inside HF dataset) ----------
from urllib.parse import unquote # ensure this import exists at top
def sync_model(model_name: str):
raw = (model_name or "").strip()
if not raw:
return gr.Info("Please enter a model name."), None, None, None, "", ""
# 1) read index from HF and filter to this model prefix (accept raw or URL-decoded)
try:
idx = _load_hf_index()
except Exception as e:
traceback.print_exc()
return gr.Info(f"Failed to load index from HF: {e}"), None, None, None, "", ""
decoded = unquote(raw)
rel = idx["relpath"].astype(str)
sub = idx[ rel.str.startswith(f"{raw}/") | rel.str.startswith(f"{decoded}/") ]
if sub.empty:
return gr.Info(
f"No HTML files found for model '{raw}'. "
"Tip: if you copied from the URL, use '=' instead of '%3D'."
), None, None, None, "", ""
# 2) load local DB, backfill hf_path for existing rows of this model (by filename)
db = _load_db()
if not db.empty:
rel_by_fname = dict(zip(sub["filename"].astype(str), sub["relpath"].astype(str)))
mask_model_rows = db["filename"].astype(str).isin(rel_by_fname.keys())
if mask_model_rows.any():
db.loc[mask_model_rows, "hf_path"] = db.loc[mask_model_rows, "filename"].map(
lambda fn: f"hf://{HF_DATASET_REPO}/{rel_by_fname.get(str(fn), str(fn))}"
)
# 3) add any missing rows from HF index
now = datetime.datetime.now().isoformat(timespec="seconds")
existing_hf = set(db["hf_path"].astype(str))
new_rows = []
for _, r in sub.iterrows():
rp = str(r["relpath"])
hf_uri = f"hf://{HF_DATASET_REPO}/{rp}"
if hf_uri in existing_hf:
continue
# If a row with same filename exists already, we updated its hf_path above; skip adding duplicate
if not db[db["filename"].astype(str) == str(r["filename"])].empty:
continue
new_rows.append({
"id": (str(r["id"]) if str(r.get("id", "")) else uuid.uuid4().hex[:8]),
"filename": str(r["filename"]),
"path": "", # local path unknown in HF flow
"hf_path": hf_uri,
"tags": str(r.get("tags", "")),
"keywords": str(r.get("keywords", "")),
"notes": str(r.get("notes", "")),
"uploaded_at": (str(r.get("uploaded_at", "")) or now),
"category": str(r.get("category", "")),
"dataset": str(r.get("dataset", "")),
})
if new_rows:
db = pd.concat([db, pd.DataFrame(new_rows)], ignore_index=True)
_save_db(db)
# Use decoded model for downstream filtering
current_model = decoded
# outputs: [table, tag_filter, category_filter, dataset_filter, count_md, current_model]
return refresh_view("", [], "", "", current_model) + (current_model,)
# allow user to paste either "wavcoch_audio-preds-sr=16000" or the URL-encoded "%3D" form
# def sync_model(model_name: str):
# """
# Load index.csv from HF, add rows for the selected model (by relpath prefix),
# store HF URIs in DB, and show only that modelβs files.
# """
# model_name = (model_name or "").strip()
# if not model_name:
# return gr.Info("Please enter a model name."), None, None, None, ""
# try:
# idx = _load_hf_index()
# except Exception as e:
# traceback.print_exc()
# return gr.Info(f"Failed to load index from HF: {e}"), None, None, None, ""
# # rows like "{model_name}/.../file.html"
# subset = idx[idx["relpath"].str.startswith(model_name + "/")]
# if subset.empty:
# return gr.Info(f"No HTML files found for model '{model_name}' on {HF_DATASET_REPO}"), None, None, None, ""
# df = _load_db()
# now = datetime.datetime.now().isoformat(timespec="seconds")
# new_rows = []
# for _, r in subset.iterrows():
# relpath = r["relpath"]
# hub_uri = f"hf://{HF_DATASET_REPO}/{relpath}"
# if (df["path"] == hub_uri).any():
# continue
# new_rows.append({
# "id": r["id"] if r["id"] else uuid.uuid4().hex[:8],
# "filename": r["filename"],
# "path": hub_uri, # store HF URI
# "tags": r["tags"],
# "keywords": r["keywords"],
# "notes": r["notes"],
# "uploaded_at": r["uploaded_at"] or now,
# "category": r["category"],
# "dataset": r["dataset"]
# })
# if new_rows:
# df = pd.concat([df, pd.DataFrame(new_rows)], ignore_index=True)
# _save_db(df)
# current_model = model_name # remember which model prefix is active
# return refresh_view("", [], "", "", current_model) + (current_model,)
# ---------- Search / filters ----------
def refresh_view(query, tag_filters, category_filter, dataset_filter, current_model):
df = _load_db()
# scope to current model prefix in HF URI if provided
if current_model:
prefix = f"hf://{HF_DATASET_REPO}/{current_model}/"
df = df[df["path"].astype(str).str.startswith(prefix)]
# tag vocabulary
all_tags = sorted({t.strip()
for s in df["tags"].dropna().astype(str).tolist()
for t in s.split(",") if t.strip()})
all_cats = sorted([c for c in df["category"].dropna().astype(str).unique() if c])
all_sets = sorted([c for c in df["dataset"].dropna().astype(str).unique() if c])
# free-text query across filename/tags/keywords/notes/category/dataset
if query:
q = query.lower()
mask = (
df["filename"].str.lower().str.contains(q, na=False) |
df["tags"].str.lower().str.contains(q, na=False) |
df["keywords"].str.lower().str.contains(q, na=False) |
df["notes"].str.lower().str.contains(q, na=False) |
df["category"].str.lower().str.contains(q, na=False) |
df["dataset"].str.lower().str.contains(q, na=False)
)
df = df[mask]
# tag filters (AND semantics)
for t in (tag_filters or []):
df = df[df["tags"].astype(str).apply(
lambda s: t in [x.strip() for x in s.split(",") if x.strip()])]
# dropdown filters (exact match)
if category_filter:
df = df[df["category"] == category_filter]
if dataset_filter:
df = df[df["dataset"] == dataset_filter]
df = df.sort_values("uploaded_at", ascending=False).reset_index(drop=True)
view = df[TABLE_COLS].copy()
count_text = f"**Showing {len(view)} file(s)**"
return (
view,
gr.update(choices=all_tags),
gr.update(choices=[""] + all_cats, value=category_filter or ""),
gr.update(choices=[""] + all_sets, value=dataset_filter or ""),
count_text
)
# ---------- Preview ----------
def _iframe_from_html_string(raw_html: str, height_px: int = 720) -> str:
srcdoc = raw_html.replace("&", "&").replace('"', """)
return f'<iframe style="width:100%;height:{height_px}px;border:1px solid #ddd;border-radius:8px;" srcdoc="{srcdoc}"></iframe>'
def select_row(evt: gr.SelectData, table_value, source_mode):
try:
view = _df_from_table_value(table_value)
if view.empty:
return "<em>No rows.</em>", ""
# --- resolve row_idx robustly ---
row_idx = None
# 1) Preferred: evt.index (int or [int, ...])
ix = getattr(evt, "index", None)
if isinstance(ix, int):
row_idx = ix
elif isinstance(ix, (list, tuple)) and ix and isinstance(ix[0], int):
row_idx = ix[0]
# 2) Fallbacks: evt.value may be a dict with id, or a list (row values)
if row_idx is None:
val = getattr(evt, "value", None)
if isinstance(val, dict) and "id" in val:
hits = view.index[view["id"] == val["id"]].tolist()
if hits:
row_idx = hits[0]
elif isinstance(val, list) and len(val) >= 1:
# assume first column is id
hits = view.index[view["id"] == val[0]].tolist()
if hits:
row_idx = hits[0]
# 3) Last resort: default to first row
if row_idx is None:
row_idx = 0
# bounds check
if not (0 <= row_idx < len(view)):
return "<em>Invalid selection.</em>", ""
row = view.iloc[row_idx]
sel_id = row["id"]
# --- look up the full record from DB ---
db = _load_db()
rec = db[db["id"] == sel_id]
if rec.empty:
return "<em>Could not find file for this row.</em>", ""
# --- choose source: HF vs Local ---
use_hf = (str(source_mode).upper() == "HF")
path_str = rec["hf_path"].values[0] if use_hf else rec["path"].values[0]
path_str = str(path_str or "")
if not path_str:
return "<em>No path available for this source.</em>", f"π {row['filename']}"
# HF dataset URI β lazy download then iframe from raw HTML
if path_str.startswith("hf://"):
_, rest = path_str.split("hf://", 1)
repo_id, relpath = rest.split("/", 1)
local_path = hf_hub_download(repo_id=repo_id, repo_type="dataset", filename=relpath)
raw_html = Path(local_path).read_text(encoding="utf-8")
iframe = _iframe_from_html_string(raw_html, height_px=720)
return iframe, f"π {row['filename']}"
# Direct HTTP URL (CDN) β iframe src
if path_str.startswith("http"):
iframe = f'<iframe style="width:100%;height:720px;border:1px solid #ddd;border-radius:8px;" src="{_py_html.escape(path_str)}"></iframe>'
return iframe, f"π {row['filename']}"
# Local file fallback
p = Path(path_str)
if not p.exists():
return f"<em>File not found:</em> <code>{_py_html.escape(str(p))}</code>", f"π {row['filename']}"
raw_html = p.read_text(encoding="utf-8")
iframe = _iframe_from_html_string(raw_html, height_px=720)
return iframe, f"π {row['filename']}"
except Exception as e:
traceback.print_exc()
return f"<pre>Failed to render (see terminal):\n{_py_html.escape(str(e))}</pre>", ""
# def select_row(evt: gr.SelectData, table_value):
# try:
# view = _df_from_table_value(table_value)
# if view.empty:
# return "<em>No rows.</em>", ""
# # resolve row
# row_idx = None
# ix = getattr(evt, "index", None)
# if isinstance(ix, int):
# row_idx = ix
# elif isinstance(ix, (list, tuple)) and ix and isinstance(ix[0], int):
# row_idx = ix[0]
# if row_idx is None:
# val = getattr(evt, "value", None)
# if isinstance(val, dict) and "id" in val:
# hits = view.index[view["id"] == val["id"]].tolist()
# if hits: row_idx = hits[0]
# elif isinstance(val, list) and len(val) >= 1:
# hits = view.index[view["id"] == val[0]].tolist()
# if hits: row_idx = hits[0]
# if row_idx is None or not (0 <= row_idx < len(view)):
# return "<em>Invalid selection.</em>", ""
# row = view.iloc[row_idx]
# sel_id = row["id"]
# db = _load_db()
# rec = db[db["id"] == sel_id]
# if rec.empty:
# return "<em>Could not find file for this row.</em>", ""
# path_str = rec["path"].values[0]
# # Hub-backed path β lazy download
# if str(path_str).startswith("hf://"):
# _, rest = path_str.split("hf://", 1)
# repo_id, relpath = rest.split("/", 1)
# local_path = hf_hub_download(repo_id=repo_id, repo_type="dataset", filename=relpath)
# raw_html = Path(local_path).read_text(encoding="utf-8")
# elif str(path_str).startswith("http"):
# # if you ever swap to CDN URLs, iframe the URL directly
# iframe = f'<iframe style="width:100%;height:720px;border:1px solid #ddd;border-radius:8px;" src="{_py_html.escape(path_str)}"></iframe>'
# return iframe, f"π {row['filename']}"
# else:
# # local file fallback (not used for HF flow, kept for compatibility)
# p = Path(path_str)
# if not p.exists():
# return f"<em>File not found:</em> <code>{_py_html.escape(str(p))}</code>", f"π {row['filename']}"
# raw_html = p.read_text(encoding="utf-8")
# iframe = _iframe_from_html_string(raw_html, height_px=720)
# return iframe, f"π {row['filename']}"
# except Exception as e:
# traceback.print_exc()
# return f"<pre>Failed to render (see terminal):\n{_py_html.escape(str(e))}</pre>", ""
# ---------- Save edits ----------
def save_edits(edited_table, current_model):
if edited_table is None or not len(edited_table):
return gr.Info("Nothing to save.")
df_db = _load_db()
editable_cols = ["category","dataset","tags","keywords","notes"]
for c in editable_cols:
edited_table[c] = edited_table[c].fillna("").astype(str)
for _, row in edited_table.iterrows():
i = df_db.index[df_db["id"] == row["id"]]
if len(i):
for c in editable_cols:
df_db.at[i[0], c] = row[c]
_save_db(df_db)
# return refreshed table only (respect current_model scope)
return refresh_view("", [], "", "", current_model)[0]
# -------------------- UI --------------------
# CSS that targets only the three buttons via elem_id
custom_css = """
/* scope styles to only these 3 components */
#sync-btn button,
#refresh-btn button,
#save-btn button,
#sync-btn .gr-button,
#refresh-btn .gr-button,
#save-btn .gr-button,
#sync-btn [role="button"],
#refresh-btn [role="button"],
#save-btn [role="button"] {
background: #f97316 !important; /* orange-500 */
border-color: #f97316 !important;
color: #fff !important;
}
/* hover/active */
#sync-btn button:hover,
#refresh-btn button:hover,
#save-btn button:hover,
#sync-btn .gr-button:hover,
#refresh-btn .gr-button:hover,
#save-btn .gr-button:hover,
#sync-btn [role="button"]:hover,
#refresh-btn [role="button"]:hover,
#save-btn [role="button"]:hover {
background: #ea580c !important; /* orange-600 */
border-color: #ea580c !important;
}
/* (optional) also set CSS vars in case theme uses them */
#sync-btn, #refresh-btn, #save-btn {
--button-primary-background-fill: #f97316;
--button-primary-background-fill-hover: #ea580c;
--button-text-color: #fff;
}
"""
# with gr.Blocks(title="Audio HTML Library", css=custom_css) as demo:
# gr.Markdown("## π§ Audio Reconstruction Reports β sync β’ search β’ view")
# current_model = gr.State("") # remembers active model prefix inside HF repo
# source_mode = gr.State("HF") # default
# with gr.Row():
# with gr.Column(scale=1):
# # Choose model & sync
# gr.Markdown(f"**Model prefix on HF dataset:** `{HF_DATASET_REPO}/<model_name>/...`")
# model_in = gr.Textbox(label="Model name", placeholder="e.g., WavCochV8192")
# sync_btn = gr.Button("Sync this model", elem_id="sync-btn")
# # Search & filters
# gr.Markdown("---\n**Search & filter**")
# query = gr.Textbox(label="Keyword search (filename/tags/notes/category/dataset)", placeholder="type to searchβ¦")
# tag_filter = gr.CheckboxGroup(choices=[], label="Filter by tags (AND)")
# category_filter = gr.Dropdown(choices=[], label="Category")
# dataset_filter = gr.Dropdown(choices=[], label="Dataset")
# refresh_btn = gr.Button("Refresh", elem_id="refresh-btn")
# with gr.Column(scale=2):
# # Count of current view
# count_md = gr.Markdown("**Showing 0 file(s)**")
# gr.Markdown("**Library** (click a row to preview; edit cells and Save)")
# table = gr.Dataframe(
# headers=TABLE_COLS,
# datatype=["str"] * len(TABLE_COLS),
# interactive=True,
# wrap=True,
# row_count=(0, "dynamic"),
# col_count=(len(TABLE_COLS), "fixed")
# )
# with gr.Row():
# save_btn = gr.Button("Save Edits", elem_id="save-btn")
# preview_label = gr.Markdown("")
# preview_html = gr.HTML("")
# # wiring: sync (also sets current_model)
# sync_btn.click(
# sync_model,
# [model_in],
# [table, tag_filter, category_filter, dataset_filter, count_md, current_model]
# )
# # wiring: refresh + live filters (respect current_model)
# refresh_btn.click(
# refresh_view,
# [query, tag_filter, category_filter, dataset_filter, current_model],
# [table, tag_filter, category_filter, dataset_filter, count_md]
# )
# for comp in (query, tag_filter, category_filter, dataset_filter):
# comp.change(
# refresh_view,
# [query, tag_filter, category_filter, dataset_filter, current_model],
# [table, tag_filter, category_filter, dataset_filter, count_md]
# )
# table.select(select_row, [table], [preview_html, preview_label])
# save_btn.click(save_edits, [table, current_model], [table])
# # initial load (no model yet)
# demo.load(
# refresh_view,
# [query, tag_filter, category_filter, dataset_filter, current_model],
# [table, tag_filter, category_filter, dataset_filter, count_md]
# )
# if __name__ == "__main__":
# demo.launch(share=True) # auth optional
with gr.Blocks(title="Audio HTML Library", css=custom_css) as demo:
gr.Markdown("## π§ Audio Reconstruction Reports β sync β’ search β’ view")
current_model = gr.State("") # remembers active model prefix inside HF repo
source_mode = gr.State("HF") # default
with gr.Row():
with gr.Column(scale=1):
# Choose model & sync
gr.Markdown(f"**Model prefix on HF dataset:** `{HF_DATASET_REPO}/<model_name>/...`")
model_in = gr.Textbox(label="Model name", placeholder="e.g., WavCochV8192")
sync_btn = gr.Button("Sync this model", elem_id="sync-btn")
# Search & filters
gr.Markdown("---\n**Search & filter**")
query = gr.Textbox(label="Keyword search (filename/tags/notes/category/dataset)", placeholder="type to searchβ¦")
tag_filter = gr.CheckboxGroup(choices=[], label="Filter by tags (AND)")
category_filter = gr.Dropdown(choices=[], label="Category")
dataset_filter = gr.Dropdown(choices=[], label="Dataset")
# π½ Step 5: Source toggle (HF vs Local)
mode_radio = gr.Radio(
choices=["HF", "Local"],
value="HF",
label="Source",
info="Preview from HF dataset or local disk"
)
refresh_btn = gr.Button("Refresh", elem_id="refresh-btn")
with gr.Column(scale=2):
# Count of current view
count_md = gr.Markdown("**Showing 0 file(s)**")
gr.Markdown("**Library** (click a row to preview; edit cells and Save)")
table = gr.Dataframe(
headers=TABLE_COLS,
datatype=["str"] * len(TABLE_COLS),
interactive=True,
wrap=True,
row_count=(0, "dynamic"),
col_count=(len(TABLE_COLS), "fixed")
)
with gr.Row():
save_btn = gr.Button("Save Edits", elem_id="save-btn")
preview_label = gr.Markdown("")
preview_html = gr.HTML("")
# wiring: sync (also sets current_model)
sync_btn.click(
sync_model,
[model_in],
[table, tag_filter, category_filter, dataset_filter, count_md, current_model]
)
# wiring: refresh + live filters (respect current_model)
refresh_btn.click(
refresh_view,
[query, tag_filter, category_filter, dataset_filter, current_model],
[table, tag_filter, category_filter, dataset_filter, count_md]
)
# Trigger refresh when any filter OR source mode changes
for comp in (query, tag_filter, category_filter, dataset_filter, mode_radio):
comp.change(
refresh_view,
[query, tag_filter, category_filter, dataset_filter, current_model],
[table, tag_filter, category_filter, dataset_filter, count_md]
)
# Keep source_mode state in sync with the radio
mode_radio.change(lambda x: x, [mode_radio], [source_mode])
# Pass source_mode into select_row so it can choose hf_path vs path
table.select(select_row, [table, source_mode], [preview_html, preview_label])
save_btn.click(save_edits, [table, current_model], [table])
# initial load (no model yet)
demo.load(
refresh_view,
[query, tag_filter, category_filter, dataset_filter, current_model],
[table, tag_filter, category_filter, dataset_filter, count_md]
)
if __name__ == "__main__":
demo.launch(share=True) # auth optional
|