Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
|
@@ -3,36 +3,34 @@ from pathlib import Path
|
|
| 3 |
import html as _py_html
|
| 4 |
import pandas as pd
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
|
| 7 |
-
# -----------
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
#
|
| 11 |
|
| 12 |
DB_PATH = "library.csv"
|
| 13 |
ALLOWED_EXTS = {".html"}
|
| 14 |
|
| 15 |
-
# Columns in DB
|
| 16 |
-
EXTRA_COLS = ["
|
| 17 |
BASE_COLS = ["id","filename","path","tags","keywords","notes","uploaded_at"]
|
| 18 |
ALL_DB_COLS = BASE_COLS + EXTRA_COLS
|
| 19 |
|
| 20 |
-
# Columns shown in the table (
|
| 21 |
-
TABLE_COLS = ["id","filename","
|
| 22 |
"tags","keywords","notes","uploaded_at"]
|
| 23 |
|
| 24 |
# ---------- DB helpers ----------
|
| 25 |
def _load_db() -> pd.DataFrame:
|
| 26 |
if os.path.exists(DB_PATH):
|
| 27 |
df = pd.read_csv(DB_PATH)
|
| 28 |
-
# migrate: ensure all required columns exist
|
| 29 |
for c in ALL_DB_COLS:
|
| 30 |
if c not in df.columns:
|
| 31 |
df[c] = ""
|
| 32 |
-
|
| 33 |
-
for c in ["tags","keywords","notes","model_name","category","dataset"]:
|
| 34 |
df[c] = df[c].fillna("").astype(str)
|
| 35 |
-
# keep only our known columns in stable order
|
| 36 |
return df[ALL_DB_COLS]
|
| 37 |
return pd.DataFrame(columns=ALL_DB_COLS)
|
| 38 |
|
|
@@ -61,103 +59,92 @@ def _df_from_table_value(table_value):
|
|
| 61 |
return pd.DataFrame(table_value, columns=cols)
|
| 62 |
return pd.DataFrame(columns=cols)
|
| 63 |
|
| 64 |
-
# ----------
|
| 65 |
-
def
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
return
|
| 83 |
-
|
| 84 |
-
# ---------- Sync by model ----------
|
| 85 |
def sync_model(model_name: str):
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
and fills category/dataset from the fixed manifest if present.
|
| 90 |
"""
|
| 91 |
model_name = (model_name or "").strip()
|
| 92 |
if not model_name:
|
| 93 |
-
return gr.Info("Please enter a model name."), None, None, None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
| 98 |
|
| 99 |
df = _load_db()
|
| 100 |
-
manifest = _load_manifest()
|
| 101 |
now = datetime.datetime.now().isoformat(timespec="seconds")
|
| 102 |
new_rows = []
|
| 103 |
|
| 104 |
-
for
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
# if already indexed, optionally backfill model_name and skip creating a new row
|
| 109 |
-
existing = df["path"] == str(p)
|
| 110 |
-
if existing.any():
|
| 111 |
-
idxs = df.index[existing]
|
| 112 |
-
for i in idxs:
|
| 113 |
-
if (df.at[i, "model_name"] or "") != model_name:
|
| 114 |
-
df.at[i, "model_name"] = model_name
|
| 115 |
continue
|
| 116 |
-
|
| 117 |
-
category, dataset = "", ""
|
| 118 |
-
if manifest is not None:
|
| 119 |
-
mk = _stem_for_match(p)
|
| 120 |
-
hit = manifest[manifest["__match_key"].str.contains(mk, na=False)]
|
| 121 |
-
if not hit.empty:
|
| 122 |
-
if "audio_category" in hit.columns:
|
| 123 |
-
category = str(hit.iloc[0]["audio_category"])
|
| 124 |
-
if "dataset" in hit.columns:
|
| 125 |
-
dataset = str(hit.iloc[0]["dataset"])
|
| 126 |
-
|
| 127 |
-
uid = uuid.uuid4().hex[:8]
|
| 128 |
new_rows.append({
|
| 129 |
-
"id":
|
| 130 |
-
"filename":
|
| 131 |
-
"path":
|
| 132 |
-
"tags": "",
|
| 133 |
-
"keywords": "",
|
| 134 |
-
"notes": "",
|
| 135 |
-
"uploaded_at": now,
|
| 136 |
-
"
|
| 137 |
-
"
|
| 138 |
-
"dataset": dataset
|
| 139 |
})
|
| 140 |
|
| 141 |
if new_rows:
|
| 142 |
df = pd.concat([df, pd.DataFrame(new_rows)], ignore_index=True)
|
|
|
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
return refresh_view("", [], "", "", model_name)
|
| 147 |
|
| 148 |
# ---------- Search / filters ----------
|
| 149 |
-
def refresh_view(query, tag_filters, category_filter, dataset_filter,
|
| 150 |
df = _load_db()
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
# tag vocabulary
|
| 153 |
all_tags = sorted({t.strip()
|
| 154 |
for s in df["tags"].dropna().astype(str).tolist()
|
| 155 |
for t in s.split(",") if t.strip()})
|
| 156 |
all_cats = sorted([c for c in df["category"].dropna().astype(str).unique() if c])
|
| 157 |
all_sets = sorted([c for c in df["dataset"].dropna().astype(str).unique() if c])
|
| 158 |
-
all_models = sorted([c for c in df["model_name"].dropna().astype(str).unique() if c])
|
| 159 |
|
| 160 |
-
# free-text query across filename/tags/keywords/notes/category/dataset
|
| 161 |
if query:
|
| 162 |
q = query.lower()
|
| 163 |
mask = (
|
|
@@ -166,8 +153,7 @@ def refresh_view(query, tag_filters, category_filter, dataset_filter, model_filt
|
|
| 166 |
df["keywords"].str.lower().str.contains(q, na=False) |
|
| 167 |
df["notes"].str.lower().str.contains(q, na=False) |
|
| 168 |
df["category"].str.lower().str.contains(q, na=False) |
|
| 169 |
-
df["dataset"].str.lower().str.contains(q, na=False)
|
| 170 |
-
df["model_name"].str.lower().str.contains(q, na=False)
|
| 171 |
)
|
| 172 |
df = df[mask]
|
| 173 |
|
|
@@ -181,8 +167,6 @@ def refresh_view(query, tag_filters, category_filter, dataset_filter, model_filt
|
|
| 181 |
df = df[df["category"] == category_filter]
|
| 182 |
if dataset_filter:
|
| 183 |
df = df[df["dataset"] == dataset_filter]
|
| 184 |
-
if model_filter:
|
| 185 |
-
df = df[df["model_name"] == model_filter]
|
| 186 |
|
| 187 |
df = df.sort_values("uploaded_at", ascending=False).reset_index(drop=True)
|
| 188 |
view = df[TABLE_COLS].copy()
|
|
@@ -193,7 +177,6 @@ def refresh_view(query, tag_filters, category_filter, dataset_filter, model_filt
|
|
| 193 |
gr.update(choices=all_tags),
|
| 194 |
gr.update(choices=[""] + all_cats, value=category_filter or ""),
|
| 195 |
gr.update(choices=[""] + all_sets, value=dataset_filter or ""),
|
| 196 |
-
gr.update(choices=[""] + all_models, value=model_filter or ""),
|
| 197 |
count_text
|
| 198 |
)
|
| 199 |
|
|
@@ -233,12 +216,24 @@ def select_row(evt: gr.SelectData, table_value):
|
|
| 233 |
if rec.empty:
|
| 234 |
return "<em>Could not find file for this row.</em>", ""
|
| 235 |
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
iframe = _iframe_from_html_string(raw_html, height_px=720)
|
| 244 |
return iframe, f"📄 {row['filename']}"
|
|
@@ -247,11 +242,11 @@ def select_row(evt: gr.SelectData, table_value):
|
|
| 247 |
return f"<pre>Failed to render (see terminal):\n{_py_html.escape(str(e))}</pre>", ""
|
| 248 |
|
| 249 |
# ---------- Save edits ----------
|
| 250 |
-
def save_edits(edited_table):
|
| 251 |
if edited_table is None or not len(edited_table):
|
| 252 |
return gr.Info("Nothing to save.")
|
| 253 |
df_db = _load_db()
|
| 254 |
-
editable_cols = ["
|
| 255 |
for c in editable_cols:
|
| 256 |
edited_table[c] = edited_table[c].fillna("").astype(str)
|
| 257 |
for _, row in edited_table.iterrows():
|
|
@@ -260,8 +255,8 @@ def save_edits(edited_table):
|
|
| 260 |
for c in editable_cols:
|
| 261 |
df_db.at[i[0], c] = row[c]
|
| 262 |
_save_db(df_db)
|
| 263 |
-
# return refreshed table only
|
| 264 |
-
return refresh_view("", [], "", "",
|
| 265 |
|
| 266 |
# -------------------- UI --------------------
|
| 267 |
# CSS that targets only the three buttons via elem_id
|
|
@@ -303,25 +298,24 @@ custom_css = """
|
|
| 303 |
}
|
| 304 |
"""
|
| 305 |
|
| 306 |
-
|
| 307 |
with gr.Blocks(title="Audio HTML Library", css=custom_css) as demo:
|
| 308 |
gr.Markdown("## 🎧 Audio Reconstruction Reports — sync • search • view")
|
|
|
|
| 309 |
|
| 310 |
with gr.Row():
|
| 311 |
with gr.Column(scale=1):
|
| 312 |
# Choose model & sync
|
| 313 |
-
gr.Markdown(f"**Model
|
| 314 |
model_in = gr.Textbox(label="Model name", placeholder="e.g., WavCochV8192")
|
| 315 |
-
sync_btn = gr.Button("Sync this model", elem_id="sync-btn")
|
| 316 |
|
| 317 |
# Search & filters
|
| 318 |
gr.Markdown("---\n**Search & filter**")
|
| 319 |
-
query = gr.Textbox(label="Keyword search (filename/tags/notes/category/dataset
|
| 320 |
tag_filter = gr.CheckboxGroup(choices=[], label="Filter by tags (AND)")
|
| 321 |
category_filter = gr.Dropdown(choices=[], label="Category")
|
| 322 |
dataset_filter = gr.Dropdown(choices=[], label="Dataset")
|
| 323 |
-
|
| 324 |
-
refresh_btn = gr.Button("Refresh", elem_id="refresh-btn") # ⬅️ give id
|
| 325 |
|
| 326 |
with gr.Column(scale=2):
|
| 327 |
# Count of current view
|
|
@@ -336,31 +330,40 @@ with gr.Blocks(title="Audio HTML Library", css=custom_css) as demo:
|
|
| 336 |
col_count=(len(TABLE_COLS), "fixed")
|
| 337 |
)
|
| 338 |
with gr.Row():
|
| 339 |
-
save_btn = gr.Button("Save Edits", elem_id="save-btn")
|
| 340 |
preview_label = gr.Markdown("")
|
| 341 |
preview_html = gr.HTML("")
|
| 342 |
|
| 343 |
-
# wiring: sync
|
| 344 |
-
sync_btn.click(
|
| 345 |
-
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
-
# wiring: refresh + live filters
|
| 348 |
-
refresh_btn.click(
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
| 351 |
|
| 352 |
-
for comp in (query, tag_filter, category_filter, dataset_filter
|
| 353 |
-
comp.change(
|
| 354 |
-
|
| 355 |
-
|
|
|
|
|
|
|
| 356 |
|
| 357 |
table.select(select_row, [table], [preview_html, preview_label])
|
| 358 |
-
save_btn.click(save_edits, [table], [table])
|
| 359 |
|
| 360 |
-
# initial load
|
| 361 |
-
demo.load(
|
| 362 |
-
|
| 363 |
-
|
|
|
|
|
|
|
| 364 |
|
| 365 |
if __name__ == "__main__":
|
| 366 |
-
demo.launch(share=True) # auth
|
|
|
|
| 3 |
import html as _py_html
|
| 4 |
import pandas as pd
|
| 5 |
import gradio as gr
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
+
# ----------- HF DATASET CONFIG -----------
|
| 9 |
+
HF_DATASET_REPO = "akazemian/audio-html" # <-- change if needed
|
| 10 |
+
INDEX_FILENAME = "index.csv"
|
| 11 |
+
# -----------------------------------------
|
| 12 |
|
| 13 |
DB_PATH = "library.csv"
|
| 14 |
ALLOWED_EXTS = {".html"}
|
| 15 |
|
| 16 |
+
# Columns in DB (no model_name)
|
| 17 |
+
EXTRA_COLS = ["category", "dataset"]
|
| 18 |
BASE_COLS = ["id","filename","path","tags","keywords","notes","uploaded_at"]
|
| 19 |
ALL_DB_COLS = BASE_COLS + EXTRA_COLS
|
| 20 |
|
| 21 |
+
# Columns shown in the table (no model_name)
|
| 22 |
+
TABLE_COLS = ["id","filename","category","dataset",
|
| 23 |
"tags","keywords","notes","uploaded_at"]
|
| 24 |
|
| 25 |
# ---------- DB helpers ----------
|
| 26 |
def _load_db() -> pd.DataFrame:
|
| 27 |
if os.path.exists(DB_PATH):
|
| 28 |
df = pd.read_csv(DB_PATH)
|
|
|
|
| 29 |
for c in ALL_DB_COLS:
|
| 30 |
if c not in df.columns:
|
| 31 |
df[c] = ""
|
| 32 |
+
for c in ["tags","keywords","notes","category","dataset"]:
|
|
|
|
| 33 |
df[c] = df[c].fillna("").astype(str)
|
|
|
|
| 34 |
return df[ALL_DB_COLS]
|
| 35 |
return pd.DataFrame(columns=ALL_DB_COLS)
|
| 36 |
|
|
|
|
| 59 |
return pd.DataFrame(table_value, columns=cols)
|
| 60 |
return pd.DataFrame(columns=cols)
|
| 61 |
|
| 62 |
+
# ---------- Load HF index ----------
|
| 63 |
+
def _load_hf_index() -> pd.DataFrame:
|
| 64 |
+
"""
|
| 65 |
+
Download + read index.csv from the HF dataset repo.
|
| 66 |
+
Required columns: id, filename, relpath, category, dataset, tags, keywords, notes, uploaded_at
|
| 67 |
+
"""
|
| 68 |
+
local = hf_hub_download(
|
| 69 |
+
repo_id=HF_DATASET_REPO,
|
| 70 |
+
repo_type="dataset",
|
| 71 |
+
filename=INDEX_FILENAME,
|
| 72 |
+
)
|
| 73 |
+
df = pd.read_csv(local)
|
| 74 |
+
for c in ["id","filename","relpath","category","dataset","tags","keywords","notes","uploaded_at"]:
|
| 75 |
+
if c not in df.columns:
|
| 76 |
+
df[c] = ""
|
| 77 |
+
# normalize types
|
| 78 |
+
for c in ["id","filename","relpath","category","dataset","tags","keywords","notes","uploaded_at"]:
|
| 79 |
+
df[c] = df[c].fillna("").astype(str)
|
| 80 |
+
return df
|
| 81 |
+
|
| 82 |
+
# ---------- Sync by model (prefix inside HF dataset) ----------
|
| 83 |
def sync_model(model_name: str):
|
| 84 |
+
"""
|
| 85 |
+
Load index.csv from HF, add rows for the selected model (by relpath prefix),
|
| 86 |
+
store HF URIs in DB, and show only that model’s files.
|
|
|
|
| 87 |
"""
|
| 88 |
model_name = (model_name or "").strip()
|
| 89 |
if not model_name:
|
| 90 |
+
return gr.Info("Please enter a model name."), None, None, None, ""
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
idx = _load_hf_index()
|
| 94 |
+
except Exception as e:
|
| 95 |
+
traceback.print_exc()
|
| 96 |
+
return gr.Info(f"Failed to load index from HF: {e}"), None, None, None, ""
|
| 97 |
|
| 98 |
+
# rows like "{model_name}/.../file.html"
|
| 99 |
+
subset = idx[idx["relpath"].str.startswith(model_name + "/")]
|
| 100 |
+
if subset.empty:
|
| 101 |
+
return gr.Info(f"No HTML files found for model '{model_name}' on {HF_DATASET_REPO}"), None, None, None, ""
|
| 102 |
|
| 103 |
df = _load_db()
|
|
|
|
| 104 |
now = datetime.datetime.now().isoformat(timespec="seconds")
|
| 105 |
new_rows = []
|
| 106 |
|
| 107 |
+
for _, r in subset.iterrows():
|
| 108 |
+
relpath = r["relpath"]
|
| 109 |
+
hub_uri = f"hf://{HF_DATASET_REPO}/{relpath}"
|
| 110 |
+
if (df["path"] == hub_uri).any():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
new_rows.append({
|
| 113 |
+
"id": r["id"] if r["id"] else uuid.uuid4().hex[:8],
|
| 114 |
+
"filename": r["filename"],
|
| 115 |
+
"path": hub_uri, # store HF URI
|
| 116 |
+
"tags": r["tags"],
|
| 117 |
+
"keywords": r["keywords"],
|
| 118 |
+
"notes": r["notes"],
|
| 119 |
+
"uploaded_at": r["uploaded_at"] or now,
|
| 120 |
+
"category": r["category"],
|
| 121 |
+
"dataset": r["dataset"]
|
|
|
|
| 122 |
})
|
| 123 |
|
| 124 |
if new_rows:
|
| 125 |
df = pd.concat([df, pd.DataFrame(new_rows)], ignore_index=True)
|
| 126 |
+
_save_db(df)
|
| 127 |
|
| 128 |
+
current_model = model_name # remember which model prefix is active
|
| 129 |
+
return refresh_view("", [], "", "", current_model) + (current_model,)
|
|
|
|
| 130 |
|
| 131 |
# ---------- Search / filters ----------
|
| 132 |
+
def refresh_view(query, tag_filters, category_filter, dataset_filter, current_model):
|
| 133 |
df = _load_db()
|
| 134 |
|
| 135 |
+
# scope to current model prefix in HF URI if provided
|
| 136 |
+
if current_model:
|
| 137 |
+
prefix = f"hf://{HF_DATASET_REPO}/{current_model}/"
|
| 138 |
+
df = df[df["path"].astype(str).str.startswith(prefix)]
|
| 139 |
+
|
| 140 |
# tag vocabulary
|
| 141 |
all_tags = sorted({t.strip()
|
| 142 |
for s in df["tags"].dropna().astype(str).tolist()
|
| 143 |
for t in s.split(",") if t.strip()})
|
| 144 |
all_cats = sorted([c for c in df["category"].dropna().astype(str).unique() if c])
|
| 145 |
all_sets = sorted([c for c in df["dataset"].dropna().astype(str).unique() if c])
|
|
|
|
| 146 |
|
| 147 |
+
# free-text query across filename/tags/keywords/notes/category/dataset
|
| 148 |
if query:
|
| 149 |
q = query.lower()
|
| 150 |
mask = (
|
|
|
|
| 153 |
df["keywords"].str.lower().str.contains(q, na=False) |
|
| 154 |
df["notes"].str.lower().str.contains(q, na=False) |
|
| 155 |
df["category"].str.lower().str.contains(q, na=False) |
|
| 156 |
+
df["dataset"].str.lower().str.contains(q, na=False)
|
|
|
|
| 157 |
)
|
| 158 |
df = df[mask]
|
| 159 |
|
|
|
|
| 167 |
df = df[df["category"] == category_filter]
|
| 168 |
if dataset_filter:
|
| 169 |
df = df[df["dataset"] == dataset_filter]
|
|
|
|
|
|
|
| 170 |
|
| 171 |
df = df.sort_values("uploaded_at", ascending=False).reset_index(drop=True)
|
| 172 |
view = df[TABLE_COLS].copy()
|
|
|
|
| 177 |
gr.update(choices=all_tags),
|
| 178 |
gr.update(choices=[""] + all_cats, value=category_filter or ""),
|
| 179 |
gr.update(choices=[""] + all_sets, value=dataset_filter or ""),
|
|
|
|
| 180 |
count_text
|
| 181 |
)
|
| 182 |
|
|
|
|
| 216 |
if rec.empty:
|
| 217 |
return "<em>Could not find file for this row.</em>", ""
|
| 218 |
|
| 219 |
+
path_str = rec["path"].values[0]
|
| 220 |
+
|
| 221 |
+
# Hub-backed path → lazy download
|
| 222 |
+
if str(path_str).startswith("hf://"):
|
| 223 |
+
_, rest = path_str.split("hf://", 1)
|
| 224 |
+
repo_id, relpath = rest.split("/", 1)
|
| 225 |
+
local_path = hf_hub_download(repo_id=repo_id, repo_type="dataset", filename=relpath)
|
| 226 |
+
raw_html = Path(local_path).read_text(encoding="utf-8")
|
| 227 |
+
elif str(path_str).startswith("http"):
|
| 228 |
+
# if you ever swap to CDN URLs, iframe the URL directly
|
| 229 |
+
iframe = f'<iframe style="width:100%;height:720px;border:1px solid #ddd;border-radius:8px;" src="{_py_html.escape(path_str)}"></iframe>'
|
| 230 |
+
return iframe, f"📄 {row['filename']}"
|
| 231 |
+
else:
|
| 232 |
+
# local file fallback (not used for HF flow, kept for compatibility)
|
| 233 |
+
p = Path(path_str)
|
| 234 |
+
if not p.exists():
|
| 235 |
+
return f"<em>File not found:</em> <code>{_py_html.escape(str(p))}</code>", f"📄 {row['filename']}"
|
| 236 |
+
raw_html = p.read_text(encoding="utf-8")
|
| 237 |
|
| 238 |
iframe = _iframe_from_html_string(raw_html, height_px=720)
|
| 239 |
return iframe, f"📄 {row['filename']}"
|
|
|
|
| 242 |
return f"<pre>Failed to render (see terminal):\n{_py_html.escape(str(e))}</pre>", ""
|
| 243 |
|
| 244 |
# ---------- Save edits ----------
|
| 245 |
+
def save_edits(edited_table, current_model):
|
| 246 |
if edited_table is None or not len(edited_table):
|
| 247 |
return gr.Info("Nothing to save.")
|
| 248 |
df_db = _load_db()
|
| 249 |
+
editable_cols = ["category","dataset","tags","keywords","notes"]
|
| 250 |
for c in editable_cols:
|
| 251 |
edited_table[c] = edited_table[c].fillna("").astype(str)
|
| 252 |
for _, row in edited_table.iterrows():
|
|
|
|
| 255 |
for c in editable_cols:
|
| 256 |
df_db.at[i[0], c] = row[c]
|
| 257 |
_save_db(df_db)
|
| 258 |
+
# return refreshed table only (respect current_model scope)
|
| 259 |
+
return refresh_view("", [], "", "", current_model)[0]
|
| 260 |
|
| 261 |
# -------------------- UI --------------------
|
| 262 |
# CSS that targets only the three buttons via elem_id
|
|
|
|
| 298 |
}
|
| 299 |
"""
|
| 300 |
|
|
|
|
| 301 |
with gr.Blocks(title="Audio HTML Library", css=custom_css) as demo:
|
| 302 |
gr.Markdown("## 🎧 Audio Reconstruction Reports — sync • search • view")
|
| 303 |
+
current_model = gr.State("") # remembers active model prefix inside HF repo
|
| 304 |
|
| 305 |
with gr.Row():
|
| 306 |
with gr.Column(scale=1):
|
| 307 |
# Choose model & sync
|
| 308 |
+
gr.Markdown(f"**Model prefix on HF dataset:** `{HF_DATASET_REPO}/<model_name>/...`")
|
| 309 |
model_in = gr.Textbox(label="Model name", placeholder="e.g., WavCochV8192")
|
| 310 |
+
sync_btn = gr.Button("Sync this model", elem_id="sync-btn")
|
| 311 |
|
| 312 |
# Search & filters
|
| 313 |
gr.Markdown("---\n**Search & filter**")
|
| 314 |
+
query = gr.Textbox(label="Keyword search (filename/tags/notes/category/dataset)", placeholder="type to search…")
|
| 315 |
tag_filter = gr.CheckboxGroup(choices=[], label="Filter by tags (AND)")
|
| 316 |
category_filter = gr.Dropdown(choices=[], label="Category")
|
| 317 |
dataset_filter = gr.Dropdown(choices=[], label="Dataset")
|
| 318 |
+
refresh_btn = gr.Button("Refresh", elem_id="refresh-btn")
|
|
|
|
| 319 |
|
| 320 |
with gr.Column(scale=2):
|
| 321 |
# Count of current view
|
|
|
|
| 330 |
col_count=(len(TABLE_COLS), "fixed")
|
| 331 |
)
|
| 332 |
with gr.Row():
|
| 333 |
+
save_btn = gr.Button("Save Edits", elem_id="save-btn")
|
| 334 |
preview_label = gr.Markdown("")
|
| 335 |
preview_html = gr.HTML("")
|
| 336 |
|
| 337 |
+
# wiring: sync (also sets current_model)
|
| 338 |
+
sync_btn.click(
|
| 339 |
+
sync_model,
|
| 340 |
+
[model_in],
|
| 341 |
+
[table, tag_filter, category_filter, dataset_filter, count_md, current_model]
|
| 342 |
+
)
|
| 343 |
|
| 344 |
+
# wiring: refresh + live filters (respect current_model)
|
| 345 |
+
refresh_btn.click(
|
| 346 |
+
refresh_view,
|
| 347 |
+
[query, tag_filter, category_filter, dataset_filter, current_model],
|
| 348 |
+
[table, tag_filter, category_filter, dataset_filter, count_md]
|
| 349 |
+
)
|
| 350 |
|
| 351 |
+
for comp in (query, tag_filter, category_filter, dataset_filter):
|
| 352 |
+
comp.change(
|
| 353 |
+
refresh_view,
|
| 354 |
+
[query, tag_filter, category_filter, dataset_filter, current_model],
|
| 355 |
+
[table, tag_filter, category_filter, dataset_filter, count_md]
|
| 356 |
+
)
|
| 357 |
|
| 358 |
table.select(select_row, [table], [preview_html, preview_label])
|
| 359 |
+
save_btn.click(save_edits, [table, current_model], [table])
|
| 360 |
|
| 361 |
+
# initial load (no model yet)
|
| 362 |
+
demo.load(
|
| 363 |
+
refresh_view,
|
| 364 |
+
[query, tag_filter, category_filter, dataset_filter, current_model],
|
| 365 |
+
[table, tag_filter, category_filter, dataset_filter, count_md]
|
| 366 |
+
)
|
| 367 |
|
| 368 |
if __name__ == "__main__":
|
| 369 |
+
demo.launch(share=True) # auth optional
|
index.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
temp.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# upload_htmls_and_index.py
|
| 2 |
+
import posixpath
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from huggingface_hub import HfApi
|
| 6 |
+
|
| 7 |
+
REPORTS_ROOT = Path("/data/atlask/Model-Preds-Html/AudioSet-Audio").resolve()
|
| 8 |
+
DATASET_REPO = "akazemian/audio-html"
|
| 9 |
+
|
| 10 |
+
# --- replace ONLY your upload block with this (keep the rest of the file) ---
|
| 11 |
+
from huggingface_hub import HfApi
|
| 12 |
+
|
| 13 |
+
api = HfApi()
|
| 14 |
+
REPORTS_ROOT = REPORTS_ROOT.resolve() # your existing constant
|
| 15 |
+
|
| 16 |
+
# Upload per model subfolder, but call upload_large_folder on the PARENT
|
| 17 |
+
# (older huggingface_hub versions don't support path_in_repo)
|
| 18 |
+
for sub in sorted([p for p in REPORTS_ROOT.iterdir() if p.is_dir()]):
|
| 19 |
+
model = sub.name
|
| 20 |
+
print(f"[HF] upload_large_folder: {REPORTS_ROOT} (include {model}/**/*.html) -> {DATASET_REPO}")
|
| 21 |
+
api.upload_large_folder(
|
| 22 |
+
repo_id=DATASET_REPO,
|
| 23 |
+
repo_type="dataset",
|
| 24 |
+
folder_path=str(REPORTS_ROOT), # parent folder
|
| 25 |
+
allow_patterns=[f"{model}/**/*.html"], # only this model's files
|
| 26 |
+
)
|
| 27 |
+
print(f"✓ uploaded {model}")
|
| 28 |
+
# --- end replacement ---
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# (B) Build index.csv from your existing library.csv (no model_name)
|
| 33 |
+
library = pd.read_csv("library.csv")
|
| 34 |
+
|
| 35 |
+
def ensure_cols(df, cols):
|
| 36 |
+
for c in cols:
|
| 37 |
+
if c not in df.columns:
|
| 38 |
+
df[c] = ""
|
| 39 |
+
return df
|
| 40 |
+
|
| 41 |
+
library = ensure_cols(
|
| 42 |
+
library,
|
| 43 |
+
["id","filename","path","tags","keywords","notes","uploaded_at","category","dataset"]
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
def local_to_relpath(local_path: str) -> str:
|
| 47 |
+
# Make path relative to REPORTS_ROOT and normalize to POSIX for HF
|
| 48 |
+
rel = Path(local_path).resolve().relative_to(REPORTS_ROOT)
|
| 49 |
+
return posixpath.join(*rel.parts)
|
| 50 |
+
|
| 51 |
+
# Only keep rows that actually point to .html files under REPORTS_ROOT
|
| 52 |
+
keep = library["path"].astype(str).str.endswith(".html", na=False) & \
|
| 53 |
+
library["path"].astype(str).str.startswith(str(REPORTS_ROOT), na=False)
|
| 54 |
+
idx = library[keep].copy()
|
| 55 |
+
|
| 56 |
+
# Derive relpath inside the HF dataset from the absolute local path
|
| 57 |
+
idx["relpath"] = idx["path"].apply(local_to_relpath)
|
| 58 |
+
|
| 59 |
+
index_cols = ["id","filename","relpath","category","dataset","tags","keywords","notes","uploaded_at"]
|
| 60 |
+
index_df = idx[index_cols].copy()
|
| 61 |
+
index_df.to_csv("index.csv", index=False)
|
| 62 |
+
|
| 63 |
+
# (C) Upload index.csv to the dataset repo (small, separate commit)
|
| 64 |
+
from huggingface_hub import CommitOperationAdd
|
| 65 |
+
api.create_commit(
|
| 66 |
+
repo_id=DATASET_REPO,
|
| 67 |
+
repo_type="dataset",
|
| 68 |
+
operations=[CommitOperationAdd(path_in_repo="index.csv", path_or_fileobj="index.csv")],
|
| 69 |
+
commit_message=f"Add/update index.csv ({len(index_df)} rows)"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
print("Done: uploaded HTMLs (large-folder) and index.csv")
|
| 73 |
+
|
| 74 |
+
|