Spaces:
Sleeping
Sleeping
File size: 7,002 Bytes
78a22a6 fb51816 78a22a6 fb51816 78a22a6 fb51816 78a22a6 fb51816 78a22a6 fb51816 78a22a6 fb51816 78a22a6 fb51816 78a22a6 fb51816 78a22a6 fb51816 78a22a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
"""
FastAPI Backend Server for AuthorCheck AI Detection
Uses DeBERTa model for AI-generated text detection
"""
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional
import uvicorn
from model_handler import AIDetectionModelHandler
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="AuthorCheck API",
description="AI-powered text analysis and detection API",
version="1.0.0"
)
# Configure CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize model handler
model_handler = AIDetectionModelHandler()
# Request/Response Models
class AnalysisRequest(BaseModel):
text: str = Field(..., min_length=1, description="Text to analyze")
analysisTypes: Optional[List[str]] = Field(
default=["all"],
description="Types of analysis to perform"
)
model: Optional[str] = Field(
default="ai-detector",
description="Model to use for analysis"
)
class EmotionData(BaseModel):
emotion: str
score: float
intensity: str
class AdvancedSentiment(BaseModel):
emotions: List[EmotionData]
confidence: float
context: str
avg_polarity: Optional[float] = None
polarity_variance: Optional[float] = None
class TopicData(BaseModel):
topic: str
relevance: float
keywords: List[str]
class WritingStyle(BaseModel):
tone: str
formality: str
complexity: str
style: List[str]
audience: str
sentiment_consistency: Optional[str] = None
class Insight(BaseModel):
type: str
title: str
description: str
suggestion: Optional[str] = None
class PlagiarismRisk(BaseModel):
score: int
level: str
details: str
class ContentQuality(BaseModel):
overall: int
clarity: int
coherence: int
engagement: int
originality: int
class AnalysisResponse(BaseModel):
advancedSentiment: AdvancedSentiment
topics: List[TopicData]
writingStyle: WritingStyle
insights: List[Insight]
plagiarismRisk: PlagiarismRisk
contentQuality: ContentQuality
aiOrHuman: str
aiOrHumanConfidence: float
aiOrHumanExplanation: str
# API Endpoints
@app.get("/")
async def root():
"""Root endpoint - API health check"""
return {
"status": "online",
"message": "AuthorCheck API is running",
"version": "1.0.0"
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
try:
model_loaded = model_handler.is_loaded()
return {
"status": "healthy" if model_loaded else "degraded",
"model_loaded": model_loaded,
"model_type": "DeBERTa AI Detector"
}
except Exception as e:
logger.error(f"Health check failed: {e}")
return {
"status": "unhealthy",
"error": str(e)
}
@app.post("/api/analyze")
async def analyze_text(request: AnalysisRequest):
"""
Analyze text using the DeBERTa AI detection model
Returns comprehensive analysis including:
- AI vs Human detection
- Sentiment analysis
- Topic detection
- Writing style analysis
- Content quality metrics
"""
try:
if not request.text or len(request.text.strip()) == 0:
raise HTTPException(status_code=400, detail="Text cannot be empty")
# Check text length for meaningful analysis (50-7000 words)
word_count = len(request.text.split())
if word_count < 50:
raise HTTPException(
status_code=400,
detail="Text is too short for analysis. Please provide at least 50 words for accurate AI detection and sentiment analysis."
)
if word_count > 7000:
raise HTTPException(
status_code=400,
detail="Text is too long for analysis. Maximum 7,000 words allowed."
)
# Perform AI detection using the model
logger.info(f"Analyzing text of length: {len(request.text)}")
analysis_result = model_handler.analyze_text(request.text)
logger.info(f"Analysis complete: {analysis_result['aiOrHuman']} ({analysis_result['aiOrHumanConfidence']:.2f}%)")
return analysis_result
except HTTPException:
raise
except Exception as e:
logger.error(f"Analysis error: {e}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Analysis failed: {str(e)}"
)
@app.post("/api/detect")
async def detect_ai(request: AnalysisRequest):
"""
Simple endpoint for AI detection only
Returns just the AI/Human classification
"""
try:
if not request.text or len(request.text.strip()) == 0:
raise HTTPException(status_code=400, detail="Text cannot be empty")
# Check text length (50-7000 words)
word_count = len(request.text.split())
if word_count < 50:
raise HTTPException(
status_code=400,
detail="Text is too short. Please provide at least 50 words."
)
elif word_count > 7000:
raise HTTPException(
status_code=400,
detail="Text is too long. Maximum 7,000 words allowed."
)
result = model_handler.detect_ai(request.text)
return {
"text": request.text[:100] + "..." if len(request.text) > 100 else request.text,
"classification": result["classification"],
"prediction": result.get("prediction", result["classification"]),
"probability": result["probability"],
"confidence": result["confidence"],
"explanation": result["explanation"],
"mixed_analysis": result.get("mixed_analysis", None),
"modelProcessingTime": result.get("modelProcessingTime", None)
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Detection error: {e}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Detection failed: {str(e)}"
)
@app.get("/api/model/info")
async def model_info():
"""Get information about the loaded model"""
try:
return model_handler.get_model_info()
except Exception as e:
logger.error(f"Model info error: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Run the server
if __name__ == "__main__":
uvicorn.run(
"app:app",
host="0.0.0.0",
port=8000,
reload=True,
log_level="info"
)
|