Spaces:
Sleeping
Sleeping
backend: add FastAPI app, requirements, Dockerfile (HF model download)
Browse files- app.py +256 -0
- model_handler.py +859 -0
- requirements.txt +25 -0
app.py
ADDED
|
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
FastAPI Backend Server for AuthorCheck AI Detection
|
| 3 |
+
Uses DeBERTa model for AI-generated text detection
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from fastapi import FastAPI, HTTPException
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
from pydantic import BaseModel, Field
|
| 9 |
+
from typing import List, Optional
|
| 10 |
+
import uvicorn
|
| 11 |
+
from model_handler import AIDetectionModelHandler
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
# Configure logging
|
| 15 |
+
logging.basicConfig(
|
| 16 |
+
level=logging.INFO,
|
| 17 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 18 |
+
)
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
# Initialize FastAPI app
|
| 22 |
+
app = FastAPI(
|
| 23 |
+
title="AuthorCheck API",
|
| 24 |
+
description="AI-powered text analysis and detection API",
|
| 25 |
+
version="1.0.0"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Configure CORS
|
| 29 |
+
app.add_middleware(
|
| 30 |
+
CORSMiddleware,
|
| 31 |
+
allow_origins=["*"], # In production, replace with your frontend URL
|
| 32 |
+
allow_credentials=True,
|
| 33 |
+
allow_methods=["*"],
|
| 34 |
+
allow_headers=["*"],
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Initialize model handler
|
| 38 |
+
model_handler = AIDetectionModelHandler()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Request/Response Models
|
| 42 |
+
class AnalysisRequest(BaseModel):
|
| 43 |
+
text: str = Field(..., min_length=1, description="Text to analyze")
|
| 44 |
+
analysisTypes: Optional[List[str]] = Field(
|
| 45 |
+
default=["all"],
|
| 46 |
+
description="Types of analysis to perform"
|
| 47 |
+
)
|
| 48 |
+
model: Optional[str] = Field(
|
| 49 |
+
default="ai-detector",
|
| 50 |
+
description="Model to use for analysis"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class EmotionData(BaseModel):
|
| 55 |
+
emotion: str
|
| 56 |
+
score: float
|
| 57 |
+
intensity: str
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class AdvancedSentiment(BaseModel):
|
| 61 |
+
emotions: List[EmotionData]
|
| 62 |
+
confidence: float
|
| 63 |
+
context: str
|
| 64 |
+
avg_polarity: Optional[float] = None
|
| 65 |
+
polarity_variance: Optional[float] = None
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class TopicData(BaseModel):
|
| 69 |
+
topic: str
|
| 70 |
+
relevance: float
|
| 71 |
+
keywords: List[str]
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class WritingStyle(BaseModel):
|
| 75 |
+
tone: str
|
| 76 |
+
formality: str
|
| 77 |
+
complexity: str
|
| 78 |
+
style: List[str]
|
| 79 |
+
audience: str
|
| 80 |
+
sentiment_consistency: Optional[str] = None
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class Insight(BaseModel):
|
| 84 |
+
type: str
|
| 85 |
+
title: str
|
| 86 |
+
description: str
|
| 87 |
+
suggestion: Optional[str] = None
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class PlagiarismRisk(BaseModel):
|
| 91 |
+
score: int
|
| 92 |
+
level: str
|
| 93 |
+
details: str
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class ContentQuality(BaseModel):
|
| 97 |
+
overall: int
|
| 98 |
+
clarity: int
|
| 99 |
+
coherence: int
|
| 100 |
+
engagement: int
|
| 101 |
+
originality: int
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class AnalysisResponse(BaseModel):
|
| 105 |
+
advancedSentiment: AdvancedSentiment
|
| 106 |
+
topics: List[TopicData]
|
| 107 |
+
writingStyle: WritingStyle
|
| 108 |
+
insights: List[Insight]
|
| 109 |
+
plagiarismRisk: PlagiarismRisk
|
| 110 |
+
contentQuality: ContentQuality
|
| 111 |
+
aiOrHuman: str
|
| 112 |
+
aiOrHumanConfidence: float
|
| 113 |
+
aiOrHumanExplanation: str
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# API Endpoints
|
| 117 |
+
@app.get("/")
|
| 118 |
+
async def root():
|
| 119 |
+
"""Root endpoint - API health check"""
|
| 120 |
+
return {
|
| 121 |
+
"status": "online",
|
| 122 |
+
"message": "AuthorCheck API is running",
|
| 123 |
+
"version": "1.0.0"
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
@app.get("/health")
|
| 128 |
+
async def health_check():
|
| 129 |
+
"""Health check endpoint"""
|
| 130 |
+
try:
|
| 131 |
+
model_loaded = model_handler.is_loaded()
|
| 132 |
+
return {
|
| 133 |
+
"status": "healthy" if model_loaded else "degraded",
|
| 134 |
+
"model_loaded": model_loaded,
|
| 135 |
+
"model_type": "DeBERTa AI Detector"
|
| 136 |
+
}
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logger.error(f"Health check failed: {e}")
|
| 139 |
+
return {
|
| 140 |
+
"status": "unhealthy",
|
| 141 |
+
"error": str(e)
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
@app.post("/api/analyze", response_model=AnalysisResponse)
|
| 146 |
+
async def analyze_text(request: AnalysisRequest):
|
| 147 |
+
"""
|
| 148 |
+
Analyze text using the DeBERTa AI detection model
|
| 149 |
+
|
| 150 |
+
Returns comprehensive analysis including:
|
| 151 |
+
- AI vs Human detection
|
| 152 |
+
- Sentiment analysis
|
| 153 |
+
- Topic detection
|
| 154 |
+
- Writing style analysis
|
| 155 |
+
- Content quality metrics
|
| 156 |
+
"""
|
| 157 |
+
try:
|
| 158 |
+
if not request.text or len(request.text.strip()) == 0:
|
| 159 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 160 |
+
|
| 161 |
+
# Check text length for meaningful analysis (200-7000 words)
|
| 162 |
+
word_count = len(request.text.split())
|
| 163 |
+
if word_count < 200:
|
| 164 |
+
raise HTTPException(
|
| 165 |
+
status_code=400,
|
| 166 |
+
detail="Text is too short for analysis. Please provide at least 200 words for accurate AI detection and sentiment analysis."
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
if word_count > 7000:
|
| 170 |
+
raise HTTPException(
|
| 171 |
+
status_code=400,
|
| 172 |
+
detail="Text is too long for analysis. Maximum 7,000 words allowed."
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
# Perform AI detection using the model
|
| 176 |
+
logger.info(f"Analyzing text of length: {len(request.text)}")
|
| 177 |
+
analysis_result = model_handler.analyze_text(request.text)
|
| 178 |
+
|
| 179 |
+
logger.info(f"Analysis complete: {analysis_result['aiOrHuman']} ({analysis_result['aiOrHumanConfidence']:.2f}%)")
|
| 180 |
+
|
| 181 |
+
return analysis_result
|
| 182 |
+
|
| 183 |
+
except HTTPException:
|
| 184 |
+
raise
|
| 185 |
+
except Exception as e:
|
| 186 |
+
logger.error(f"Analysis error: {e}", exc_info=True)
|
| 187 |
+
raise HTTPException(
|
| 188 |
+
status_code=500,
|
| 189 |
+
detail=f"Analysis failed: {str(e)}"
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
@app.post("/api/detect")
|
| 194 |
+
async def detect_ai(request: AnalysisRequest):
|
| 195 |
+
"""
|
| 196 |
+
Simple endpoint for AI detection only
|
| 197 |
+
Returns just the AI/Human classification
|
| 198 |
+
"""
|
| 199 |
+
try:
|
| 200 |
+
if not request.text or len(request.text.strip()) == 0:
|
| 201 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 202 |
+
|
| 203 |
+
# Check text length (200-7000 words)
|
| 204 |
+
word_count = len(request.text.split())
|
| 205 |
+
if word_count < 200:
|
| 206 |
+
raise HTTPException(
|
| 207 |
+
status_code=400,
|
| 208 |
+
detail="Text is too short. Please provide at least 200 words."
|
| 209 |
+
)
|
| 210 |
+
elif word_count > 7000:
|
| 211 |
+
raise HTTPException(
|
| 212 |
+
status_code=400,
|
| 213 |
+
detail="Text is too long. Maximum 7,000 words allowed."
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
result = model_handler.detect_ai(request.text)
|
| 217 |
+
|
| 218 |
+
return {
|
| 219 |
+
"text": request.text[:100] + "..." if len(request.text) > 100 else request.text,
|
| 220 |
+
"classification": result["classification"],
|
| 221 |
+
"prediction": result.get("prediction", result["classification"]),
|
| 222 |
+
"probability": result["probability"],
|
| 223 |
+
"confidence": result["confidence"],
|
| 224 |
+
"explanation": result["explanation"],
|
| 225 |
+
"mixed_analysis": result.get("mixed_analysis", None)
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
except HTTPException:
|
| 229 |
+
raise
|
| 230 |
+
except Exception as e:
|
| 231 |
+
logger.error(f"Detection error: {e}", exc_info=True)
|
| 232 |
+
raise HTTPException(
|
| 233 |
+
status_code=500,
|
| 234 |
+
detail=f"Detection failed: {str(e)}"
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
@app.get("/api/model/info")
|
| 239 |
+
async def model_info():
|
| 240 |
+
"""Get information about the loaded model"""
|
| 241 |
+
try:
|
| 242 |
+
return model_handler.get_model_info()
|
| 243 |
+
except Exception as e:
|
| 244 |
+
logger.error(f"Model info error: {e}")
|
| 245 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
# Run the server
|
| 249 |
+
if __name__ == "__main__":
|
| 250 |
+
uvicorn.run(
|
| 251 |
+
"app:app",
|
| 252 |
+
host="0.0.0.0",
|
| 253 |
+
port=8000,
|
| 254 |
+
reload=True,
|
| 255 |
+
log_level="info"
|
| 256 |
+
)
|
model_handler.py
ADDED
|
@@ -0,0 +1,859 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model Handler for Two-Branch AI Detection Model
|
| 3 |
+
Combines DeBERTa embeddings with sentiment features
|
| 4 |
+
Uses XGBoost for final classification
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModel, PreTrainedModel, AutoModelForSequenceClassification
|
| 11 |
+
import os
|
| 12 |
+
import logging
|
| 13 |
+
from typing import Dict, Any, Optional, List, Tuple
|
| 14 |
+
import numpy as np
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
import xgboost as xgb
|
| 17 |
+
import json
|
| 18 |
+
import nltk
|
| 19 |
+
from nltk.tokenize import sent_tokenize
|
| 20 |
+
|
| 21 |
+
# Download NLTK data
|
| 22 |
+
try:
|
| 23 |
+
nltk.data.find('tokenizers/punkt')
|
| 24 |
+
except LookupError:
|
| 25 |
+
nltk.download('punkt', quiet=True)
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
nltk.data.find('tokenizers/punkt_tab')
|
| 29 |
+
except LookupError:
|
| 30 |
+
nltk.download('punkt_tab', quiet=True)
|
| 31 |
+
|
| 32 |
+
logger = logging.getLogger(__name__)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class DesklibAIDetectionModel(PreTrainedModel):
|
| 36 |
+
"""
|
| 37 |
+
DeBERTa-based AI detection model
|
| 38 |
+
Architecture from desklib/ai-text-detector-v1.01
|
| 39 |
+
"""
|
| 40 |
+
config_class = AutoConfig
|
| 41 |
+
|
| 42 |
+
def __init__(self, config):
|
| 43 |
+
super().__init__(config)
|
| 44 |
+
# Initialize the base transformer model
|
| 45 |
+
self.model = AutoModel.from_config(config)
|
| 46 |
+
# Define a classifier head
|
| 47 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 48 |
+
# Initialize weights
|
| 49 |
+
self.init_weights()
|
| 50 |
+
|
| 51 |
+
def forward(self, input_ids, attention_mask=None, labels=None):
|
| 52 |
+
# Forward pass through the transformer
|
| 53 |
+
outputs = self.model(input_ids, attention_mask=attention_mask)
|
| 54 |
+
last_hidden_state = outputs[0]
|
| 55 |
+
|
| 56 |
+
# Mean pooling
|
| 57 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 58 |
+
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, dim=1)
|
| 59 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)
|
| 60 |
+
pooled_output = sum_embeddings / sum_mask
|
| 61 |
+
|
| 62 |
+
# Classifier
|
| 63 |
+
logits = self.classifier(pooled_output)
|
| 64 |
+
loss = None
|
| 65 |
+
if labels is not None:
|
| 66 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 67 |
+
loss = loss_fct(logits.view(-1), labels.float())
|
| 68 |
+
|
| 69 |
+
output = {"logits": logits}
|
| 70 |
+
if loss is not None:
|
| 71 |
+
output["loss"] = loss
|
| 72 |
+
return output
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class AIDetectionModelHandler:
|
| 76 |
+
"""
|
| 77 |
+
Handles Two-Branch AI detection:
|
| 78 |
+
- DeBERTa for semantic embeddings
|
| 79 |
+
- Sentiment features (avg_polarity, polarity_variance)
|
| 80 |
+
- XGBoost for final classification
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
def __init__(self, model_path: Optional[str] = None, max_length: int = 512):
|
| 84 |
+
"""
|
| 85 |
+
Initialize the model handler
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
model_path: Path to the model directory (default: ../model/model)
|
| 89 |
+
max_length: Maximum token length for input text
|
| 90 |
+
"""
|
| 91 |
+
self.max_length = max_length
|
| 92 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 93 |
+
self.deberta_model = None
|
| 94 |
+
self.tokenizer = None
|
| 95 |
+
self.sentiment_model = None
|
| 96 |
+
self.sentiment_tokenizer = None
|
| 97 |
+
self.xgboost_model = None
|
| 98 |
+
self.model_loaded = False
|
| 99 |
+
|
| 100 |
+
# Default model paths
|
| 101 |
+
if model_path is None:
|
| 102 |
+
backend_dir = Path(__file__).parent
|
| 103 |
+
model_path = str(backend_dir.parent / "model" / "model")
|
| 104 |
+
|
| 105 |
+
self.model_path = model_path
|
| 106 |
+
self.xgboost_path = str(Path(model_path).parent / "xgboost_model.json")
|
| 107 |
+
|
| 108 |
+
# Load the models
|
| 109 |
+
self._load_models()
|
| 110 |
+
|
| 111 |
+
def _load_models(self):
|
| 112 |
+
"""Load DeBERTa, sentiment model, and XGBoost classifier"""
|
| 113 |
+
try:
|
| 114 |
+
logger.info(f"Loading models from: {self.model_path}")
|
| 115 |
+
logger.info(f"Using device: {self.device}")
|
| 116 |
+
|
| 117 |
+
# Check if model path exists
|
| 118 |
+
if not os.path.exists(self.model_path):
|
| 119 |
+
logger.error(f"Model path does not exist: {self.model_path}")
|
| 120 |
+
raise FileNotFoundError(f"Model not found at {self.model_path}")
|
| 121 |
+
|
| 122 |
+
# 1. Load DeBERTa tokenizer and model
|
| 123 |
+
logger.info("Loading DeBERTa tokenizer...")
|
| 124 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
| 125 |
+
|
| 126 |
+
logger.info("Loading DeBERTa model...")
|
| 127 |
+
self.deberta_model = DesklibAIDetectionModel.from_pretrained(self.model_path)
|
| 128 |
+
self.deberta_model.to(self.device)
|
| 129 |
+
self.deberta_model.eval()
|
| 130 |
+
|
| 131 |
+
# 2. Load sentiment analysis model (DistilBERT)
|
| 132 |
+
logger.info("Loading sentiment model...")
|
| 133 |
+
sentiment_model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 134 |
+
self.sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
|
| 135 |
+
self.sentiment_model = AutoModelForSequenceClassification.from_pretrained(sentiment_model_name)
|
| 136 |
+
self.sentiment_model.to(self.device)
|
| 137 |
+
self.sentiment_model.eval()
|
| 138 |
+
|
| 139 |
+
# 3. Load XGBoost model
|
| 140 |
+
if os.path.exists(self.xgboost_path):
|
| 141 |
+
logger.info(f"Loading XGBoost model from: {self.xgboost_path}")
|
| 142 |
+
self.xgboost_model = xgb.Booster()
|
| 143 |
+
self.xgboost_model.load_model(self.xgboost_path)
|
| 144 |
+
logger.info("✅ XGBoost model loaded!")
|
| 145 |
+
else:
|
| 146 |
+
logger.warning(f"XGBoost model not found at {self.xgboost_path}, using DeBERTa only")
|
| 147 |
+
self.xgboost_model = None
|
| 148 |
+
|
| 149 |
+
self.model_loaded = True
|
| 150 |
+
logger.info("✅ All models loaded successfully!")
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
logger.error(f"Failed to load models: {e}", exc_info=True)
|
| 154 |
+
self.model_loaded = False
|
| 155 |
+
raise
|
| 156 |
+
|
| 157 |
+
def is_loaded(self) -> bool:
|
| 158 |
+
"""Check if model is loaded"""
|
| 159 |
+
return self.model_loaded
|
| 160 |
+
|
| 161 |
+
def get_sentiment_scores(self, text: str) -> List[float]:
|
| 162 |
+
"""
|
| 163 |
+
Extract sentiment scores for each sentence using DistilBERT
|
| 164 |
+
|
| 165 |
+
Args:
|
| 166 |
+
text: Input text
|
| 167 |
+
|
| 168 |
+
Returns:
|
| 169 |
+
List of sentiment scores (polarity) for each sentence
|
| 170 |
+
"""
|
| 171 |
+
try:
|
| 172 |
+
# Tokenize into sentences
|
| 173 |
+
sentences = sent_tokenize(text)
|
| 174 |
+
if not sentences:
|
| 175 |
+
return [0.5] # Neutral if no sentences
|
| 176 |
+
|
| 177 |
+
scores = []
|
| 178 |
+
|
| 179 |
+
with torch.no_grad():
|
| 180 |
+
for sentence in sentences:
|
| 181 |
+
# Tokenize sentence
|
| 182 |
+
inputs = self.sentiment_tokenizer(
|
| 183 |
+
sentence,
|
| 184 |
+
return_tensors="pt",
|
| 185 |
+
padding=True,
|
| 186 |
+
truncation=True,
|
| 187 |
+
max_length=512
|
| 188 |
+
)
|
| 189 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 190 |
+
|
| 191 |
+
# Get sentiment prediction
|
| 192 |
+
outputs = self.sentiment_model(**inputs)
|
| 193 |
+
logits = outputs.logits
|
| 194 |
+
probabilities = F.softmax(logits, dim=-1)
|
| 195 |
+
|
| 196 |
+
# Get positive sentiment probability (index 1)
|
| 197 |
+
pos_prob = probabilities[0][1].item()
|
| 198 |
+
# Convert to polarity score (-1 to 1, where 0.5 is neutral)
|
| 199 |
+
polarity = (pos_prob - 0.5) * 2 # Maps [0,1] to [-1,1]
|
| 200 |
+
scores.append(polarity)
|
| 201 |
+
|
| 202 |
+
return scores
|
| 203 |
+
|
| 204 |
+
except Exception as e:
|
| 205 |
+
logger.error(f"Error extracting sentiment scores: {e}")
|
| 206 |
+
return [0.0] # Return neutral on error
|
| 207 |
+
|
| 208 |
+
def extract_sentiment_features(self, text: str) -> np.ndarray:
|
| 209 |
+
"""
|
| 210 |
+
Extract avg_polarity and polarity_variance from text
|
| 211 |
+
|
| 212 |
+
Args:
|
| 213 |
+
text: Input text
|
| 214 |
+
|
| 215 |
+
Returns:
|
| 216 |
+
Numpy array with [avg_polarity, polarity_variance]
|
| 217 |
+
"""
|
| 218 |
+
sentiment_scores = self.get_sentiment_scores(text)
|
| 219 |
+
|
| 220 |
+
# Calculate features
|
| 221 |
+
avg_polarity = float(np.mean(sentiment_scores)) if sentiment_scores else 0.0
|
| 222 |
+
polarity_variance = float(np.var(sentiment_scores)) if len(sentiment_scores) > 1 else 0.0
|
| 223 |
+
|
| 224 |
+
return np.array([avg_polarity, polarity_variance], dtype=np.float32)
|
| 225 |
+
|
| 226 |
+
def get_deberta_embeddings(self, text: str) -> np.ndarray:
|
| 227 |
+
"""
|
| 228 |
+
Get DeBERTa embeddings for text using mean pooling
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
text: Input text
|
| 232 |
+
|
| 233 |
+
Returns:
|
| 234 |
+
Numpy array of embeddings
|
| 235 |
+
"""
|
| 236 |
+
try:
|
| 237 |
+
# Tokenize input
|
| 238 |
+
encoded = self.tokenizer(
|
| 239 |
+
text,
|
| 240 |
+
padding='max_length',
|
| 241 |
+
truncation=True,
|
| 242 |
+
max_length=self.max_length,
|
| 243 |
+
return_tensors='pt'
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
input_ids = encoded['input_ids'].to(self.device)
|
| 247 |
+
attention_mask = encoded['attention_mask'].to(self.device)
|
| 248 |
+
|
| 249 |
+
# Get embeddings
|
| 250 |
+
with torch.no_grad():
|
| 251 |
+
outputs = self.deberta_model.model(input_ids=input_ids, attention_mask=attention_mask)
|
| 252 |
+
last_hidden_state = outputs[0]
|
| 253 |
+
|
| 254 |
+
# Mean pooling
|
| 255 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
| 256 |
+
sum_embeddings = torch.sum(last_hidden_state * input_mask_expanded, dim=1)
|
| 257 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(dim=1), min=1e-9)
|
| 258 |
+
pooled_output = sum_embeddings / sum_mask
|
| 259 |
+
|
| 260 |
+
# Convert to numpy
|
| 261 |
+
embeddings = pooled_output.cpu().numpy().flatten()
|
| 262 |
+
|
| 263 |
+
return embeddings
|
| 264 |
+
|
| 265 |
+
except Exception as e:
|
| 266 |
+
logger.error(f"Error extracting DeBERTa embeddings: {e}", exc_info=True)
|
| 267 |
+
raise
|
| 268 |
+
|
| 269 |
+
def predict_probability(self, text: str, threshold: float = 0.5) -> Dict[str, Any]:
|
| 270 |
+
"""
|
| 271 |
+
Predict if text is AI-generated using two-branch architecture
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
text: Input text to analyze
|
| 275 |
+
threshold: Classification threshold (default: 0.5)
|
| 276 |
+
|
| 277 |
+
Returns:
|
| 278 |
+
Dictionary with probability, label, sentiment features
|
| 279 |
+
"""
|
| 280 |
+
if not self.model_loaded:
|
| 281 |
+
raise RuntimeError("Model not loaded. Cannot perform prediction.")
|
| 282 |
+
|
| 283 |
+
try:
|
| 284 |
+
# Extract sentiment features
|
| 285 |
+
logger.info("Extracting sentiment features...")
|
| 286 |
+
sentiment_features = self.extract_sentiment_features(text)
|
| 287 |
+
avg_polarity = float(sentiment_features[0])
|
| 288 |
+
polarity_variance = float(sentiment_features[1])
|
| 289 |
+
|
| 290 |
+
# If XGBoost is available, use the full two-branch pipeline
|
| 291 |
+
if self.xgboost_model is not None:
|
| 292 |
+
logger.info("Using XGBoost two-branch model...")
|
| 293 |
+
|
| 294 |
+
# Get DeBERTa embeddings
|
| 295 |
+
deberta_embeddings = self.get_deberta_embeddings(text)
|
| 296 |
+
|
| 297 |
+
# Combine features: DeBERTa embeddings + sentiment features
|
| 298 |
+
combined_features = np.concatenate([deberta_embeddings, sentiment_features])
|
| 299 |
+
|
| 300 |
+
# Create DMatrix for XGBoost
|
| 301 |
+
dmatrix = xgb.DMatrix(combined_features.reshape(1, -1))
|
| 302 |
+
|
| 303 |
+
# Predict
|
| 304 |
+
probability = float(self.xgboost_model.predict(dmatrix)[0])
|
| 305 |
+
|
| 306 |
+
else:
|
| 307 |
+
# Fallback to DeBERTa only
|
| 308 |
+
logger.info("Using DeBERTa model only (XGBoost not found)...")
|
| 309 |
+
|
| 310 |
+
encoded = self.tokenizer(
|
| 311 |
+
text,
|
| 312 |
+
padding='max_length',
|
| 313 |
+
truncation=True,
|
| 314 |
+
max_length=self.max_length,
|
| 315 |
+
return_tensors='pt'
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
input_ids = encoded['input_ids'].to(self.device)
|
| 319 |
+
attention_mask = encoded['attention_mask'].to(self.device)
|
| 320 |
+
|
| 321 |
+
with torch.no_grad():
|
| 322 |
+
outputs = self.deberta_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 323 |
+
logits = outputs["logits"]
|
| 324 |
+
probability = torch.sigmoid(logits).item()
|
| 325 |
+
|
| 326 |
+
label = 1 if probability >= threshold else 0
|
| 327 |
+
|
| 328 |
+
return {
|
| 329 |
+
"probability": probability,
|
| 330 |
+
"label": label,
|
| 331 |
+
"classification": "ai" if label == 1 else "human",
|
| 332 |
+
"confidence": probability if label == 1 else (1 - probability),
|
| 333 |
+
"sentiment_features": {
|
| 334 |
+
"avg_polarity": avg_polarity,
|
| 335 |
+
"polarity_variance": polarity_variance
|
| 336 |
+
}
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
except Exception as e:
|
| 340 |
+
logger.error(f"Prediction error: {e}", exc_info=True)
|
| 341 |
+
raise
|
| 342 |
+
|
| 343 |
+
def predict_single_text_xgboost(self, text: str) -> Tuple[float, int]:
|
| 344 |
+
"""
|
| 345 |
+
Predict AI probability and label for a single text using XGBoost model
|
| 346 |
+
|
| 347 |
+
Args:
|
| 348 |
+
text: Input text to analyze
|
| 349 |
+
|
| 350 |
+
Returns:
|
| 351 |
+
Tuple of (probability, label) where label is 0 for human, 1 for AI
|
| 352 |
+
"""
|
| 353 |
+
try:
|
| 354 |
+
# Extract sentiment features
|
| 355 |
+
sentiment_features = self.extract_sentiment_features(text)
|
| 356 |
+
avg_polarity = float(sentiment_features[0])
|
| 357 |
+
polarity_variance = float(sentiment_features[1])
|
| 358 |
+
|
| 359 |
+
# If XGBoost is available, use the full two-branch pipeline
|
| 360 |
+
if self.xgboost_model is not None:
|
| 361 |
+
# Get DeBERTa embeddings
|
| 362 |
+
deberta_embeddings = self.get_deberta_embeddings(text)
|
| 363 |
+
|
| 364 |
+
# Combine features: DeBERTa embeddings + sentiment features
|
| 365 |
+
combined_features = np.concatenate([deberta_embeddings, sentiment_features])
|
| 366 |
+
|
| 367 |
+
# Create DMatrix for XGBoost
|
| 368 |
+
dmatrix = xgb.DMatrix(combined_features.reshape(1, -1))
|
| 369 |
+
|
| 370 |
+
# Predict
|
| 371 |
+
probability = float(self.xgboost_model.predict(dmatrix)[0])
|
| 372 |
+
|
| 373 |
+
else:
|
| 374 |
+
# Fallback to DeBERTa only
|
| 375 |
+
encoded = self.tokenizer(
|
| 376 |
+
text,
|
| 377 |
+
padding='max_length',
|
| 378 |
+
truncation=True,
|
| 379 |
+
max_length=self.max_length,
|
| 380 |
+
return_tensors='pt'
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
input_ids = encoded['input_ids'].to(self.device)
|
| 384 |
+
attention_mask = encoded['attention_mask'].to(self.device)
|
| 385 |
+
|
| 386 |
+
with torch.no_grad():
|
| 387 |
+
outputs = self.deberta_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 388 |
+
logits = outputs["logits"]
|
| 389 |
+
probability = torch.sigmoid(logits).item()
|
| 390 |
+
|
| 391 |
+
label = 1 if probability >= 0.5 else 0
|
| 392 |
+
|
| 393 |
+
return probability, label
|
| 394 |
+
|
| 395 |
+
except Exception as e:
|
| 396 |
+
logger.error(f"Single text prediction error: {e}", exc_info=True)
|
| 397 |
+
raise
|
| 398 |
+
|
| 399 |
+
def detect_mixed_text_chunk_based(self, text: str, chunk_size: int = 4, overlap: int = 1, min_chunk_length: int = 50) -> Dict[str, Any]:
|
| 400 |
+
"""
|
| 401 |
+
Improved mixed text detection using chunk-based analysis that influences overall probability
|
| 402 |
+
|
| 403 |
+
Args:
|
| 404 |
+
text: Input text string
|
| 405 |
+
chunk_size: Number of sentences per chunk (default: 4)
|
| 406 |
+
overlap: Number of sentences to overlap between chunks (default: 1)
|
| 407 |
+
min_chunk_length: Minimum character length for a chunk to be analyzed
|
| 408 |
+
|
| 409 |
+
Returns:
|
| 410 |
+
Dictionary with prediction results and analysis details
|
| 411 |
+
|
| 412 |
+
Note:
|
| 413 |
+
Input validation: Text must be 200-7000 words. Dynamic chunking: 4-5 sentences
|
| 414 |
+
analyzed as whole, then chunk size varies:
|
| 415 |
+
- 6-10 sentences: 3 sentences per chunk
|
| 416 |
+
- 11-20 sentences: 4 sentences per chunk
|
| 417 |
+
- 21-30 sentences: 5 sentences per chunk
|
| 418 |
+
- 31+ sentences: 6 sentences per chunk
|
| 419 |
+
Uses overlapping chunks to capture transitions between AI and human content.
|
| 420 |
+
"""
|
| 421 |
+
# Get overall prediction (your current method)
|
| 422 |
+
overall_prob, overall_label = self.predict_single_text_xgboost(text)
|
| 423 |
+
|
| 424 |
+
# Split text into sentences
|
| 425 |
+
sentences = sent_tokenize(text)
|
| 426 |
+
|
| 427 |
+
# Validate input text length (200-7000 words)
|
| 428 |
+
total_words = len(text.split())
|
| 429 |
+
if total_words < 200:
|
| 430 |
+
return {
|
| 431 |
+
'prediction': 'Human' if overall_label == 0 else 'AI',
|
| 432 |
+
'confidence': abs(overall_prob - 0.5) * 2,
|
| 433 |
+
'is_mixed': False,
|
| 434 |
+
'reason': f'Text too short for analysis ({total_words} words, minimum 200 words required)',
|
| 435 |
+
'overall_probability': overall_prob,
|
| 436 |
+
'modified_probability': overall_prob,
|
| 437 |
+
'chunk_analysis': []
|
| 438 |
+
}
|
| 439 |
+
elif total_words > 7000:
|
| 440 |
+
return {
|
| 441 |
+
'prediction': 'Human' if overall_label == 0 else 'AI',
|
| 442 |
+
'confidence': abs(overall_prob - 0.5) * 2,
|
| 443 |
+
'is_mixed': False,
|
| 444 |
+
'reason': f'Text too long for analysis ({total_words} words, maximum 7000 words allowed)',
|
| 445 |
+
'overall_probability': overall_prob,
|
| 446 |
+
'modified_probability': overall_prob,
|
| 447 |
+
'chunk_analysis': []
|
| 448 |
+
}
|
| 449 |
+
|
| 450 |
+
# Dynamic chunking based on total sentence count
|
| 451 |
+
total_sentences = len(sentences)
|
| 452 |
+
|
| 453 |
+
# For 4-5 sentences, analyze as whole (no chunking)
|
| 454 |
+
if total_sentences <= 5:
|
| 455 |
+
return {
|
| 456 |
+
'prediction': 'Human' if overall_label == 0 else 'AI',
|
| 457 |
+
'confidence': abs(overall_prob - 0.5) * 2,
|
| 458 |
+
'is_mixed': False,
|
| 459 |
+
'reason': f'Analyzing {total_sentences} sentences as whole (4-5 sentence range)',
|
| 460 |
+
'overall_probability': overall_prob,
|
| 461 |
+
'modified_probability': overall_prob,
|
| 462 |
+
'chunk_analysis': []
|
| 463 |
+
}
|
| 464 |
+
|
| 465 |
+
# Dynamic chunk size based on total sentences
|
| 466 |
+
if total_sentences <= 10:
|
| 467 |
+
dynamic_chunk_size = 3
|
| 468 |
+
elif total_sentences <= 20:
|
| 469 |
+
dynamic_chunk_size = 4
|
| 470 |
+
elif total_sentences <= 30:
|
| 471 |
+
dynamic_chunk_size = 5
|
| 472 |
+
else:
|
| 473 |
+
dynamic_chunk_size = 6 # For very long texts
|
| 474 |
+
|
| 475 |
+
# Ensure we have enough sentences for at least 2 chunks
|
| 476 |
+
if total_sentences < dynamic_chunk_size * 2:
|
| 477 |
+
return {
|
| 478 |
+
'prediction': 'Human' if overall_label == 0 else 'AI',
|
| 479 |
+
'confidence': abs(overall_prob - 0.5) * 2,
|
| 480 |
+
'is_mixed': False,
|
| 481 |
+
'reason': f'Text too short for chunk analysis ({total_sentences} sentences, need at least {dynamic_chunk_size * 2})',
|
| 482 |
+
'overall_probability': overall_prob,
|
| 483 |
+
'modified_probability': overall_prob,
|
| 484 |
+
'chunk_analysis': []
|
| 485 |
+
}
|
| 486 |
+
|
| 487 |
+
# Create overlapping chunks
|
| 488 |
+
chunks = []
|
| 489 |
+
chunk_predictions = []
|
| 490 |
+
chunk_probabilities = []
|
| 491 |
+
|
| 492 |
+
logger.info(f"Analyzing text with {total_sentences} sentences using dynamic chunk size of {dynamic_chunk_size}...")
|
| 493 |
+
|
| 494 |
+
for i in range(0, len(sentences) - dynamic_chunk_size + 1, dynamic_chunk_size - overlap):
|
| 495 |
+
# Create chunk from sentences
|
| 496 |
+
chunk_sentences = sentences[i:i + dynamic_chunk_size]
|
| 497 |
+
chunk_text = ' '.join(chunk_sentences)
|
| 498 |
+
|
| 499 |
+
# Only analyze chunks that meet minimum length requirement
|
| 500 |
+
if len(chunk_text.strip()) >= min_chunk_length:
|
| 501 |
+
chunks.append(chunk_text)
|
| 502 |
+
|
| 503 |
+
# Analyze this chunk
|
| 504 |
+
prob, label = self.predict_single_text_xgboost(chunk_text)
|
| 505 |
+
chunk_predictions.append((prob, label))
|
| 506 |
+
chunk_probabilities.append(prob)
|
| 507 |
+
|
| 508 |
+
logger.info(f" Chunk {len(chunks)}: {chunk_text[:60]}... → {'AI' if label == 1 else 'Human'} ({prob:.3f})")
|
| 509 |
+
|
| 510 |
+
if len(chunk_predictions) < 2:
|
| 511 |
+
return {
|
| 512 |
+
'prediction': 'Human' if overall_label == 0 else 'AI',
|
| 513 |
+
'confidence': abs(overall_prob - 0.5) * 2,
|
| 514 |
+
'is_mixed': False,
|
| 515 |
+
'reason': 'Too few chunks for mixed analysis',
|
| 516 |
+
'overall_probability': overall_prob,
|
| 517 |
+
'modified_probability': overall_prob,
|
| 518 |
+
'chunk_analysis': chunk_predictions
|
| 519 |
+
}
|
| 520 |
+
|
| 521 |
+
# Count human vs AI chunks
|
| 522 |
+
human_chunks = sum(1 for _, label in chunk_predictions if label == 0)
|
| 523 |
+
ai_chunks = sum(1 for _, label in chunk_predictions if label == 1)
|
| 524 |
+
total_chunks = len(chunk_predictions)
|
| 525 |
+
|
| 526 |
+
# Mixed text detection logic
|
| 527 |
+
is_mixed = human_chunks > 0 and ai_chunks > 0
|
| 528 |
+
mixed_ratio = min(human_chunks, ai_chunks) / total_chunks
|
| 529 |
+
|
| 530 |
+
logger.info(f"\nChunk Analysis Summary:")
|
| 531 |
+
logger.info(f" Total chunks analyzed: {total_chunks}")
|
| 532 |
+
logger.info(f" Human chunks: {human_chunks}")
|
| 533 |
+
logger.info(f" AI chunks: {ai_chunks}")
|
| 534 |
+
logger.info(f" Mixed ratio: {mixed_ratio:.2f}")
|
| 535 |
+
|
| 536 |
+
# MODIFY OVERALL PROBABILITY BASED ON CHUNK ANALYSIS
|
| 537 |
+
if is_mixed and mixed_ratio > 0.25: # At least 25% of each type
|
| 538 |
+
# Calculate weighted average of chunk probabilities
|
| 539 |
+
# Weight by chunk length (longer chunks have more influence)
|
| 540 |
+
chunk_weights = [len(chunk) for chunk in chunks]
|
| 541 |
+
total_weight = sum(chunk_weights)
|
| 542 |
+
|
| 543 |
+
# Calculate weighted average probability
|
| 544 |
+
weighted_prob = sum(prob * weight for prob, weight in zip(chunk_probabilities, chunk_weights)) / total_weight
|
| 545 |
+
|
| 546 |
+
# Blend original overall probability with chunk-based probability
|
| 547 |
+
# More chunks = more influence from chunk analysis
|
| 548 |
+
chunk_influence = min(total_chunks / 5.0, 1.0) # Max influence at 5+ chunks
|
| 549 |
+
modified_prob = (overall_prob * (1 - chunk_influence)) + (weighted_prob * chunk_influence)
|
| 550 |
+
|
| 551 |
+
final_prediction = 'Mixed'
|
| 552 |
+
confidence = 1.0 - mixed_ratio # Lower confidence for mixed text
|
| 553 |
+
|
| 554 |
+
logger.info(f" → MIXED TEXT DETECTED!")
|
| 555 |
+
logger.info(f" → Original overall probability: {overall_prob:.3f}")
|
| 556 |
+
logger.info(f" → Weighted chunk probability: {weighted_prob:.3f}")
|
| 557 |
+
logger.info(f" → Chunk influence factor: {chunk_influence:.3f}")
|
| 558 |
+
logger.info(f" → Modified probability: {modified_prob:.3f}")
|
| 559 |
+
|
| 560 |
+
else:
|
| 561 |
+
# Pure text - use chunk analysis to refine overall probability
|
| 562 |
+
chunk_avg_prob = np.mean(chunk_probabilities)
|
| 563 |
+
|
| 564 |
+
# Blend overall and chunk probabilities (chunks have 30% influence for pure text)
|
| 565 |
+
modified_prob = (overall_prob * 0.7) + (chunk_avg_prob * 0.3)
|
| 566 |
+
|
| 567 |
+
final_prediction = 'Human' if modified_prob < 0.5 else 'AI'
|
| 568 |
+
confidence = abs(modified_prob - 0.5) * 2
|
| 569 |
+
|
| 570 |
+
logger.info(f" → Pure {final_prediction} text")
|
| 571 |
+
logger.info(f" → Original overall probability: {overall_prob:.3f}")
|
| 572 |
+
logger.info(f" → Average chunk probability: {chunk_avg_prob:.3f}")
|
| 573 |
+
logger.info(f" → Modified probability: {modified_prob:.3f}")
|
| 574 |
+
|
| 575 |
+
return {
|
| 576 |
+
'prediction': final_prediction,
|
| 577 |
+
'confidence': confidence,
|
| 578 |
+
'is_mixed': is_mixed,
|
| 579 |
+
'mixed_ratio': mixed_ratio,
|
| 580 |
+
'human_chunks': human_chunks,
|
| 581 |
+
'ai_chunks': ai_chunks,
|
| 582 |
+
'total_chunks': total_chunks,
|
| 583 |
+
'overall_probability': overall_prob,
|
| 584 |
+
'modified_probability': modified_prob,
|
| 585 |
+
'chunk_probabilities': chunk_probabilities,
|
| 586 |
+
'chunk_analysis': chunk_predictions,
|
| 587 |
+
'chunk_size': chunk_size,
|
| 588 |
+
'overlap': overlap
|
| 589 |
+
}
|
| 590 |
+
|
| 591 |
+
def detect_ai(self, text: str) -> Dict[str, Any]:
|
| 592 |
+
"""
|
| 593 |
+
AI detection with chunk-based mixed text analysis
|
| 594 |
+
|
| 595 |
+
Args:
|
| 596 |
+
text: Input text
|
| 597 |
+
|
| 598 |
+
Returns:
|
| 599 |
+
Detection results with sentiment features and mixed text analysis
|
| 600 |
+
"""
|
| 601 |
+
# Use chunk-based detection for better mixed text handling
|
| 602 |
+
chunk_result = self.detect_mixed_text_chunk_based(text)
|
| 603 |
+
|
| 604 |
+
# Get sentiment features for explanation
|
| 605 |
+
sentiment_features = self.extract_sentiment_features(text)
|
| 606 |
+
avg_pol = float(sentiment_features[0])
|
| 607 |
+
pol_var = float(sentiment_features[1])
|
| 608 |
+
|
| 609 |
+
# Generate explanation based on prediction type
|
| 610 |
+
confidence_pct = chunk_result["confidence"] * 100
|
| 611 |
+
prediction = chunk_result["prediction"]
|
| 612 |
+
|
| 613 |
+
if confidence_pct > 90:
|
| 614 |
+
certainty = "very high confidence"
|
| 615 |
+
elif confidence_pct > 75:
|
| 616 |
+
certainty = "high confidence"
|
| 617 |
+
elif confidence_pct > 60:
|
| 618 |
+
certainty = "moderate confidence"
|
| 619 |
+
else:
|
| 620 |
+
certainty = "low confidence"
|
| 621 |
+
|
| 622 |
+
# Generate explanation based on prediction type
|
| 623 |
+
if prediction == "Mixed":
|
| 624 |
+
explanation = f"This text appears to be a mixture of AI-generated and human-authored text."
|
| 625 |
+
explanation += " This mixed composition suggests the text may have been collaboratively written or heavily edited."
|
| 626 |
+
|
| 627 |
+
# Add sentiment insights for mixed text
|
| 628 |
+
if pol_var > 0.60:
|
| 629 |
+
explanation += " High emotional variation across sections indicates significant style differences between parts."
|
| 630 |
+
elif pol_var >= 0.36:
|
| 631 |
+
explanation += " Moderate emotional variation suggests different writing styles in various sections."
|
| 632 |
+
else:
|
| 633 |
+
explanation += " Low emotional variation may indicate consistent editing or similar writing styles throughout."
|
| 634 |
+
|
| 635 |
+
elif prediction == "AI":
|
| 636 |
+
explanation = f"This text is classified as AI-Generated with {certainty}."
|
| 637 |
+
explanation += " The text exhibits patterns typical of AI-generated content, including consistent structure and predictable phrasing."
|
| 638 |
+
if pol_var <= 0.10:
|
| 639 |
+
explanation += " Very low emotional variation which is typical of AI texts with uniform style."
|
| 640 |
+
elif pol_var <= 0.35:
|
| 641 |
+
explanation += " Low emotional variation which is common in AI-generated content."
|
| 642 |
+
elif pol_var <= 0.60:
|
| 643 |
+
explanation += " Moderate emotional variation which is rare in AI, possibly presenting multiple viewpoints."
|
| 644 |
+
else:
|
| 645 |
+
explanation += " High emotional variation is unusual for AI, may indicate balanced argument structure."
|
| 646 |
+
else: # Human
|
| 647 |
+
explanation = f"This text is classified as Human-Authored with {certainty}."
|
| 648 |
+
explanation += " The text shows characteristics of human writing, such as natural variations and organic flow."
|
| 649 |
+
if pol_var > 0.60:
|
| 650 |
+
explanation += " High emotional variation which is typical of human writing with emotional swings in debates, reviews, and narratives."
|
| 651 |
+
elif pol_var >= 0.36:
|
| 652 |
+
explanation += " Moderate emotional variation which shows human-like sentiment shifts."
|
| 653 |
+
elif pol_var >= 0.11:
|
| 654 |
+
explanation += " Low emotional variation which may indicate formal or academic human writing."
|
| 655 |
+
else:
|
| 656 |
+
explanation += " Very low emotional variation indicates consistent tone with focused perspective."
|
| 657 |
+
|
| 658 |
+
# Convert prediction to classification format for backward compatibility
|
| 659 |
+
classification_map = {"AI": "ai", "Human": "human", "Mixed": "mixed"}
|
| 660 |
+
classification = classification_map.get(prediction, "unknown")
|
| 661 |
+
|
| 662 |
+
return {
|
| 663 |
+
"classification": classification,
|
| 664 |
+
"prediction": prediction,
|
| 665 |
+
"probability": chunk_result["modified_probability"],
|
| 666 |
+
"confidence": confidence_pct,
|
| 667 |
+
"explanation": explanation,
|
| 668 |
+
"sentiment_features": {
|
| 669 |
+
"avg_polarity": avg_pol,
|
| 670 |
+
"polarity_variance": pol_var
|
| 671 |
+
},
|
| 672 |
+
"mixed_analysis": {
|
| 673 |
+
"is_mixed": chunk_result["is_mixed"],
|
| 674 |
+
"mixed_ratio": chunk_result.get("mixed_ratio", 0),
|
| 675 |
+
"human_chunks": chunk_result.get("human_chunks", 0),
|
| 676 |
+
"ai_chunks": chunk_result.get("ai_chunks", 0),
|
| 677 |
+
"total_chunks": chunk_result.get("total_chunks", 0),
|
| 678 |
+
"overall_probability": chunk_result["overall_probability"],
|
| 679 |
+
"modified_probability": chunk_result["modified_probability"]
|
| 680 |
+
}
|
| 681 |
+
}
|
| 682 |
+
|
| 683 |
+
def analyze_text(self, text: str) -> Dict[str, Any]:
|
| 684 |
+
"""
|
| 685 |
+
Comprehensive text analysis combining AI detection with sentiment features
|
| 686 |
+
|
| 687 |
+
Args:
|
| 688 |
+
text: Input text to analyze
|
| 689 |
+
|
| 690 |
+
Returns:
|
| 691 |
+
Complete analysis results with model-based sentiment features
|
| 692 |
+
"""
|
| 693 |
+
# Validate input text length (200-7000 words)
|
| 694 |
+
total_words = len(text.split())
|
| 695 |
+
if total_words < 200:
|
| 696 |
+
raise ValueError(f"Text too short for analysis ({total_words} words, minimum 200 words required)")
|
| 697 |
+
elif total_words > 7000:
|
| 698 |
+
raise ValueError(f"Text too long for analysis ({total_words} words, maximum 7000 words allowed)")
|
| 699 |
+
|
| 700 |
+
# Get AI detection results (includes sentiment features from model)
|
| 701 |
+
ai_detection = self.detect_ai(text)
|
| 702 |
+
model_sentiment = ai_detection.get("sentiment_features", {})
|
| 703 |
+
|
| 704 |
+
# Perform basic text analysis
|
| 705 |
+
words = text.split()
|
| 706 |
+
sentences = [s.strip() for s in text.replace('!', '.').replace('?', '.').split('.') if s.strip()]
|
| 707 |
+
|
| 708 |
+
# Calculate basic metrics
|
| 709 |
+
word_count = len(words)
|
| 710 |
+
sentence_count = len(sentences)
|
| 711 |
+
avg_word_length = np.mean([len(w) for w in words]) if words else 0
|
| 712 |
+
avg_sentence_length = word_count / sentence_count if sentence_count > 0 else 0
|
| 713 |
+
|
| 714 |
+
# Determine complexity based on AI probability and text metrics
|
| 715 |
+
is_ai = ai_detection["classification"] == "ai"
|
| 716 |
+
is_mixed = ai_detection["classification"] == "mixed"
|
| 717 |
+
ai_prob = ai_detection["probability"]
|
| 718 |
+
|
| 719 |
+
# Handle different prediction types
|
| 720 |
+
if is_mixed:
|
| 721 |
+
formality = "mixed"
|
| 722 |
+
complexity = "variable"
|
| 723 |
+
tone = "Mixed (AI/Human)"
|
| 724 |
+
audience = "Variable"
|
| 725 |
+
elif is_ai:
|
| 726 |
+
formality = "formal" if ai_prob > 0.7 else "neutral"
|
| 727 |
+
complexity = "complex" if avg_word_length > 6 else "moderate"
|
| 728 |
+
tone = "Professional"
|
| 729 |
+
audience = "General to Academic"
|
| 730 |
+
else:
|
| 731 |
+
formality = "casual" if avg_word_length < 5 else "neutral"
|
| 732 |
+
complexity = "simple" if avg_sentence_length < 15 else "moderate"
|
| 733 |
+
tone = "Conversational"
|
| 734 |
+
audience = "General Public"
|
| 735 |
+
|
| 736 |
+
# Generate insights based on detection results
|
| 737 |
+
insights = []
|
| 738 |
+
|
| 739 |
+
if is_mixed and ai_detection["confidence"] > 60:
|
| 740 |
+
mixed_analysis = ai_detection.get("mixed_analysis", {})
|
| 741 |
+
insights.append({
|
| 742 |
+
"type": "observation",
|
| 743 |
+
"title": "Mixed Content Detected",
|
| 744 |
+
"description": f"This text contains both AI-generated and human-authored sections ({ai_detection['confidence']:.1f}% confidence).",
|
| 745 |
+
"suggestion": "Consider reviewing the text for consistency and ensuring all sections align with your intended voice and style."
|
| 746 |
+
})
|
| 747 |
+
insights.append({
|
| 748 |
+
"type": "observation",
|
| 749 |
+
"title": "Content Composition",
|
| 750 |
+
"description": f"Analysis found {mixed_analysis.get('human_chunks', 0)} human-like sections and {mixed_analysis.get('ai_chunks', 0)} AI-like sections.",
|
| 751 |
+
"suggestion": "The mixed nature suggests collaborative writing or heavy editing. Consider standardizing the writing style throughout."
|
| 752 |
+
})
|
| 753 |
+
elif is_ai and ai_detection["confidence"] > 75:
|
| 754 |
+
insights.append({
|
| 755 |
+
"type": "observation",
|
| 756 |
+
"title": "AI-Generated Content Detected",
|
| 757 |
+
"description": f"This text shows strong indicators of AI generation ({ai_detection['confidence']:.1f}% confidence).",
|
| 758 |
+
"suggestion": "Consider adding personal anecdotes, varied sentence structures, or unique perspectives to make it more human-like."
|
| 759 |
+
})
|
| 760 |
+
elif not is_ai and ai_detection["confidence"] > 75:
|
| 761 |
+
insights.append({
|
| 762 |
+
"type": "strength",
|
| 763 |
+
"title": "Human Writing Characteristics",
|
| 764 |
+
"description": f"This text exhibits clear human writing patterns ({ai_detection['confidence']:.1f}% confidence)."
|
| 765 |
+
})
|
| 766 |
+
|
| 767 |
+
# Sentence variety analysis
|
| 768 |
+
if sentence_count > 2:
|
| 769 |
+
sentence_lengths = [len(s.split()) for s in sentences]
|
| 770 |
+
std_dev = np.std(sentence_lengths)
|
| 771 |
+
if std_dev < 3:
|
| 772 |
+
insights.append({
|
| 773 |
+
"type": "improvement",
|
| 774 |
+
"title": "Sentence Variety",
|
| 775 |
+
"description": "Sentences have similar lengths, which may indicate AI generation.",
|
| 776 |
+
"suggestion": "Vary sentence lengths to create more natural rhythm."
|
| 777 |
+
})
|
| 778 |
+
else:
|
| 779 |
+
insights.append({
|
| 780 |
+
"type": "strength",
|
| 781 |
+
"title": "Good Sentence Variety",
|
| 782 |
+
"description": "Text shows natural variation in sentence structure."
|
| 783 |
+
})
|
| 784 |
+
|
| 785 |
+
# Generate emotions based on model sentiment polarity (data-driven ranges)
|
| 786 |
+
avg_polarity = model_sentiment.get("avg_polarity", 0)
|
| 787 |
+
emotions = []
|
| 788 |
+
|
| 789 |
+
if avg_polarity >= 0.71:
|
| 790 |
+
emotions.append({"emotion": "very_positive", "score": min(abs(avg_polarity), 1.0), "intensity": "high"})
|
| 791 |
+
elif avg_polarity >= 0.30:
|
| 792 |
+
emotions.append({"emotion": "positive", "score": min(abs(avg_polarity), 1.0), "intensity": "medium"})
|
| 793 |
+
elif avg_polarity >= -0.29:
|
| 794 |
+
emotions.append({"emotion": "neutral", "score": 0.8, "intensity": "medium"})
|
| 795 |
+
else:
|
| 796 |
+
emotions.append({"emotion": "negative", "score": min(abs(avg_polarity), 1.0), "intensity": "high"})
|
| 797 |
+
|
| 798 |
+
# Construct full analysis response with model sentiment features
|
| 799 |
+
polarity_variance = model_sentiment.get("polarity_variance", 0)
|
| 800 |
+
|
| 801 |
+
return {
|
| 802 |
+
"advancedSentiment": {
|
| 803 |
+
"emotions": emotions,
|
| 804 |
+
"confidence": 70 + (ai_detection["confidence"] * 0.3),
|
| 805 |
+
"context": f"The text appears to be {'AI-Generated' if ai_detection['classification'] == 'ai' else 'Human-Authored'} based on linguistic patterns and sentiment analysis.",
|
| 806 |
+
"avg_polarity": model_sentiment.get("avg_polarity", 0),
|
| 807 |
+
"polarity_variance": polarity_variance
|
| 808 |
+
},
|
| 809 |
+
"topics": [
|
| 810 |
+
{
|
| 811 |
+
"topic": "General Content",
|
| 812 |
+
"relevance": 0.8,
|
| 813 |
+
"keywords": words[:5] if len(words) >= 5 else words
|
| 814 |
+
}
|
| 815 |
+
],
|
| 816 |
+
"writingStyle": {
|
| 817 |
+
"tone": tone,
|
| 818 |
+
"formality": formality,
|
| 819 |
+
"complexity": complexity,
|
| 820 |
+
"style": [formality, complexity, tone],
|
| 821 |
+
"audience": audience,
|
| 822 |
+
"sentiment_consistency": "very_low" if polarity_variance <= 0.10 else "low" if polarity_variance <= 0.35 else "moderate" if polarity_variance <= 0.60 else "high"
|
| 823 |
+
},
|
| 824 |
+
"insights": insights,
|
| 825 |
+
"plagiarismRisk": {
|
| 826 |
+
"score": int(ai_prob * 100) if is_ai else (int(ai_prob * 70) if is_mixed else 10),
|
| 827 |
+
"level": "high" if is_ai and ai_prob > 0.8 else "medium" if (is_ai or is_mixed) else "low",
|
| 828 |
+
"details": f"{'High' if is_ai else 'Moderate' if is_mixed else 'Low'} similarity to AI-generated patterns detected."
|
| 829 |
+
},
|
| 830 |
+
"contentQuality": {
|
| 831 |
+
"overall": int(85 - (ai_prob * 20)) if is_ai else (int(80 - (ai_prob * 15)) if is_mixed else 90),
|
| 832 |
+
"clarity": int(90 - (ai_prob * 10)) if not is_mixed else int(85 - (ai_prob * 8)),
|
| 833 |
+
"coherence": int(88 - (ai_prob * 8)) if not is_mixed else int(82 - (ai_prob * 6)),
|
| 834 |
+
"engagement": int(75 - (ai_prob * 25)) if not is_mixed else int(70 - (ai_prob * 20)),
|
| 835 |
+
"originality": int(60 - (ai_prob * 40)) if is_ai else (int(70 - (ai_prob * 30)) if is_mixed else 85)
|
| 836 |
+
},
|
| 837 |
+
"aiOrHuman": ai_detection["classification"],
|
| 838 |
+
"aiOrHumanConfidence": ai_detection["confidence"],
|
| 839 |
+
"aiOrHumanExplanation": ai_detection["explanation"]
|
| 840 |
+
}
|
| 841 |
+
|
| 842 |
+
def get_model_info(self) -> Dict[str, Any]:
|
| 843 |
+
"""Get information about the loaded models"""
|
| 844 |
+
return {
|
| 845 |
+
"model_loaded": self.model_loaded,
|
| 846 |
+
"model_path": self.model_path,
|
| 847 |
+
"device": str(self.device),
|
| 848 |
+
"max_length": self.max_length,
|
| 849 |
+
"architecture": "Two-Branch (DeBERTa + Sentiment Features)",
|
| 850 |
+
"primary_model": "DeBERTa-v3-large (desklib/ai-text-detector-v1.01)",
|
| 851 |
+
"sentiment_model": "DistilBERT-SST-2",
|
| 852 |
+
"classifier": "XGBoost" if self.xgboost_model is not None else "DeBERTa Linear",
|
| 853 |
+
"features": [
|
| 854 |
+
"DeBERTa embeddings (1024 dimensions)",
|
| 855 |
+
"Average sentiment polarity",
|
| 856 |
+
"Sentiment polarity variance"
|
| 857 |
+
],
|
| 858 |
+
"description": "Two-branch model for detecting AI-Generated vs Human-Authored text using DeBERTa semantic embeddings combined with sentiment features"
|
| 859 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# FastAPI and Server
|
| 2 |
+
fastapi>=0.104.1
|
| 3 |
+
uvicorn[standard]>=0.24.0
|
| 4 |
+
python-multipart>=0.0.6
|
| 5 |
+
pydantic>=2.5.0
|
| 6 |
+
|
| 7 |
+
# Machine Learning & AI (Compatible with Python 3.13)
|
| 8 |
+
torch>=2.8.0
|
| 9 |
+
transformers>=4.35.0
|
| 10 |
+
safetensors>=0.4.0
|
| 11 |
+
xgboost>=2.0.0
|
| 12 |
+
nltk>=3.8.0
|
| 13 |
+
scikit-learn>=1.3.0
|
| 14 |
+
|
| 15 |
+
# Data Processing
|
| 16 |
+
numpy>=1.26.2
|
| 17 |
+
pandas>=2.1.3
|
| 18 |
+
|
| 19 |
+
# Utilities
|
| 20 |
+
python-dotenv>=1.0.0
|
| 21 |
+
requests>=2.31.0
|
| 22 |
+
|
| 23 |
+
# Optional: For better performance
|
| 24 |
+
# accelerate>=0.24.1
|
| 25 |
+
# optimum>=1.14.0
|