Eidolon-CognitiveTutor / RESEARCH_ROADMAP.md
BonelliLab's picture
docs: Add comprehensive research roadmap and Phase 1 plan
f2491fc

A newer version of the Gradio SDK is available: 6.2.0

Upgrade

πŸ”¬ Eidolon Cognitive Tutor - Research Lab Roadmap

Vision: Showcase Cutting-Edge AI/ML Research in Education

Transform the tutor into a living research demonstration that visualizes state-of-the-art AI concepts, inspired by recent breakthrough papers (2020-2024).


🎯 Core Research Themes

1. Explainable AI & Interpretability

Show users HOW the AI thinks, not just WHAT it outputs

🧠 Cognitive Architecture Visualization

Papers:

  • "Attention is All You Need" (Vaswani et al., 2017)
  • "A Mathematical Framework for Transformer Circuits" (Elhage et al., 2021)
  • "Interpretability in the Wild" (Anthropic, 2023)

Implementation:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  🧠 COGNITIVE PROCESS VIEWER            β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Query: "Explain quantum entanglement"  β”‚
β”‚                                         β”‚
β”‚  [1] Token Attention Heatmap            β”‚
β”‚      β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘ "quantum" β†’ physics   β”‚
β”‚      β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘ "entangle" β†’ connect  β”‚
β”‚                                         β”‚
β”‚  [2] Knowledge Retrieval                β”‚
β”‚      ↳ Quantum Mechanics (0.94)         β”‚
β”‚      ↳ Bell's Theorem (0.87)            β”‚
β”‚      ↳ EPR Paradox (0.81)               β”‚
β”‚                                         β”‚
β”‚  [3] Reasoning Chain                    β”‚
β”‚      Think: Need simple analogy         β”‚
β”‚      β†’ Retrieve: coin flip metaphor     β”‚
β”‚      β†’ Synthesize: connected particles  β”‚
β”‚      β†’ Verify: scientifically accurate  β”‚
β”‚                                         β”‚
β”‚  [4] Confidence: 89% Β±3%                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Features:

  • Real-time attention weight visualization
  • Interactive layer-by-layer activation inspection
  • Concept activation mapping
  • Neuron-level feature visualization

2. Meta-Learning & Few-Shot Adaptation

Demonstrate how AI learns to learn

πŸŽ“ Adaptive Learning System

Papers:

  • "Model-Agnostic Meta-Learning (MAML)" (Finn et al., 2017)
  • "Learning to Learn by Gradient Descent" (Andrychowicz et al., 2016)
  • "Meta-Learning with Implicit Gradients" (Rajeswaran et al., 2019)

Implementation:

class MetaLearningTutor:
    """
    Adapts teaching strategy based on learner's responses.
    Uses inner loop (student adaptation) and outer loop (strategy refinement).
    """
    
    def adapt(self, student_responses: List[Response]) -> TeachingPolicy:
        # Extract learning patterns
        mastery_curve = self.estimate_mastery(student_responses)
        confusion_points = self.identify_gaps(student_responses)
        
        # Few-shot adaptation: learn from 3-5 interactions
        adapted_policy = self.maml_adapt(
            base_policy=self.teaching_policy,
            support_set=student_responses[-5:],  # Last 5 interactions
            adaptation_steps=3
        )
        
        return adapted_policy

Visualization:

  • Learning curve evolution
  • Gradient flow diagrams
  • Task similarity clustering
  • Adaptation trajectory in embedding space

3. Knowledge Graphs & Multi-Hop Reasoning

Show structured knowledge retrieval and reasoning

πŸ•ΈοΈ Interactive Knowledge Graph

Papers:

  • "Graph Neural Networks: A Review" (Zhou et al., 2020)
  • "Knowledge Graphs" (Hogan et al., 2021)
  • "REALM: Retrieval-Augmented Language Model Pre-Training" (Guu et al., 2020)

Implementation:

Query: "How does photosynthesis relate to climate change?"

Knowledge Graph Traversal:
  [Photosynthesis] ──produces──→ [Oxygen]
         ↓                            ↓
    absorbs CO2              breathed by animals
         ↓                            ↓
  [Carbon Cycle] ←──affects── [Climate Change]
         ↓
    regulated by
         ↓
   [Deforestation] ──causes──→ [Global Warming]

Multi-Hop Reasoning Path (3 hops):
  1. Photosynthesis absorbs CO2 (confidence: 0.99)
  2. CO2 is a greenhouse gas (confidence: 0.98)
  3. Therefore photosynthesis mitigates climate change (confidence: 0.92)

Features:

  • Interactive graph exploration (zoom, filter, highlight)
  • GNN reasoning path visualization
  • Confidence propagation through graph
  • Counterfactual reasoning ("What if we remove this node?")

4. Retrieval-Augmented Generation (RAG)

Transparent source attribution and knowledge grounding

πŸ“š RAG Pipeline Visualization

Papers:

  • "Retrieval-Augmented Generation for Knowledge-Intensive NLP" (Lewis et al., 2020)
  • "Dense Passage Retrieval" (Karpukhin et al., 2020)
  • "REPLUG: Retrieval-Augmented Black-Box Language Models" (Shi et al., 2023)

Implementation:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  RAG PIPELINE INSPECTOR                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  [1] Query Encoding                     β”‚
β”‚      "Explain transformer architecture" β”‚
β”‚      β†’ Embedding: [0.23, -0.45, ...]    β”‚
β”‚                                         β”‚
β”‚  [2] Semantic Search                    β”‚
β”‚      πŸ” Searching 10M+ passages...      β”‚
β”‚      βœ“ Top 5 retrieved in 12ms          β”‚
β”‚                                         β”‚
β”‚  [3] Retrieved Context                  β”‚
β”‚      πŸ“„ "Attention is All You Need"     β”‚
β”‚         Relevance: 0.94 | Cited: 87k    β”‚
β”‚      πŸ“„ "BERT: Pre-training..."         β”‚
β”‚         Relevance: 0.89 | Cited: 52k    β”‚
β”‚      [show more...]                     β”‚
β”‚                                         β”‚
β”‚  [4] Re-ranking (Cross-Encoder)         β”‚
β”‚      Passage 1: 0.94 β†’ 0.97 ⬆           β”‚
β”‚      Passage 2: 0.89 β†’ 0.85 ⬇           β”‚
β”‚                                         β”‚
β”‚  [5] Generation with Attribution        β”‚
β”‚      "Transformers use self-attention   β”‚
β”‚       [1] to process sequences..."      β”‚
β”‚                                         β”‚
β”‚      [1] Vaswani et al. 2017, p.3       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Features:

  • Embedding space visualization (t-SNE/UMAP)
  • Semantic similarity scores
  • Source credibility indicators
  • Hallucination detection

5. Uncertainty Quantification & Calibration

Show when the AI is confident vs. uncertain

πŸ“Š Confidence Calibration System

Papers:

  • "On Calibration of Modern Neural Networks" (Guo et al., 2017)
  • "Uncertainty in Deep Learning" (Gal, 2016)
  • "Conformal Prediction Under Covariate Shift" (Tibshirani et al., 2019)

Implementation:

class UncertaintyQuantifier:
    """
    Estimates epistemic (model) and aleatoric (data) uncertainty.
    """
    
    def compute_uncertainty(self, response: str) -> Dict:
        return {
            "epistemic": self.model_uncertainty(),  # What model doesn't know
            "aleatoric": self.data_uncertainty(),   # Inherent ambiguity
            "calibration_score": self.calibration(), # How well-calibrated
            "conformal_set": self.conformal_predict() # Prediction interval
        }

Visualization:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  UNCERTAINTY DASHBOARD                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Overall Confidence: 76% Β±8%            β”‚
β”‚                                         β”‚
β”‚  Epistemic (Model) β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘ 60%      β”‚
β”‚  β†’ Model hasn't seen enough examples    β”‚
β”‚                                         β”‚
β”‚  Aleatoric (Data)  β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘ 85%      β”‚
β”‚  β†’ Question has inherent ambiguity      β”‚
β”‚                                         β”‚
β”‚  Calibration Plot:                      β”‚
β”‚   1.0 ─        β•±                        β”‚
β”‚       β”‚      β•±                          β”‚
β”‚       β”‚    β•± (perfectly calibrated)     β”‚
β”‚   0.0 └──────────────                   β”‚
β”‚                                         β”‚
β”‚  ⚠️  Low confidence detected!           β”‚
β”‚  πŸ’‘ Suggestion: "Could you clarify...?" β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

6. Constitutional AI & Safety

Demonstrate alignment and safety mechanisms

πŸ›‘οΈ Safety-First Design

Papers:

  • "Constitutional AI: Harmlessness from AI Feedback" (Bai et al., 2022)
  • "Training language models to follow instructions with human feedback" (Ouyang et al., 2022)
  • "Red Teaming Language Models" (Perez et al., 2022)

Implementation:

User Query: "How do I hack into..."

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  πŸ›‘οΈ SAFETY SYSTEM ACTIVATED             β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  [1] Harmfulness Detection              β”‚
β”‚      ⚠️  Potential harm score: 0.87     β”‚
β”‚      Category: Unauthorized access      β”‚
β”‚                                         β”‚
β”‚  [2] Constitutional Principles          β”‚
β”‚      βœ“ Principle 1: Do no harm          β”‚
β”‚      βœ“ Principle 2: Respect privacy     β”‚
β”‚      βœ“ Principle 3: Follow laws         β”‚
β”‚                                         β”‚
β”‚  [3] Response Correction                β”‚
β”‚      Original: [redacted harmful path]  β”‚
β”‚      Revised: "I can't help with that,  β”‚
β”‚                but I can explain..."    β”‚
β”‚                                         β”‚
β”‚  [4] Educational Redirect               β”‚
β”‚      Suggested: "Cybersecurity ethics"  β”‚
β”‚                 "Penetration testing"   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Features:

  • Real-time safety scoring
  • Principle-based reasoning chains
  • Adversarial robustness testing
  • Red team attack visualization

7. Tree-of-Thoughts Reasoning

Show deliberate problem-solving strategies

🌳 Reasoning Tree Visualization

Papers:

  • "Tree of Thoughts: Deliberate Problem Solving" (Yao et al., 2023)
  • "Chain-of-Thought Prompting" (Wei et al., 2022)
  • "Self-Consistency Improves Chain of Thought" (Wang et al., 2022)

Implementation:

Problem: "How would you explain relativity to a 10-year-old?"

Tree of Thoughts:
                    [Root: Strategy Selection]
                            /    |    \
                           /     |     \
                  [Analogy] [Story] [Demo]
                     /          |         \
             [Train]  [Ball]  [Twin]  [Experiment]
            /    |      |       |         |
       [Fast] [Slow] [Time] [Space]   [Show]
          ↓      ↓      ↓       ↓         ↓
     Eval:0.8  0.9    0.7     0.6       0.5

Selected Path (highest score):
  Strategy: Analogy β†’ Concept: Train β†’ Example: Slow train

Self-Consistency Check:
  βœ“ Sampled 5 reasoning paths
  βœ“ 4/5 agree on train analogy
  βœ“ Confidence: 94%

Features:

  • Interactive tree navigation
  • Branch pruning visualization
  • Self-evaluation scores at each node
  • Comparative reasoning paths

8. Cognitive Load Theory

Optimize learning based on cognitive science

🧠 Cognitive Load Estimation

Papers:

  • "Cognitive Load Theory" (Sweller, 1988)
  • "Zone of Proximal Development" (Vygotsky)
  • "Measuring Cognitive Load Using Dual-Task Methodology" (BrΓΌnken et al., 2003)

Implementation:

class CognitiveLoadEstimator:
    """
    Estimates intrinsic, extraneous, and germane cognitive load.
    """
    
    def estimate_load(self, response_metrics: Dict) -> CognitiveLoad:
        return CognitiveLoad(
            intrinsic=self.concept_complexity(),  # Topic difficulty
            extraneous=self.presentation_load(),  # UI/format overhead
            germane=self.schema_construction(),   # Productive learning
            
            # Zone of Proximal Development
            zpd_score=self.zpd_alignment(),  # Too easy/hard/just right
            optimal_challenge=self.compute_optimal_difficulty()
        )

Visualization:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  COGNITIVE LOAD MONITOR                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Current Load: 67% (Optimal: 60-80%)    β”‚
β”‚                                         β”‚
β”‚  Intrinsic β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘ 65%            β”‚
β”‚  (concept complexity)                   β”‚
β”‚                                         β”‚
β”‚  Extraneous β–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘ 25%            β”‚
β”‚  (presentation overhead)                β”‚
β”‚                                         β”‚
β”‚  Germane β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 95%              β”‚
β”‚  (productive learning)                  β”‚
β”‚                                         β”‚
β”‚  πŸ“ Zone of Proximal Development        β”‚
β”‚   Too Easy ←─[You]─────→ Too Hard      β”‚
β”‚                                         β”‚
β”‚  πŸ’‘ Recommendation: Increase difficulty β”‚
β”‚     from Level 3 β†’ Level 4              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

9. Multimodal Learning

Integrate vision, language, code, and more

🎨 Cross-Modal Reasoning

Papers:

  • "CLIP: Learning Transferable Visual Models" (Radford et al., 2021)
  • "Flamingo: Visual Language Models" (Alayrac et al., 2022)
  • "GPT-4 Technical Report" (OpenAI, 2023) - multimodal capabilities

Implementation:

Query: "Explain binary search with a diagram"

Response:
  [Text] "Binary search repeatedly divides..."
     ↓
  [Code] def binary_search(arr, target): ...
     ↓
  [Diagram] 
     [1,3,5,7,9,11,13,15]
          ↓
        [9,11,13,15]
          ↓
        [9,11]
     ↓
  [Animation] Step-by-step execution
     ↓
  [Interactive] Try your own example!

Cross-Modal Attention:
  Text ←──0.87──→ Code
  Code ←──0.92──→ Diagram
  Diagram ←─0.78─→ Animation

Features:

  • LaTeX equation rendering
  • Mermaid diagram generation
  • Code execution sandbox
  • Interactive visualizations

10. Direct Preference Optimization (DPO)

Show alignment without reward models

🎯 Preference Learning Visualization

Papers:

  • "Direct Preference Optimization" (Rafailov et al., 2023)
  • "RLHF: Training language models to follow instructions" (Ouyang et al., 2022)

Implementation:

User Feedback: πŸ‘ or πŸ‘Ž on responses

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  PREFERENCE LEARNING DASHBOARD          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Response A: "Quantum mechanics is..."  β”‚
β”‚  Response B: "Let me explain quantum.." β”‚
β”‚                                         β”‚
β”‚  User Preferred: B (more engaging)      β”‚
β”‚                                         β”‚
β”‚  Policy Update:                         β”‚
β”‚    Engagement ↑ +15%                    β”‚
β”‚    Technical detail ↓ -5%              β”‚
β”‚    Simplicity ↑ +20%                    β”‚
β”‚                                         β”‚
β”‚  Implicit Reward Model:                 β”‚
β”‚    r(B) - r(A) = +2.3                   β”‚
β”‚                                         β”‚
β”‚  Learning Progress:                     β”‚
β”‚    Epoch 0 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘ 85%      β”‚
β”‚    Converged after 142 preferences      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ—οΈ Architecture Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    USER INTERFACE                      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”              β”‚
β”‚  β”‚ Chat UI  β”‚ β”‚ Viz Panelβ”‚ β”‚ Controls β”‚              β”‚
β”‚  β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
        β”‚            β”‚            β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              COGNITIVE ORCHESTRATOR                   β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚  β€’ Query Understanding                          β”‚  β”‚
β”‚  β”‚  β€’ Reasoning Strategy Selection                 β”‚  β”‚
β”‚  β”‚  β€’ Multi-System Coordination                    β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
           β”‚              β”‚              β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”   β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”
    β”‚   RAG    β”‚   β”‚Knowledge β”‚   β”‚Uncertaintyβ”‚
    β”‚ Pipeline β”‚   β”‚  Graph   β”‚   β”‚Quantifier β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
           β”‚              β”‚              β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
    β”‚        LLM with Instrumentation             β”‚
    β”‚  β€’ Attention tracking                        β”‚
    β”‚  β€’ Activation logging                        β”‚
    β”‚  β€’ Token probability capture                 β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🎨 UI/UX Design Principles

Research Lab Aesthetic

  • Dark theme with syntax highlighting (like Jupyter/VSCode)
  • Monospace fonts for code and data
  • Live metrics updating in real-time
  • Interactive plots (Plotly/D3.js)
  • Collapsible panels for technical details
  • Export options (save visualizations, data, configs)

Information Hierarchy

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  [Main Response]  ← Primary focus       β”‚
β”‚   Clear, readable, large                β”‚
β”‚                                         β”‚
β”‚  [Reasoning Visualization]              β”‚
β”‚   ↳ Expandable details                  β”‚
β”‚   ↳ Interactive elements                β”‚
β”‚                                         β”‚
β”‚  [Technical Metrics]                    β”‚
β”‚   ↳ Confidence, uncertainty             β”‚
β”‚   ↳ Performance stats                   β”‚
β”‚                                         β”‚
β”‚  [Research Context]                     β”‚
β”‚   ↳ Paper references                    β”‚
β”‚   ↳ Related concepts                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“Š Data & Metrics to Track

Learning Analytics

  • Mastery progression per concept
  • Difficulty calibration accuracy
  • Engagement metrics (time, interactions)
  • Confusion signals (repeated questions, clarifications)

AI Performance Metrics

  • Inference latency (p50, p95, p99)
  • Token usage per query
  • Cache hit rates
  • Retrieval precision/recall
  • Calibration error (Expected Calibration Error)
  • Hallucination rate

A/B Testing Framework

  • Reasoning strategies (ToT vs CoT vs ReAct)
  • Explanation styles (technical vs analogical)
  • Interaction patterns (Socratic vs direct)

πŸ”¬ Experimental Features

1. Research Playground

  • Compare models side-by-side (GPT-4 vs Claude vs Llama)
  • Ablation studies (remove RAG, change prompts)
  • Hyperparameter tuning interface

2. Dataset Explorer

  • Browse training data examples
  • Show nearest neighbors in embedding space
  • Visualize data distribution

3. Live Fine-Tuning

  • User corrections improve model in real-time
  • Show gradient updates
  • Track loss curves

πŸ“š Paper References Dashboard

Every feature should link to relevant papers:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  πŸ“„ RESEARCH FOUNDATIONS                β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  This feature implements concepts from: β”‚
β”‚                                         β”‚
β”‚  [1] "Tree of Thoughts: Deliberate      β”‚
β”‚       Problem Solving with Large        β”‚
β”‚       Language Models"                  β”‚
β”‚       Yao et al., 2023                  β”‚
β”‚       [PDF] [Code] [Cite]               β”‚
β”‚                                         β”‚
β”‚  [2] "Self-Consistency Improves Chain   β”‚
β”‚       of Thought Reasoning"             β”‚
β”‚       Wang et al., 2022                 β”‚
β”‚       [PDF] [Code] [Cite]               β”‚
β”‚                                         β”‚
β”‚  πŸ“Š Implementation Faithfulness: 87%    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸš€ Implementation Priority

Phase 1: Core Research Infrastructure (Week 1-2)

  1. βœ… Attention visualization
  2. βœ… RAG pipeline inspector
  3. βœ… Uncertainty quantification
  4. βœ… Paper reference system

Phase 2: Advanced Reasoning (Week 3-4)

  1. βœ… Tree-of-Thoughts
  2. βœ… Knowledge graph
  3. βœ… Meta-learning adaptation
  4. βœ… Cognitive load estimation

Phase 3: Safety & Alignment (Week 5)

  1. βœ… Constitutional AI
  2. βœ… Preference learning (DPO)
  3. βœ… Hallucination detection

Phase 4: Polish & Deploy (Week 6)

  1. βœ… Multimodal support
  2. βœ… Research playground
  3. βœ… Documentation & demos

🎯 Success Metrics

For Research Positioning

  • βœ“ Cite 15+ recent papers (2020-2024)
  • βœ“ Implement 3+ state-of-the-art techniques
  • βœ“ Provide interactive visualizations for each
  • βœ“ Show rigorous evaluation metrics

For User Engagement

  • βœ“ 10+ interactive research features
  • βœ“ Export-quality visualizations
  • βœ“ Developer-friendly API
  • βœ“ Reproducible experiments

πŸ’‘ Unique Value Proposition

"The only AI tutor that shows its work at the research level"

  • See actual attention patterns (not just outputs)
  • Understand retrieval and reasoning (not black box)
  • Track learning with cognitive science (not just analytics)
  • Reference cutting-edge papers (academic credibility)
  • Experiment with AI techniques (interactive research)

This positions you as a research lab that:

  1. Understands the latest AI/ML advances
  2. Implements them rigorously
  3. Makes them accessible and educational
  4. Contributes to interpretability research

Next Steps: Pick 2-3 features from Phase 1 to prototype first?