Spaces:
Running
Running
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| import segmentation_models_pytorch as smp | |
| from PIL import Image | |
| from glob import glob | |
| from pipeline.ImgOutlier import detect_outliers | |
| from pipeline.normalization import align_images | |
| # 检测是否在Hugging Face环境中运行 | |
| HF_SPACE = os.environ.get('SPACE_ID') is not None | |
| # 尝试导入上传模块,如果不在HF环境中才需要 | |
| if not HF_SPACE: | |
| try: | |
| from uploader.do_spaces import upload_mask | |
| except ImportError: | |
| def upload_mask(image, prefix=""): | |
| return "上传模块未加载" | |
| # Global Configuration | |
| MODEL_PATHS = { | |
| "Metal Marcy": "models/MM_best_model.pth", | |
| "Silhouette Jaenette": "models/SJ_best_model.pth" | |
| } | |
| REFERENCE_VECTOR_PATHS = { | |
| "Metal Marcy": "models/MM_mean.npy", | |
| "Silhouette Jaenette": "models/SJ_mean.npy" | |
| } | |
| REFERENCE_IMAGE_DIRS = { | |
| "Metal Marcy": "reference_images/MM", | |
| "Silhouette Jaenette": "reference_images/SJ" | |
| } | |
| # Category names and color mapping | |
| CLASSES = ['background', 'cobbles', 'drysand', 'plant', 'sky', 'water', 'wetsand'] | |
| COLORS = [ | |
| [0, 0, 0], # background - black | |
| [139, 137, 137], # cobbles - dark gray | |
| [255, 228, 181], # drysand - light yellow | |
| [0, 128, 0], # plant - green | |
| [135, 206, 235], # sky - sky blue | |
| [0, 0, 255], # water - blue | |
| [194, 178, 128] # wetsand - sand brown | |
| ] | |
| # Load model function | |
| def load_model(model_path, device="cuda"): | |
| try: | |
| # 如果在HF环境中,默认使用CPU | |
| if HF_SPACE: | |
| device = "cpu" # HF Space可能没有GPU | |
| model = smp.create_model( | |
| "DeepLabV3Plus", | |
| encoder_name="efficientnet-b6", | |
| in_channels=3, | |
| classes=len(CLASSES), | |
| encoder_weights=None | |
| ) | |
| state_dict = torch.load(model_path, map_location=device) | |
| if all(k.startswith('model.') for k in state_dict.keys()): | |
| state_dict = {k[6:]: v for k, v in state_dict.items()} | |
| model.load_state_dict(state_dict) | |
| model.to(device) | |
| model.eval() | |
| print(f"Model load success: {model_path}") | |
| return model | |
| except Exception as e: | |
| print(f"Model load fail: {e}") | |
| return None | |
| # Load reference vector | |
| def load_reference_vector(vector_path): | |
| try: | |
| ref_vector = np.load(vector_path) | |
| print(f"reference vector load success: {vector_path}") | |
| return ref_vector | |
| except Exception as e: | |
| print(f"reference vector load {vector_path}: {e}") | |
| return [] | |
| # Load reference image | |
| def load_reference_images(ref_dir): | |
| try: | |
| image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp'] | |
| image_files = [] | |
| for ext in image_extensions: | |
| image_files.extend(glob(os.path.join(ref_dir, ext))) | |
| image_files.sort() | |
| reference_images = [] | |
| for file in image_files[:4]: | |
| img = cv2.imread(file) | |
| if img is not None: | |
| reference_images.append(img) | |
| print(f"from {ref_dir} load {len(reference_images)} images") | |
| return reference_images | |
| except Exception as e: | |
| print(f"load image failed {ref_dir}: {e}") | |
| return [] | |
| # Preprocess the image | |
| def preprocess_image(image): | |
| if image.shape[2] == 4: | |
| image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) | |
| orig_h, orig_w = image.shape[:2] | |
| image_resized = cv2.resize(image, (1024, 1024)) | |
| image_norm = image_resized.astype(np.float32) / 255.0 | |
| mean = np.array([0.485, 0.456, 0.406]) | |
| std = np.array([0.229, 0.224, 0.225]) | |
| image_norm = (image_norm - mean) / std | |
| image_tensor = torch.from_numpy(image_norm.transpose(2, 0, 1)).float().unsqueeze(0) | |
| return image_tensor, orig_h, orig_w | |
| # Generate segmentation map and visualization | |
| def generate_segmentation_map(prediction, orig_h, orig_w): | |
| mask = prediction.argmax(1).squeeze().cpu().numpy().astype(np.uint8) | |
| mask_resized = cv2.resize(mask, (orig_w, orig_h), interpolation=cv2.INTER_NEAREST) | |
| kernel = np.ones((5, 5), np.uint8) | |
| processed_mask = mask_resized.copy() | |
| for idx in range(1, len(CLASSES)): | |
| class_mask = (mask_resized == idx).astype(np.uint8) | |
| dilated_mask = cv2.dilate(class_mask, kernel, iterations=2) | |
| dilated_effect = dilated_mask & (mask_resized == 0) | |
| processed_mask[dilated_effect > 0] = idx | |
| segmentation_map = np.zeros((orig_h, orig_w, 3), dtype=np.uint8) | |
| for idx, color in enumerate(COLORS): | |
| segmentation_map[processed_mask == idx] = color | |
| return segmentation_map | |
| # Analysis result HTML | |
| def create_analysis_result(mask): | |
| total_pixels = mask.size | |
| percentages = {cls: round((np.sum(mask == i) / total_pixels) * 100, 1) | |
| for i, cls in enumerate(CLASSES)} | |
| ordered = ['sky', 'cobbles', 'plant', 'drysand', 'wetsand', 'water'] | |
| result = "<div style='font-size:18px;font-weight:bold;'>" | |
| result += " | ".join(f"{cls}: {percentages.get(cls,0)}%" for cls in ordered) | |
| result += "</div>" | |
| return result | |
| # Merge and overlay | |
| def create_overlay(image, segmentation_map, alpha=0.5): | |
| if image.shape[:2] != segmentation_map.shape[:2]: | |
| segmentation_map = cv2.resize(segmentation_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST) | |
| return cv2.addWeighted(image, 1-alpha, segmentation_map, alpha, 0) | |
| # Perform segmentation | |
| def perform_segmentation(model, image_bgr): | |
| device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu" | |
| image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) | |
| image_tensor, orig_h, orig_w = preprocess_image(image_rgb) | |
| with torch.no_grad(): | |
| prediction = model(image_tensor.to(device)) | |
| seg_map = generate_segmentation_map(prediction, orig_h, orig_w) # RGB | |
| overlay = create_overlay(image_rgb, seg_map) | |
| mask = prediction.argmax(1).squeeze().cpu().numpy() | |
| analysis = create_analysis_result(mask) | |
| return seg_map, overlay, analysis | |
| # Single image processing | |
| def process_coastal_image(location, input_image): | |
| if input_image is None: | |
| return None, None, "请上传一张图片", "未检测", None | |
| device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu" | |
| model = load_model(MODEL_PATHS[location], device) | |
| if model is None: | |
| return None, None, f"错误:无法加载模型", "未检测", None | |
| ref_vector = load_reference_vector(REFERENCE_VECTOR_PATHS[location]) if os.path.exists(REFERENCE_VECTOR_PATHS[location]) else [] | |
| ref_images = load_reference_images(REFERENCE_IMAGE_DIRS[location]) | |
| outlier_status = "未检测" | |
| is_outlier = False | |
| image_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) | |
| if len(ref_vector) > 0: | |
| filtered, _ = detect_outliers(ref_images, [image_bgr], ref_vector) | |
| is_outlier = len(filtered) == 0 | |
| else: | |
| filtered, _ = detect_outliers(ref_images, [image_bgr]) | |
| is_outlier = len(filtered) == 0 | |
| outlier_status = "异常检测: <span style='color:red;font-weight:bold'>未通过</span>" if is_outlier else "异常检测: <span style='color:green;font-weight:bold'>通过</span>" | |
| seg_map, overlay, analysis = perform_segmentation(model, image_bgr) | |
| # 在HF环境中不上传,只返回本地结果 | |
| url = "本地存储" | |
| if not HF_SPACE: | |
| try: | |
| url = upload_mask(Image.fromarray(seg_map), prefix=location.replace(' ', '_')) | |
| except Exception as e: | |
| print(f"Upload failed: {e}") | |
| url = "上传错误" | |
| if is_outlier: | |
| analysis = "<div style='color:red;font-weight:bold;margin-bottom:10px'>警告:图像未通过异常检测,结果可能不准确!</div>" + analysis | |
| return seg_map, overlay, analysis, outlier_status, url | |
| # Spacial Alignment | |
| def process_with_alignment(location, reference_image, input_image): | |
| if reference_image is None or input_image is None: | |
| return None, None, None, None, "请上传参考图像和需要分析的图像", "未处理", None | |
| device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu" | |
| model = load_model(MODEL_PATHS[location], device) | |
| if model is None: | |
| return None, None, None, None, "错误:无法加载模型", "未处理", None | |
| ref_bgr = cv2.cvtColor(np.array(reference_image), cv2.COLOR_RGB2BGR) | |
| tgt_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) | |
| aligned, _ = align_images([ref_bgr, tgt_bgr], [np.zeros_like(ref_bgr), np.zeros_like(tgt_bgr)]) | |
| aligned_tgt_bgr = aligned[1] | |
| seg_map, overlay, analysis = perform_segmentation(model, aligned_tgt_bgr) | |
| # 在HF环境中不上传,只返回本地结果 | |
| url = "本地存储" | |
| if not HF_SPACE: | |
| try: | |
| url = upload_mask(Image.fromarray(seg_map), prefix="aligned_" + location.replace(' ', '_')) | |
| except Exception as e: | |
| print(f"Upload failed: {e}") | |
| url = "上传错误" | |
| status = "空间对齐: <span style='color:green;font-weight:bold'>完成</span>" | |
| ref_rgb = cv2.cvtColor(ref_bgr, cv2.COLOR_BGR2RGB) | |
| aligned_tgt_rgb = cv2.cvtColor(aligned_tgt_bgr, cv2.COLOR_BGR2RGB) | |
| return ref_rgb, aligned_tgt_rgb, seg_map, overlay, analysis, status, url | |
| # Create the Gradio interface | |
| def create_interface(): | |
| scale = 0.5 | |
| disp_w, disp_h = int(1365*scale), int(1024*scale) | |
| with gr.Blocks(title="海岸侵蚀分析系统") as demo: | |
| gr.Markdown("""# 海岸侵蚀分析系统 | |
| 上传海岸照片进行分析,包括分割和空间对齐功能。""") | |
| with gr.Tabs(): | |
| with gr.TabItem("单张图像分割"): | |
| with gr.Row(): | |
| loc1 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0]) | |
| with gr.Row(): | |
| inp = gr.Image(label="输入图像", type="numpy", image_mode="RGB") | |
| seg = gr.Image(label="分割图像", type="numpy", width=disp_w, height=disp_h) | |
| ovl = gr.Image(label="叠加图像", type="numpy", width=disp_w, height=disp_h) | |
| with gr.Row(): | |
| btn1 = gr.Button("执行分割") | |
| url1 = gr.Text(label="分割图URL") | |
| status1 = gr.HTML(label="异常检测状态") | |
| res1 = gr.HTML(label="分析结果") | |
| btn1.click(fn=process_coastal_image,inputs=[loc1, inp],outputs=[seg, ovl, res1, status1, url1]) | |
| with gr.TabItem("空间对齐分割"): | |
| with gr.Row(): | |
| loc2 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0]) | |
| with gr.Row(): | |
| ref_img = gr.Image(label="参考图像", type="numpy", image_mode="RGB") | |
| tgt_img = gr.Image(label="待分析图像", type="numpy", image_mode="RGB") | |
| with gr.Row(): | |
| btn2 = gr.Button("执行空间对齐分割") | |
| with gr.Row(): | |
| orig = gr.Image(label="原始图像", type="numpy", width=disp_w, height=disp_h) | |
| aligned = gr.Image(label="对齐后图像", type="numpy", width=disp_w, height=disp_h) | |
| with gr.Row(): | |
| seg2 = gr.Image(label="分割图像", type="numpy", width=disp_w, height=disp_h) | |
| ovl2 = gr.Image(label="叠加图像", type="numpy", width=disp_w, height=disp_h) | |
| url2 = gr.Text(label="分割图URL") | |
| status2 = gr.HTML(label="空间对齐状态") | |
| res2 = gr.HTML(label="分析结果") | |
| btn2.click(fn=process_with_alignment, inputs=[loc2, ref_img, tgt_img], outputs=[orig, aligned, seg2, ovl2, res2, status2, url2]) | |
| return demo | |
| if __name__ == "__main__": | |
| for path in ["models", "reference_images/MM", "reference_images/SJ"]: | |
| os.makedirs(path, exist_ok=True) | |
| for p in MODEL_PATHS.values(): | |
| if not os.path.exists(p): | |
| print(f"警告:模型文件 {p} 不存在!") | |
| demo = create_interface() | |
| # 在HF环境中使用适当的启动配置 | |
| if HF_SPACE: | |
| demo.launch() | |
| else: | |
| demo.launch(share=True) |