Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import segmentation_models_pytorch as smp
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from glob import glob
|
| 9 |
+
from pipeline.ImgOutlier import detect_outliers
|
| 10 |
+
from pipeline.normalization import align_images
|
| 11 |
+
|
| 12 |
+
# 检测是否在Hugging Face环境中运行
|
| 13 |
+
HF_SPACE = os.environ.get('SPACE_ID') is not None
|
| 14 |
+
|
| 15 |
+
# 尝试导入上传模块,如果不在HF环境中才需要
|
| 16 |
+
if not HF_SPACE:
|
| 17 |
+
try:
|
| 18 |
+
from uploader.do_spaces import upload_mask
|
| 19 |
+
except ImportError:
|
| 20 |
+
def upload_mask(image, prefix=""):
|
| 21 |
+
return "上传模块未加载"
|
| 22 |
+
|
| 23 |
+
# Global Configuration
|
| 24 |
+
MODEL_PATHS = {
|
| 25 |
+
"Metal Marcy": "models/MM_best_model.pth",
|
| 26 |
+
"Silhouette Jaenette": "models/SJ_best_model.pth"
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
REFERENCE_VECTOR_PATHS = {
|
| 30 |
+
"Metal Marcy": "models/MM_mean.npy",
|
| 31 |
+
"Silhouette Jaenette": "models/SJ_mean.npy"
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
REFERENCE_IMAGE_DIRS = {
|
| 35 |
+
"Metal Marcy": "reference_images/MM",
|
| 36 |
+
"Silhouette Jaenette": "reference_images/SJ"
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
# Category names and color mapping
|
| 40 |
+
CLASSES = ['background', 'cobbles', 'drysand', 'plant', 'sky', 'water', 'wetsand']
|
| 41 |
+
COLORS = [
|
| 42 |
+
[0, 0, 0], # background - black
|
| 43 |
+
[139, 137, 137], # cobbles - dark gray
|
| 44 |
+
[255, 228, 181], # drysand - light yellow
|
| 45 |
+
[0, 128, 0], # plant - green
|
| 46 |
+
[135, 206, 235], # sky - sky blue
|
| 47 |
+
[0, 0, 255], # water - blue
|
| 48 |
+
[194, 178, 128] # wetsand - sand brown
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
# Load model function
|
| 52 |
+
def load_model(model_path, device="cuda"):
|
| 53 |
+
try:
|
| 54 |
+
# 如果在HF环境中,默认使用CPU
|
| 55 |
+
if HF_SPACE:
|
| 56 |
+
device = "cpu" # HF Space可能没有GPU
|
| 57 |
+
|
| 58 |
+
model = smp.create_model(
|
| 59 |
+
"DeepLabV3Plus",
|
| 60 |
+
encoder_name="efficientnet-b6",
|
| 61 |
+
in_channels=3,
|
| 62 |
+
classes=len(CLASSES),
|
| 63 |
+
encoder_weights=None
|
| 64 |
+
)
|
| 65 |
+
state_dict = torch.load(model_path, map_location=device)
|
| 66 |
+
if all(k.startswith('model.') for k in state_dict.keys()):
|
| 67 |
+
state_dict = {k[6:]: v for k, v in state_dict.items()}
|
| 68 |
+
model.load_state_dict(state_dict)
|
| 69 |
+
model.to(device)
|
| 70 |
+
model.eval()
|
| 71 |
+
print(f"Model load success: {model_path}")
|
| 72 |
+
return model
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"Model load fail: {e}")
|
| 75 |
+
return None
|
| 76 |
+
|
| 77 |
+
# Load reference vector
|
| 78 |
+
def load_reference_vector(vector_path):
|
| 79 |
+
try:
|
| 80 |
+
ref_vector = np.load(vector_path)
|
| 81 |
+
print(f"reference vector load success: {vector_path}")
|
| 82 |
+
return ref_vector
|
| 83 |
+
except Exception as e:
|
| 84 |
+
print(f"reference vector load {vector_path}: {e}")
|
| 85 |
+
return []
|
| 86 |
+
|
| 87 |
+
# Load reference image
|
| 88 |
+
def load_reference_images(ref_dir):
|
| 89 |
+
try:
|
| 90 |
+
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.bmp']
|
| 91 |
+
image_files = []
|
| 92 |
+
for ext in image_extensions:
|
| 93 |
+
image_files.extend(glob(os.path.join(ref_dir, ext)))
|
| 94 |
+
image_files.sort()
|
| 95 |
+
reference_images = []
|
| 96 |
+
for file in image_files[:4]:
|
| 97 |
+
img = cv2.imread(file)
|
| 98 |
+
if img is not None:
|
| 99 |
+
reference_images.append(img)
|
| 100 |
+
print(f"from {ref_dir} load {len(reference_images)} images")
|
| 101 |
+
return reference_images
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print(f"load image failed {ref_dir}: {e}")
|
| 104 |
+
return []
|
| 105 |
+
|
| 106 |
+
# Preprocess the image
|
| 107 |
+
def preprocess_image(image):
|
| 108 |
+
if image.shape[2] == 4:
|
| 109 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
|
| 110 |
+
orig_h, orig_w = image.shape[:2]
|
| 111 |
+
image_resized = cv2.resize(image, (1024, 1024))
|
| 112 |
+
image_norm = image_resized.astype(np.float32) / 255.0
|
| 113 |
+
mean = np.array([0.485, 0.456, 0.406])
|
| 114 |
+
std = np.array([0.229, 0.224, 0.225])
|
| 115 |
+
image_norm = (image_norm - mean) / std
|
| 116 |
+
image_tensor = torch.from_numpy(image_norm.transpose(2, 0, 1)).float().unsqueeze(0)
|
| 117 |
+
return image_tensor, orig_h, orig_w
|
| 118 |
+
|
| 119 |
+
# Generate segmentation map and visualization
|
| 120 |
+
def generate_segmentation_map(prediction, orig_h, orig_w):
|
| 121 |
+
mask = prediction.argmax(1).squeeze().cpu().numpy().astype(np.uint8)
|
| 122 |
+
mask_resized = cv2.resize(mask, (orig_w, orig_h), interpolation=cv2.INTER_NEAREST)
|
| 123 |
+
kernel = np.ones((5, 5), np.uint8)
|
| 124 |
+
processed_mask = mask_resized.copy()
|
| 125 |
+
for idx in range(1, len(CLASSES)):
|
| 126 |
+
class_mask = (mask_resized == idx).astype(np.uint8)
|
| 127 |
+
dilated_mask = cv2.dilate(class_mask, kernel, iterations=2)
|
| 128 |
+
dilated_effect = dilated_mask & (mask_resized == 0)
|
| 129 |
+
processed_mask[dilated_effect > 0] = idx
|
| 130 |
+
segmentation_map = np.zeros((orig_h, orig_w, 3), dtype=np.uint8)
|
| 131 |
+
for idx, color in enumerate(COLORS):
|
| 132 |
+
segmentation_map[processed_mask == idx] = color
|
| 133 |
+
return segmentation_map
|
| 134 |
+
|
| 135 |
+
# Analysis result HTML
|
| 136 |
+
def create_analysis_result(mask):
|
| 137 |
+
total_pixels = mask.size
|
| 138 |
+
percentages = {cls: round((np.sum(mask == i) / total_pixels) * 100, 1)
|
| 139 |
+
for i, cls in enumerate(CLASSES)}
|
| 140 |
+
ordered = ['sky', 'cobbles', 'plant', 'drysand', 'wetsand', 'water']
|
| 141 |
+
result = "<div style='font-size:18px;font-weight:bold;'>"
|
| 142 |
+
result += " | ".join(f"{cls}: {percentages.get(cls,0)}%" for cls in ordered)
|
| 143 |
+
result += "</div>"
|
| 144 |
+
return result
|
| 145 |
+
|
| 146 |
+
# Merge and overlay
|
| 147 |
+
def create_overlay(image, segmentation_map, alpha=0.5):
|
| 148 |
+
if image.shape[:2] != segmentation_map.shape[:2]:
|
| 149 |
+
segmentation_map = cv2.resize(segmentation_map, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
|
| 150 |
+
return cv2.addWeighted(image, 1-alpha, segmentation_map, alpha, 0)
|
| 151 |
+
|
| 152 |
+
# Perform segmentation
|
| 153 |
+
def perform_segmentation(model, image_bgr):
|
| 154 |
+
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
|
| 155 |
+
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
|
| 156 |
+
image_tensor, orig_h, orig_w = preprocess_image(image_rgb)
|
| 157 |
+
with torch.no_grad():
|
| 158 |
+
prediction = model(image_tensor.to(device))
|
| 159 |
+
seg_map = generate_segmentation_map(prediction, orig_h, orig_w) # RGB
|
| 160 |
+
overlay = create_overlay(image_rgb, seg_map)
|
| 161 |
+
mask = prediction.argmax(1).squeeze().cpu().numpy()
|
| 162 |
+
analysis = create_analysis_result(mask)
|
| 163 |
+
return seg_map, overlay, analysis
|
| 164 |
+
|
| 165 |
+
# Single image processing
|
| 166 |
+
def process_coastal_image(location, input_image):
|
| 167 |
+
if input_image is None:
|
| 168 |
+
return None, None, "请上传一张图片", "未检测", None
|
| 169 |
+
|
| 170 |
+
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
|
| 171 |
+
model = load_model(MODEL_PATHS[location], device)
|
| 172 |
+
|
| 173 |
+
if model is None:
|
| 174 |
+
return None, None, f"错误:无法加载模型", "未检测", None
|
| 175 |
+
|
| 176 |
+
ref_vector = load_reference_vector(REFERENCE_VECTOR_PATHS[location]) if os.path.exists(REFERENCE_VECTOR_PATHS[location]) else []
|
| 177 |
+
ref_images = load_reference_images(REFERENCE_IMAGE_DIRS[location])
|
| 178 |
+
|
| 179 |
+
outlier_status = "未检测"
|
| 180 |
+
is_outlier = False
|
| 181 |
+
image_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
| 182 |
+
|
| 183 |
+
if len(ref_vector) > 0:
|
| 184 |
+
filtered, _ = detect_outliers(ref_images, [image_bgr], ref_vector)
|
| 185 |
+
is_outlier = len(filtered) == 0
|
| 186 |
+
else:
|
| 187 |
+
filtered, _ = detect_outliers(ref_images, [image_bgr])
|
| 188 |
+
is_outlier = len(filtered) == 0
|
| 189 |
+
|
| 190 |
+
outlier_status = "异常检测: <span style='color:red;font-weight:bold'>未通过</span>" if is_outlier else "异常检测: <span style='color:green;font-weight:bold'>通过</span>"
|
| 191 |
+
seg_map, overlay, analysis = perform_segmentation(model, image_bgr)
|
| 192 |
+
|
| 193 |
+
# 在HF环境中不上传,只返回本地结果
|
| 194 |
+
url = "本地存储"
|
| 195 |
+
if not HF_SPACE:
|
| 196 |
+
try:
|
| 197 |
+
url = upload_mask(Image.fromarray(seg_map), prefix=location.replace(' ', '_'))
|
| 198 |
+
except Exception as e:
|
| 199 |
+
print(f"Upload failed: {e}")
|
| 200 |
+
url = "上传错误"
|
| 201 |
+
|
| 202 |
+
if is_outlier:
|
| 203 |
+
analysis = "<div style='color:red;font-weight:bold;margin-bottom:10px'>警告:图像未通过异常检测,结果可能不准确!</div>" + analysis
|
| 204 |
+
|
| 205 |
+
return seg_map, overlay, analysis, outlier_status, url
|
| 206 |
+
|
| 207 |
+
# Spacial Alignment
|
| 208 |
+
def process_with_alignment(location, reference_image, input_image):
|
| 209 |
+
if reference_image is None or input_image is None:
|
| 210 |
+
return None, None, None, None, "请上传参考图像和需要分析的图像", "未处理", None
|
| 211 |
+
|
| 212 |
+
device = "cuda" if torch.cuda.is_available() and not HF_SPACE else "cpu"
|
| 213 |
+
model = load_model(MODEL_PATHS[location], device)
|
| 214 |
+
|
| 215 |
+
if model is None:
|
| 216 |
+
return None, None, None, None, "错误:无法加载模型", "未处理", None
|
| 217 |
+
|
| 218 |
+
ref_bgr = cv2.cvtColor(np.array(reference_image), cv2.COLOR_RGB2BGR)
|
| 219 |
+
tgt_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
| 220 |
+
|
| 221 |
+
aligned, _ = align_images([ref_bgr, tgt_bgr], [np.zeros_like(ref_bgr), np.zeros_like(tgt_bgr)])
|
| 222 |
+
aligned_tgt_bgr = aligned[1]
|
| 223 |
+
|
| 224 |
+
seg_map, overlay, analysis = perform_segmentation(model, aligned_tgt_bgr)
|
| 225 |
+
|
| 226 |
+
# 在HF环境中不上传,只返回本地结果
|
| 227 |
+
url = "本地存储"
|
| 228 |
+
if not HF_SPACE:
|
| 229 |
+
try:
|
| 230 |
+
url = upload_mask(Image.fromarray(seg_map), prefix="aligned_" + location.replace(' ', '_'))
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"Upload failed: {e}")
|
| 233 |
+
url = "上传错误"
|
| 234 |
+
|
| 235 |
+
status = "空间对齐: <span style='color:green;font-weight:bold'>完成</span>"
|
| 236 |
+
ref_rgb = cv2.cvtColor(ref_bgr, cv2.COLOR_BGR2RGB)
|
| 237 |
+
aligned_tgt_rgb = cv2.cvtColor(aligned_tgt_bgr, cv2.COLOR_BGR2RGB)
|
| 238 |
+
|
| 239 |
+
return ref_rgb, aligned_tgt_rgb, seg_map, overlay, analysis, status, url
|
| 240 |
+
|
| 241 |
+
# Create the Gradio interface
|
| 242 |
+
def create_interface():
|
| 243 |
+
scale = 0.5
|
| 244 |
+
disp_w, disp_h = int(1365*scale), int(1024*scale)
|
| 245 |
+
with gr.Blocks(title="海岸侵蚀分析系统") as demo:
|
| 246 |
+
gr.Markdown("""# 海岸侵蚀分析系统
|
| 247 |
+
|
| 248 |
+
上传海岸照片进行分析,包括分割和空间对齐功能。""")
|
| 249 |
+
with gr.Tabs():
|
| 250 |
+
with gr.TabItem("单张图像分割"):
|
| 251 |
+
with gr.Row():
|
| 252 |
+
loc1 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0])
|
| 253 |
+
with gr.Row():
|
| 254 |
+
inp = gr.Image(label="输入图像", type="numpy", image_mode="RGB")
|
| 255 |
+
seg = gr.Image(label="分割图像", type="numpy", width=disp_w, height=disp_h)
|
| 256 |
+
ovl = gr.Image(label="叠加图像", type="numpy", width=disp_w, height=disp_h)
|
| 257 |
+
with gr.Row():
|
| 258 |
+
btn1 = gr.Button("执行分割")
|
| 259 |
+
url1 = gr.Text(label="分割图URL")
|
| 260 |
+
status1 = gr.HTML(label="异常检测状态")
|
| 261 |
+
res1 = gr.HTML(label="分析结果")
|
| 262 |
+
btn1.click(fn=process_coastal_image,inputs=[loc1, inp],outputs=[seg, ovl, res1, status1, url1])
|
| 263 |
+
|
| 264 |
+
with gr.TabItem("空间对齐分割"):
|
| 265 |
+
with gr.Row():
|
| 266 |
+
loc2 = gr.Radio(list(MODEL_PATHS.keys()), label="选择模型", value=list(MODEL_PATHS.keys())[0])
|
| 267 |
+
with gr.Row():
|
| 268 |
+
ref_img = gr.Image(label="参考图像", type="numpy", image_mode="RGB")
|
| 269 |
+
tgt_img = gr.Image(label="待分析图像", type="numpy", image_mode="RGB")
|
| 270 |
+
with gr.Row():
|
| 271 |
+
btn2 = gr.Button("执行空间对齐分割")
|
| 272 |
+
with gr.Row():
|
| 273 |
+
orig = gr.Image(label="原始图像", type="numpy", width=disp_w, height=disp_h)
|
| 274 |
+
aligned = gr.Image(label="对齐后图像", type="numpy", width=disp_w, height=disp_h)
|
| 275 |
+
with gr.Row():
|
| 276 |
+
seg2 = gr.Image(label="分割图像", type="numpy", width=disp_w, height=disp_h)
|
| 277 |
+
ovl2 = gr.Image(label="叠加图像", type="numpy", width=disp_w, height=disp_h)
|
| 278 |
+
url2 = gr.Text(label="分割图URL")
|
| 279 |
+
status2 = gr.HTML(label="空间对齐状态")
|
| 280 |
+
res2 = gr.HTML(label="分析结果")
|
| 281 |
+
btn2.click(fn=process_with_alignment, inputs=[loc2, ref_img, tgt_img], outputs=[orig, aligned, seg2, ovl2, res2, status2, url2])
|
| 282 |
+
return demo
|
| 283 |
+
|
| 284 |
+
if __name__ == "__main__":
|
| 285 |
+
for path in ["models", "reference_images/MM", "reference_images/SJ"]:
|
| 286 |
+
os.makedirs(path, exist_ok=True)
|
| 287 |
+
for p in MODEL_PATHS.values():
|
| 288 |
+
if not os.path.exists(p):
|
| 289 |
+
print(f"警告:模型文件 {p} 不存在!")
|
| 290 |
+
demo = create_interface()
|
| 291 |
+
# 在HF环境中使用适当的启动配置
|
| 292 |
+
if HF_SPACE:
|
| 293 |
+
demo.launch()
|
| 294 |
+
else:
|
| 295 |
+
demo.launch(share=True)
|