Spaces:
Running
on
Zero
Running
on
Zero
File size: 75,706 Bytes
eb18eb8 81aa2cc a7aafe6 dda3cf4 eb18eb8 9348685 eb18eb8 6e0a758 eb18eb8 dda3cf4 eb18eb8 6e0a758 eb18eb8 a7aafe6 eb18eb8 6e0a758 dda3cf4 4b5a45d dda3cf4 a7aafe6 dda3cf4 3893764 dda3cf4 3b9b8cb 6e0a758 eb18eb8 6e0a758 eb18eb8 6e0a758 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 eb18eb8 dda3cf4 eb18eb8 dda3cf4 6e0a758 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 3893764 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 3893764 dda3cf4 3893764 a7aafe6 dda3cf4 a7aafe6 dda3cf4 3893764 a7aafe6 dda3cf4 3893764 dda3cf4 a7aafe6 dda3cf4 3893764 dda3cf4 a7aafe6 dda3cf4 a7aafe6 3893764 dda3cf4 b20f699 dda3cf4 b20f699 dda3cf4 a7aafe6 3893764 dda3cf4 3893764 dda3cf4 a7aafe6 dda3cf4 a7aafe6 eb18eb8 dda3cf4 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 dda3cf4 a7aafe6 eb18eb8 a7aafe6 eb18eb8 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 a7aafe6 dda3cf4 eb18eb8 dda3cf4 eb18eb8 6e0a758 eb18eb8 3893764 eb18eb8 0c67338 93038cf 3893764 eb18eb8 dda3cf4 93038cf 3893764 dda3cf4 3893764 dda3cf4 3893764 dda3cf4 eb18eb8 3893764 eb18eb8 3893764 eb18eb8 3893764 0c67338 3893764 0c67338 3893764 0c67338 3893764 0c67338 3893764 dda3cf4 0c67338 3893764 eb18eb8 dda3cf4 eb18eb8 3893764 eb18eb8 dda3cf4 eb18eb8 f6dab9d 93038cf dda3cf4 f6dab9d 93038cf dda3cf4 93038cf dda3cf4 93038cf f5c1dd1 eb18eb8 3893764 dda3cf4 3893764 dda3cf4 3893764 dda3cf4 eb18eb8 6e0a758 eb18eb8 dda3cf4 eb18eb8 dda3cf4 0c67338 0f1416b 3893764 eb18eb8 3893764 64dc197 3893764 eb18eb8 64dc197 eb18eb8 64dc197 eb18eb8 64dc197 eb18eb8 64dc197 eb18eb8 dda3cf4 eb18eb8 3893764 6e0a758 eb18eb8 dda3cf4 eb18eb8 dda3cf4 eb18eb8 a7aafe6 eb18eb8 dda3cf4 eb18eb8 dda3cf4 c2e9f6f dda3cf4 c2e9f6f dda3cf4 eb18eb8 6e0a758 dda3cf4 3893764 dda3cf4 3893764 dda3cf4 3893764 dda3cf4 3893764 dda3cf4 3893764 dda3cf4 64dc197 dda3cf4 64dc197 dda3cf4 64dc197 dda3cf4 64dc197 dda3cf4 c2e9f6f dda3cf4 eb18eb8 dda3cf4 eb18eb8 dda3cf4 b20f699 eb18eb8 a7aafe6 b4d2a92 eb18eb8 b20f699 b4d2a92 eb18eb8 dda3cf4 b4d2a92 eb18eb8 b4d2a92 eb18eb8 b4d2a92 eb18eb8 dda3cf4 ed1a9f7 dda3cf4 ed1a9f7 dda3cf4 eb18eb8 b20f699 dda3cf4 b20f699 dda3cf4 eb18eb8 b20f699 eb18eb8 dda3cf4 b20f699 dda3cf4 b20f699 dda3cf4 eb18eb8 dda3cf4 eb18eb8 dda3cf4 b20f699 dda3cf4 b20f699 dda3cf4 eb18eb8 dda3cf4 eb18eb8 b20f699 eb18eb8 b20f699 eb18eb8 b20f699 eb18eb8 b20f699 eb18eb8 dda3cf4 b20f699 dda3cf4 eb18eb8 0c67338 eb18eb8 b20f699 dda3cf4 eb18eb8 dda3cf4 eb18eb8 93038cf 3893764 eb18eb8 3893764 b20f699 3893764 eb18eb8 64dc197 eb18eb8 64dc197 eb18eb8 b20f699 dda3cf4 eb18eb8 dda3cf4 eb18eb8 dda3cf4 eb18eb8 64dc197 eb18eb8 dda3cf4 64dc197 eb18eb8 dda3cf4 eb18eb8 dda3cf4 64dc197 eb18eb8 0c67338 93038cf 3893764 eb18eb8 a7aafe6 eb18eb8 757995e eb18eb8 dda3cf4 eb18eb8 dda3cf4 81aa2cc dda3cf4 0c67338 dda3cf4 eb18eb8 dda3cf4 eb18eb8 3893764 eb18eb8 0c67338 3893764 dda3cf4 0c67338 3893764 0c67338 eb18eb8 dda3cf4 eb18eb8 dda3cf4 b20f699 223ed70 b20f699 dda3cf4 eb18eb8 dda3cf4 eb18eb8 dda3cf4 64dc197 dda3cf4 6e0a758 eb18eb8 93038cf dda3cf4 93038cf 3893764 eb18eb8 dda3cf4 eb18eb8 dda3cf4 eb18eb8 dda3cf4 64dc197 dda3cf4 64dc197 dda3cf4 eb18eb8 dda3cf4 64dc197 dda3cf4 64dc197 dda3cf4 eb18eb8 64dc197 dda3cf4 64dc197 dda3cf4 eb18eb8 dda3cf4 eb18eb8 dda3cf4 eb18eb8 dda3cf4 eb18eb8 b20f699 dda3cf4 3893764 eb18eb8 6e0a758 eb18eb8 6e0a758 eb18eb8 3b9b8cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 |
"""
Lyra/Lune Flow-Matching Inference Space
Author: AbstractPhil
License: MIT
SD1.5 and SDXL-based flow matching with geometric crystalline architectures.
Supports Illustrious XL, standard SDXL, and SD1.5 variants.
Lyra VAE Versions:
- v1: SD1.5 (768 dim CLIP + T5-base) - geofractal.model.vae.vae_lyra
- v2: SDXL/Illustrious (768 CLIP-L + 1280 CLIP-G + 2048 T5-XL) - geofractal.model.vae.vae_lyra_v2
Features:
- Lazy loading: T5 and Lyra only download when first used
- Multiple schedulers: Euler Ancestral, Euler, DPM++ 2M SDE, DPM++ 2M
- Integrated loader module for automatic version detection
"""
import os
import json
import torch
import gradio as gr
import numpy as np
from PIL import Image
from typing import Optional, Dict, Tuple, Union
import spaces
from safetensors.torch import load_file as load_safetensors
from diffusers import (
UNet2DConditionModel,
AutoencoderKL,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSDEScheduler,
)
from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPTextModelWithProjection,
T5EncoderModel,
T5Tokenizer
)
from huggingface_hub import hf_hub_download
# Import Lyra VAE v1 (SD1.5) from geofractal
try:
from geofractal.model.vae.vae_lyra import MultiModalVAE as LyraV1, MultiModalVAEConfig as LyraV1Config
LYRA_V1_AVAILABLE = True
except ImportError:
print("β οΈ Lyra VAE v1 not available")
LYRA_V1_AVAILABLE = False
# Import Lyra VAE v2 (SDXL/Illustrious) from geofractal
try:
from geofractal.model.vae.vae_lyra_v2 import MultiModalVAE as LyraV2, MultiModalVAEConfig as LyraV2Config
LYRA_V2_AVAILABLE = True
except ImportError:
print("β οΈ Lyra VAE v2 not available")
LYRA_V2_AVAILABLE = False
# Import Lyra loader module
try:
from geofractal.model.vae.loader import load_vae_lyra, load_lyra_illustrious
LYRA_LOADER_AVAILABLE = True
except ImportError:
print("β οΈ Lyra loader module not available, using fallback")
LYRA_LOADER_AVAILABLE = False
# ============================================================================
# CONSTANTS
# ============================================================================
ARCH_SD15 = "sd15"
ARCH_SDXL = "sdxl"
# Scheduler names
SCHEDULER_EULER_A = "Euler Ancestral"
SCHEDULER_EULER = "Euler"
SCHEDULER_DPM_2M_SDE = "DPM++ 2M SDE"
SCHEDULER_DPM_2M = "DPM++ 2M"
SCHEDULER_CHOICES = [
SCHEDULER_EULER_A,
SCHEDULER_EULER,
SCHEDULER_DPM_2M_SDE,
SCHEDULER_DPM_2M,
]
# ComfyUI key prefixes for SDXL single-file checkpoints
COMFYUI_UNET_PREFIX = "model.diffusion_model."
COMFYUI_CLIP_L_PREFIX = "conditioner.embedders.0.transformer."
COMFYUI_CLIP_G_PREFIX = "conditioner.embedders.1.model."
COMFYUI_VAE_PREFIX = "first_stage_model."
# Lyra repos
LYRA_ILLUSTRIOUS_REPO = "AbstractPhil/vae-lyra-xl-adaptive-cantor-illustrious"
LYRA_SD15_REPO = "AbstractPhil/vae-lyra"
# T5 model - use flan-t5-xl (what Lyra was trained on)
T5_XL_MODEL = "google/flan-t5-xl"
T5_BASE_MODEL = "google/flan-t5-base"
# ============================================================================
# LAZY LOADERS
# ============================================================================
class LazyT5Encoder:
"""Lazy loader for T5 encoder - only downloads/loads when first accessed."""
def __init__(self, model_name: str = T5_XL_MODEL, device: str = "cuda", dtype=torch.float16):
self.model_name = model_name
self.device = device
self.dtype = dtype
self._encoder = None
self._tokenizer = None
self._loaded = False
@property
def encoder(self) -> T5EncoderModel:
if self._encoder is None:
print(f"π₯ Lazy loading T5 encoder: {self.model_name}...")
self._encoder = T5EncoderModel.from_pretrained(
self.model_name,
torch_dtype=self.dtype
).to(self.device)
self._encoder.eval()
print(f"β T5 encoder loaded ({sum(p.numel() for p in self._encoder.parameters())/1e6:.1f}M params)")
self._loaded = True
return self._encoder
@property
def tokenizer(self) -> T5Tokenizer:
if self._tokenizer is None:
print(f"π₯ Loading T5 tokenizer: {self.model_name}...")
self._tokenizer = T5Tokenizer.from_pretrained(self.model_name)
print("β T5 tokenizer loaded")
return self._tokenizer
@property
def is_loaded(self) -> bool:
return self._loaded
def unload(self):
"""Free VRAM by unloading the encoder."""
if self._encoder is not None:
del self._encoder
self._encoder = None
self._loaded = False
torch.cuda.empty_cache()
print("ποΈ T5 encoder unloaded")
class LazyLyraModel:
"""Lazy loader for Lyra VAE - only downloads/loads when first accessed.
Exposes config with modality_seq_lens for proper tokenization lengths.
"""
def __init__(
self,
repo_id: str = LYRA_ILLUSTRIOUS_REPO,
device: str = "cuda",
checkpoint: Optional[str] = None
):
self.repo_id = repo_id
self.device = device
self.checkpoint = checkpoint
self._model = None
self._info = None
self._config = None
self._loaded = False
# Pre-fetch config without loading model (lightweight)
self._prefetch_config()
def _prefetch_config(self):
"""Fetch config.json to get sequence lengths without loading the full model."""
try:
config_path = hf_hub_download(
repo_id=self.repo_id,
filename="config.json",
repo_type="model"
)
with open(config_path, 'r') as f:
self._config = json.load(f)
# Detect version from config
is_v2 = 'modality_seq_lens' in self._config or 'binding_config' in self._config
version = "v2" if is_v2 else "v1"
print(f"π Lyra config prefetched: {self.repo_id} ({version})")
if is_v2:
print(f" Sequence lengths: {self._config.get('modality_seq_lens', {})}")
else:
print(f" Sequence length: {self._config.get('seq_len', 77)}")
except Exception as e:
print(f"β οΈ Could not prefetch Lyra config: {e}")
# Detect version from repo name and use appropriate defaults
is_illustrious = 'illustrious' in self.repo_id.lower() or 'xl' in self.repo_id.lower()
if is_illustrious:
# v2 defaults for SDXL/Illustrious
self._config = {
"modality_dims": {
"clip_l": 768,
"clip_g": 1280,
"t5_xl_l": 2048,
"t5_xl_g": 2048
},
"modality_seq_lens": {
"clip_l": 77,
"clip_g": 77,
"t5_xl_l": 512,
"t5_xl_g": 512
},
"fusion_strategy": "adaptive_cantor",
"latent_dim": 2048
}
else:
# v1 defaults for SD1.5
self._config = {
"modality_dims": {
"clip": 768,
"t5": 768
},
"seq_len": 77,
"fusion_strategy": "cantor",
"latent_dim": 768
}
@property
def config(self) -> Dict:
"""Get model config (available before full model load)."""
return self._config or {}
@property
def modality_seq_lens(self) -> Dict[str, int]:
"""Get sequence lengths for each modality.
Handles both v1 (seq_len) and v2 (modality_seq_lens) config formats.
"""
# v2 format: modality_seq_lens dict
if 'modality_seq_lens' in self.config:
return self.config['modality_seq_lens']
# v1 format: derive from single seq_len
seq_len = self.config.get('seq_len', 77)
modality_dims = self.config.get('modality_dims', {})
# Return seq_len for all modalities in v1
return {name: seq_len for name in modality_dims.keys()}
@property
def t5_max_length(self) -> int:
"""Get T5 max sequence length from config.
Handles both v1 (seq_len) and v2 (modality_seq_lens) config formats.
"""
# v2 format: modality_seq_lens dict
if 'modality_seq_lens' in self.config:
seq_lens = self.config['modality_seq_lens']
return seq_lens.get('t5_xl_l', seq_lens.get('t5_xl_g', 512))
# v1 format: single seq_len
return self.config.get('seq_len', 77)
@property
def clip_max_length(self) -> int:
"""Get CLIP max sequence length from config.
Handles both v1 (seq_len) and v2 (modality_seq_lens) config formats.
"""
# v2 format: modality_seq_lens dict
if 'modality_seq_lens' in self.config:
seq_lens = self.config['modality_seq_lens']
return seq_lens.get('clip_l', 77)
# v1 format: single seq_len (same for all modalities)
return self.config.get('seq_len', 77)
@property
def model(self):
if self._model is None:
print(f"π₯ Lazy loading Lyra VAE: {self.repo_id}...")
if LYRA_LOADER_AVAILABLE:
# Use the loader module
self._model, self._info = load_vae_lyra(
self.repo_id,
checkpoint=self.checkpoint,
device=self.device,
return_info=True
)
# Update config from loaded info
if self._info and 'config' in self._info:
self._config = self._info['config']
else:
# Fallback to manual loading
self._model = self._load_fallback()
self._info = {"repo_id": self.repo_id, "version": "v2", "config": self._config}
self._model.eval()
self._loaded = True
print(f"β Lyra VAE loaded")
return self._model
@property
def info(self) -> Optional[Dict]:
if self._info is None:
return {"repo_id": self.repo_id, "config": self._config}
return self._info
@property
def is_loaded(self) -> bool:
return self._loaded
def _load_fallback(self):
"""Fallback loading if loader module not available."""
if not LYRA_V2_AVAILABLE:
raise ImportError("Lyra VAE v2 not available")
# Config already prefetched
config_dict = self._config
# Use provided checkpoint or find one
if self.checkpoint and self.checkpoint.strip():
checkpoint_file = self.checkpoint.strip()
# Add weights/ prefix if not present and file doesn't exist at root
if not checkpoint_file.startswith('weights/'):
checkpoint_file = f"weights/{checkpoint_file}"
print(f"[Lyra] Using specified checkpoint: {checkpoint_file}")
else:
# Find checkpoint automatically
from huggingface_hub import list_repo_files
repo_files = list_repo_files(self.repo_id, repo_type="model")
checkpoint_files = [f for f in repo_files if f.endswith('.safetensors') or f.endswith('.pt')]
# Prefer weights/ folder
weights_files = [f for f in checkpoint_files if f.startswith('weights/')]
if weights_files:
checkpoint_file = sorted(weights_files)[-1] # Latest
elif checkpoint_files:
checkpoint_file = checkpoint_files[0]
else:
raise FileNotFoundError(f"No checkpoint found in {self.repo_id}")
print(f"[Lyra] Auto-selected checkpoint: {checkpoint_file}")
checkpoint_path = hf_hub_download(
repo_id=self.repo_id,
filename=checkpoint_file,
repo_type="model"
)
# Load weights
if checkpoint_file.endswith('.safetensors'):
state_dict = load_safetensors(checkpoint_path, device="cpu")
else:
checkpoint = torch.load(checkpoint_path, map_location="cpu")
state_dict = checkpoint.get('model_state_dict', checkpoint)
# Build config with all fields from prefetched config
vae_config = LyraV2Config(
modality_dims=config_dict.get('modality_dims'),
modality_seq_lens=config_dict.get('modality_seq_lens'),
binding_config=config_dict.get('binding_config'),
latent_dim=config_dict.get('latent_dim', 2048),
hidden_dim=config_dict.get('hidden_dim', 2048),
fusion_strategy=config_dict.get('fusion_strategy', 'adaptive_cantor'),
encoder_layers=config_dict.get('encoder_layers', 3),
decoder_layers=config_dict.get('decoder_layers', 3),
fusion_heads=config_dict.get('fusion_heads', 8),
cantor_depth=config_dict.get('cantor_depth', 8),
cantor_local_window=config_dict.get('cantor_local_window', 3),
alpha_init=config_dict.get('alpha_init', 1.0),
beta_init=config_dict.get('beta_init', 0.3),
)
model = LyraV2(vae_config)
model.load_state_dict(state_dict, strict=False)
model.to(self.device)
return model
def unload(self):
"""Free VRAM by unloading the model."""
if self._model is not None:
del self._model
self._model = None
self._info = None
self._loaded = False
torch.cuda.empty_cache()
print("ποΈ Lyra VAE unloaded")
# ============================================================================
# SCHEDULER FACTORY
# ============================================================================
def get_scheduler(
scheduler_name: str,
config_source: str = "stabilityai/stable-diffusion-xl-base-1.0",
is_sdxl: bool = True
):
"""Create scheduler by name.
Args:
scheduler_name: One of SCHEDULER_CHOICES
config_source: HF repo to load scheduler config from
is_sdxl: Whether this is for SDXL (affects some defaults)
Returns:
Configured scheduler instance
"""
subfolder = "scheduler"
if scheduler_name == SCHEDULER_EULER_A:
return EulerAncestralDiscreteScheduler.from_pretrained(
config_source,
subfolder=subfolder
)
elif scheduler_name == SCHEDULER_EULER:
return EulerDiscreteScheduler.from_pretrained(
config_source,
subfolder=subfolder
)
elif scheduler_name == SCHEDULER_DPM_2M_SDE:
# DPM++ 2M SDE - good for detailed images
return DPMSolverSDEScheduler.from_pretrained(
config_source,
subfolder=subfolder,
algorithm_type="sde-dpmsolver++",
solver_order=2,
use_karras_sigmas=True,
)
elif scheduler_name == SCHEDULER_DPM_2M:
# DPM++ 2M - fast and quality
return DPMSolverMultistepScheduler.from_pretrained(
config_source,
subfolder=subfolder,
algorithm_type="dpmsolver++",
solver_order=2,
use_karras_sigmas=True,
)
else:
print(f"β οΈ Unknown scheduler '{scheduler_name}', defaulting to Euler Ancestral")
return EulerAncestralDiscreteScheduler.from_pretrained(
config_source,
subfolder=subfolder
)
# ============================================================================
# UTILITIES
# ============================================================================
def get_clip_hidden_state(
model_output,
clip_skip: int = 1,
output_hidden_states: bool = True
) -> torch.Tensor:
"""Extract hidden state with clip_skip support."""
if clip_skip == 1 or not output_hidden_states:
return model_output.last_hidden_state
if hasattr(model_output, 'hidden_states') and model_output.hidden_states is not None:
return model_output.hidden_states[-clip_skip]
return model_output.last_hidden_state
# ============================================================================
# SDXL PIPELINE
# ============================================================================
class SDXLFlowMatchingPipeline:
"""Pipeline for SDXL-based flow-matching inference with dual CLIP encoders.
Uses lazy loading for T5 and Lyra - they're only downloaded when actually used.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler,
device: str = "cuda",
t5_loader: Optional[LazyT5Encoder] = None,
lyra_loader: Optional[LazyLyraModel] = None,
clip_skip: int = 1
):
self.vae = vae
self.text_encoder = text_encoder
self.text_encoder_2 = text_encoder_2
self.tokenizer = tokenizer
self.tokenizer_2 = tokenizer_2
self.unet = unet
self.scheduler = scheduler
self.device = device
# Lazy loaders for Lyra components
self.t5_loader = t5_loader
self.lyra_loader = lyra_loader
# Settings
self.clip_skip = clip_skip
self.vae_scale_factor = 0.13025
self.arch = ARCH_SDXL
# Track current scheduler name for UI
self._scheduler_name = SCHEDULER_EULER_A
def set_scheduler(self, scheduler_name: str):
"""Switch scheduler without reloading model."""
if scheduler_name != self._scheduler_name:
self.scheduler = get_scheduler(
scheduler_name,
config_source="stabilityai/stable-diffusion-xl-base-1.0",
is_sdxl=True
)
self._scheduler_name = scheduler_name
print(f"β Scheduler changed to: {scheduler_name}")
@property
def t5_encoder(self) -> Optional[T5EncoderModel]:
"""Access T5 encoder (triggers lazy load if needed)."""
return self.t5_loader.encoder if self.t5_loader else None
@property
def t5_tokenizer(self) -> Optional[T5Tokenizer]:
"""Access T5 tokenizer (triggers lazy load if needed)."""
return self.t5_loader.tokenizer if self.t5_loader else None
@property
def lyra_model(self):
"""Access Lyra model (triggers lazy load if needed)."""
return self.lyra_loader.model if self.lyra_loader else None
@property
def lyra_available(self) -> bool:
"""Check if Lyra components are configured (not necessarily loaded)."""
return self.t5_loader is not None and self.lyra_loader is not None
def encode_prompt(
self,
prompt: str,
negative_prompt: str = "",
clip_skip: int = 1
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Encode prompts using dual CLIP encoders for SDXL."""
# CLIP-L encoding
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.device)
with torch.no_grad():
output_hidden_states = clip_skip > 1
clip_l_output = self.text_encoder(
text_input_ids,
output_hidden_states=output_hidden_states
)
prompt_embeds_l = get_clip_hidden_state(clip_l_output, clip_skip, output_hidden_states)
# CLIP-G encoding
text_inputs_2 = self.tokenizer_2(
prompt,
padding="max_length",
max_length=self.tokenizer_2.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids_2 = text_inputs_2.input_ids.to(self.device)
with torch.no_grad():
clip_g_output = self.text_encoder_2(
text_input_ids_2,
output_hidden_states=output_hidden_states
)
prompt_embeds_g = get_clip_hidden_state(clip_g_output, clip_skip, output_hidden_states)
pooled_prompt_embeds = clip_g_output.text_embeds
# Concatenate CLIP-L and CLIP-G embeddings
prompt_embeds = torch.cat([prompt_embeds_l, prompt_embeds_g], dim=-1)
# Negative prompt
if negative_prompt:
uncond_inputs = self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_inputs.input_ids.to(self.device)
uncond_inputs_2 = self.tokenizer_2(
negative_prompt,
padding="max_length",
max_length=self.tokenizer_2.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids_2 = uncond_inputs_2.input_ids.to(self.device)
with torch.no_grad():
uncond_output_l = self.text_encoder(
uncond_input_ids,
output_hidden_states=output_hidden_states
)
negative_embeds_l = get_clip_hidden_state(uncond_output_l, clip_skip, output_hidden_states)
uncond_output_g = self.text_encoder_2(
uncond_input_ids_2,
output_hidden_states=output_hidden_states
)
negative_embeds_g = get_clip_hidden_state(uncond_output_g, clip_skip, output_hidden_states)
negative_pooled = uncond_output_g.text_embeds
negative_prompt_embeds = torch.cat([negative_embeds_l, negative_embeds_g], dim=-1)
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled = torch.zeros_like(pooled_prompt_embeds)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled
def encode_prompt_lyra(
self,
prompt: str,
negative_prompt: str = "",
clip_skip: int = 1,
t5_summary: str = "",
lyra_strength: float = 0.3,
use_separator: bool = True,
clip_include_summary: bool = False
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Encode prompts using Lyra VAE v2 fusion (CLIP + T5).
CLIP encoders receive tags only (prompt field).
T5 encoder receives tags + separator + summary.
Args:
prompt: Tags/keywords for CLIP encoding
negative_prompt: Negative tags
clip_skip: CLIP skip layers
t5_summary: Natural language summary for T5
lyra_strength: Blend factor (0=pure CLIP, 1=pure Lyra)
use_separator: If True, use ΒΆ separator between tags and summary
clip_include_summary: If True, append summary to CLIP input (default False)
This triggers lazy loading of T5 and Lyra if not already loaded.
Uses sequence lengths from Lyra config for proper tokenization.
"""
if not self.lyra_available:
raise ValueError("Lyra VAE components not configured")
# Get sequence lengths from Lyra config (available before full load)
t5_max_length = self.lyra_loader.t5_max_length # 512 for Illustrious
clip_max_length = self.lyra_loader.clip_max_length # 77 for Illustrious
print(f"[Lyra] Using sequence lengths: CLIP={clip_max_length}, T5={t5_max_length}")
# Access properties triggers lazy load
t5_encoder = self.t5_encoder
t5_tokenizer = self.t5_tokenizer
lyra_model = self.lyra_model
# === CLIP ENCODING ===
# CLIP sees tags only (unless clip_include_summary is True)
if clip_include_summary and t5_summary.strip():
clip_prompt = f"{prompt} {t5_summary}"
else:
clip_prompt = prompt
# Get CLIP embeddings with tags only
prompt_embeds, negative_prompt_embeds, pooled, negative_pooled = self.encode_prompt(
clip_prompt, negative_prompt, clip_skip
)
# === T5 ENCODING ===
# T5 sees tags + separator + summary (or tags + summary if no separator)
SUMMARY_SEPARATOR = "ΒΆ"
if t5_summary.strip():
if use_separator:
t5_prompt = f"{prompt} {SUMMARY_SEPARATOR} {t5_summary}"
else:
t5_prompt = f"{prompt} {t5_summary}"
else:
# No summary provided - T5 just sees the tags
t5_prompt = prompt
print(f"[Lyra] CLIP input: {clip_prompt[:80]}...")
print(f"[Lyra] T5 input: {t5_prompt[:80]}...")
# Get T5 embeddings with config-specified max_length
t5_inputs = t5_tokenizer(
t5_prompt,
max_length=t5_max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
).to(self.device)
with torch.no_grad():
t5_embeds = t5_encoder(**t5_inputs).last_hidden_state
# === LYRA FUSION ===
clip_l_dim = 768
clip_g_dim = 1280
clip_l_embeds = prompt_embeds[..., :clip_l_dim]
clip_g_embeds = prompt_embeds[..., clip_l_dim:]
with torch.no_grad():
modality_inputs = {
'clip_l': clip_l_embeds.float(),
'clip_g': clip_g_embeds.float(),
't5_xl_l': t5_embeds.float(),
't5_xl_g': t5_embeds.float()
}
reconstructions, mu, logvar, _ = lyra_model(
modality_inputs,
target_modalities=['clip_l', 'clip_g']
)
lyra_clip_l = reconstructions['clip_l'].to(prompt_embeds.dtype)
lyra_clip_g = reconstructions['clip_g'].to(prompt_embeds.dtype)
# Normalize reconstructions to match input statistics
clip_l_std_ratio = lyra_clip_l.std() / (clip_l_embeds.std() + 1e-8)
clip_g_std_ratio = lyra_clip_g.std() / (clip_g_embeds.std() + 1e-8)
if clip_l_std_ratio > 2.0 or clip_l_std_ratio < 0.5:
lyra_clip_l = (lyra_clip_l - lyra_clip_l.mean()) / (lyra_clip_l.std() + 1e-8)
lyra_clip_l = lyra_clip_l * clip_l_embeds.std() + clip_l_embeds.mean()
if clip_g_std_ratio > 2.0 or clip_g_std_ratio < 0.5:
lyra_clip_g = (lyra_clip_g - lyra_clip_g.mean()) / (lyra_clip_g.std() + 1e-8)
lyra_clip_g = lyra_clip_g * clip_g_embeds.std() + clip_g_embeds.mean()
# Blend original CLIP with Lyra reconstruction
fused_clip_l = (1 - lyra_strength) * clip_l_embeds + lyra_strength * lyra_clip_l
fused_clip_g = (1 - lyra_strength) * clip_g_embeds + lyra_strength * lyra_clip_g
prompt_embeds_fused = torch.cat([fused_clip_l, fused_clip_g], dim=-1)
# === NEGATIVE PROMPT ===
# Negative uses same logic: CLIP sees negative tags only
if negative_prompt:
neg_strength = lyra_strength * 0.5 # Less aggressive for negative
# T5 negative: tags only (no summary for negative)
t5_neg_prompt = negative_prompt
t5_inputs_neg = t5_tokenizer(
t5_neg_prompt,
max_length=t5_max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
).to(self.device)
with torch.no_grad():
t5_embeds_neg = t5_encoder(**t5_inputs_neg).last_hidden_state
neg_clip_l = negative_prompt_embeds[..., :clip_l_dim]
neg_clip_g = negative_prompt_embeds[..., clip_l_dim:]
modality_inputs_neg = {
'clip_l': neg_clip_l.float(),
'clip_g': neg_clip_g.float(),
't5_xl_l': t5_embeds_neg.float(),
't5_xl_g': t5_embeds_neg.float()
}
recon_neg, _, _, _ = lyra_model(modality_inputs_neg, target_modalities=['clip_l', 'clip_g'])
lyra_neg_l = recon_neg['clip_l'].to(negative_prompt_embeds.dtype)
lyra_neg_g = recon_neg['clip_g'].to(negative_prompt_embeds.dtype)
# Normalize
neg_l_ratio = lyra_neg_l.std() / (neg_clip_l.std() + 1e-8)
neg_g_ratio = lyra_neg_g.std() / (neg_clip_g.std() + 1e-8)
if neg_l_ratio > 2.0 or neg_l_ratio < 0.5:
lyra_neg_l = (lyra_neg_l - lyra_neg_l.mean()) / (lyra_neg_l.std() + 1e-8)
lyra_neg_l = lyra_neg_l * neg_clip_l.std() + neg_clip_l.mean()
if neg_g_ratio > 2.0 or neg_g_ratio < 0.5:
lyra_neg_g = (lyra_neg_g - lyra_neg_g.mean()) / (lyra_neg_g.std() + 1e-8)
lyra_neg_g = lyra_neg_g * neg_clip_g.std() + neg_clip_g.mean()
fused_neg_l = (1 - neg_strength) * neg_clip_l + neg_strength * lyra_neg_l
fused_neg_g = (1 - neg_strength) * neg_clip_g + neg_strength * lyra_neg_g
negative_prompt_embeds_fused = torch.cat([fused_neg_l, fused_neg_g], dim=-1)
else:
negative_prompt_embeds_fused = torch.zeros_like(prompt_embeds_fused)
return prompt_embeds_fused, negative_prompt_embeds_fused, pooled, negative_pooled
def _get_add_time_ids(
self,
original_size: Tuple[int, int],
crops_coords_top_left: Tuple[int, int],
target_size: Tuple[int, int],
dtype: torch.dtype
) -> torch.Tensor:
"""Create time embedding IDs for SDXL."""
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype, device=self.device)
return add_time_ids
@torch.no_grad()
def __call__(
self,
prompt: str,
negative_prompt: str = "",
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 20,
guidance_scale: float = 7.5,
shift: float = 0.0,
use_flow_matching: bool = False,
prediction_type: str = "epsilon",
seed: Optional[int] = None,
use_lyra: bool = False,
clip_skip: int = 1,
t5_summary: str = "",
lyra_strength: float = 1.0,
use_separator: bool = True,
clip_include_summary: bool = False,
progress_callback=None
):
"""Generate image using SDXL architecture.
Args:
prompt: Tags/keywords for image generation
negative_prompt: Negative tags
t5_summary: Natural language summary (T5 only, unless clip_include_summary=True)
use_separator: Use ΒΆ separator between tags and summary in T5 input
clip_include_summary: If True, append summary to CLIP input (default False)
seed: Random seed for reproducibility (must be int)
"""
# Create generator with seed for deterministic generation
if seed is not None:
seed = int(seed)
generator = torch.Generator(device=self.device).manual_seed(seed)
print(f"[SDXL Pipeline] Using seed: {seed}")
else:
generator = None
print("[SDXL Pipeline] No seed provided, using random")
# Encode prompts (Lyra triggers lazy load only if use_lyra=True)
if use_lyra and self.lyra_available:
prompt_embeds, negative_prompt_embeds, pooled, negative_pooled = self.encode_prompt_lyra(
prompt, negative_prompt, clip_skip, t5_summary, lyra_strength,
use_separator=use_separator,
clip_include_summary=clip_include_summary
)
else:
prompt_embeds, negative_prompt_embeds, pooled, negative_pooled = self.encode_prompt(
prompt, negative_prompt, clip_skip
)
# Prepare latents
latent_channels = 4
latent_height = height // 8
latent_width = width // 8
latents = torch.randn(
(1, latent_channels, latent_height, latent_width),
generator=generator,
device=self.device,
dtype=torch.float16
)
# Set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.scheduler.timesteps
if not use_flow_matching:
latents = latents * self.scheduler.init_noise_sigma
# Prepare added time embeddings for SDXL
original_size = (height, width)
target_size = (height, width)
crops_coords_top_left = (0, 0)
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=torch.float16
)
negative_add_time_ids = add_time_ids
# Denoising loop
for i, t in enumerate(timesteps):
if progress_callback:
progress_callback(i, num_inference_steps, f"Step {i+1}/{num_inference_steps}")
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
if use_flow_matching and shift > 0:
sigma = t.float() / 1000.0
sigma_shifted = (shift * sigma) / (1 + (shift - 1) * sigma)
scaling = torch.sqrt(1 + sigma_shifted ** 2)
latent_model_input = latent_model_input / scaling
else:
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
timestep = t.expand(latent_model_input.shape[0])
if guidance_scale > 1.0:
text_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
add_text_embeds = torch.cat([negative_pooled, pooled])
add_time_ids_input = torch.cat([negative_add_time_ids, add_time_ids])
else:
text_embeds = prompt_embeds
add_text_embeds = pooled
add_time_ids_input = add_time_ids
added_cond_kwargs = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids_input
}
noise_pred = self.unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeds,
added_cond_kwargs=added_cond_kwargs,
return_dict=False
)[0]
if guidance_scale > 1.0:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if use_flow_matching:
sigma = t.float() / 1000.0
sigma_shifted = (shift * sigma) / (1 + (shift - 1) * sigma)
if prediction_type == "v_prediction":
v_pred = noise_pred
alpha_t = torch.sqrt(1 - sigma_shifted ** 2)
sigma_t = sigma_shifted
noise_pred = alpha_t * v_pred + sigma_t * latents
dt = -1.0 / num_inference_steps
latents = latents + dt * noise_pred
else:
# Pass generator for deterministic ancestral/SDE sampling
latents = self.scheduler.step(
noise_pred, t, latents, generator=generator, return_dict=False
)[0]
# Decode
latents = latents / self.vae_scale_factor
with torch.no_grad():
image = self.vae.decode(latents.to(self.vae.dtype)).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = (image * 255).round().astype("uint8")
image = Image.fromarray(image[0])
return image
# ============================================================================
# SD1.5 PIPELINE
# ============================================================================
class SD15FlowMatchingPipeline:
"""Pipeline for SD1.5-based flow-matching inference."""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler,
device: str = "cuda",
t5_loader: Optional[LazyT5Encoder] = None,
lyra_loader: Optional[LazyLyraModel] = None,
):
self.vae = vae
self.text_encoder = text_encoder
self.tokenizer = tokenizer
self.unet = unet
self.scheduler = scheduler
self.device = device
self.t5_loader = t5_loader
self.lyra_loader = lyra_loader
self.vae_scale_factor = 0.18215
self.arch = ARCH_SD15
self.is_lune_model = False
@property
def t5_encoder(self):
return self.t5_loader.encoder if self.t5_loader else None
@property
def t5_tokenizer(self):
return self.t5_loader.tokenizer if self.t5_loader else None
@property
def lyra_model(self):
return self.lyra_loader.model if self.lyra_loader else None
@property
def lyra_available(self) -> bool:
return self.t5_loader is not None and self.lyra_loader is not None
def encode_prompt(self, prompt: str, negative_prompt: str = ""):
"""Encode text prompts to embeddings."""
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.device)
with torch.no_grad():
prompt_embeds = self.text_encoder(text_input_ids)[0]
if negative_prompt:
uncond_inputs = self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_inputs.input_ids.to(self.device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(uncond_input_ids)[0]
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
return prompt_embeds, negative_prompt_embeds
def encode_prompt_lyra(self, prompt: str, negative_prompt: str = ""):
"""Encode using Lyra VAE v1 (CLIP + T5 fusion).
Uses sequence lengths from Lyra config for proper tokenization.
"""
if not self.lyra_available:
raise ValueError("Lyra VAE components not configured")
# Get sequence length from config (v1 uses same length for clip and t5)
# Default to 77 for SD1.5/v1
t5_max_length = self.lyra_loader.config.get('seq_len', 77)
print(f"[Lyra v1] Using sequence length: {t5_max_length}")
t5_encoder = self.t5_encoder
t5_tokenizer = self.t5_tokenizer
lyra_model = self.lyra_model
# CLIP
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.device)
with torch.no_grad():
clip_embeds = self.text_encoder(text_input_ids)[0]
# T5 with config-specified max_length
t5_inputs = t5_tokenizer(
prompt,
max_length=t5_max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
).to(self.device)
with torch.no_grad():
t5_embeds = t5_encoder(**t5_inputs).last_hidden_state
# Fuse
modality_inputs = {'clip': clip_embeds, 't5': t5_embeds}
with torch.no_grad():
reconstructions, mu, logvar = lyra_model(
modality_inputs,
target_modalities=['clip']
)
prompt_embeds = reconstructions['clip']
# Negative
if negative_prompt:
uncond_inputs = self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_inputs.input_ids.to(self.device)
with torch.no_grad():
clip_embeds_uncond = self.text_encoder(uncond_input_ids)[0]
t5_inputs_uncond = t5_tokenizer(
negative_prompt,
max_length=t5_max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
).to(self.device)
with torch.no_grad():
t5_embeds_uncond = t5_encoder(**t5_inputs_uncond).last_hidden_state
modality_inputs_uncond = {'clip': clip_embeds_uncond, 't5': t5_embeds_uncond}
with torch.no_grad():
reconstructions_uncond, _, _ = lyra_model(
modality_inputs_uncond,
target_modalities=['clip']
)
negative_prompt_embeds = reconstructions_uncond['clip']
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
return prompt_embeds, negative_prompt_embeds
@torch.no_grad()
def __call__(
self,
prompt: str,
negative_prompt: str = "",
height: int = 512,
width: int = 512,
num_inference_steps: int = 20,
guidance_scale: float = 7.5,
shift: float = 2.5,
use_flow_matching: bool = True,
prediction_type: str = "epsilon",
seed: Optional[int] = None,
use_lyra: bool = False,
clip_skip: int = 1,
t5_summary: str = "",
lyra_strength: float = 1.0,
progress_callback=None
):
"""Generate image."""
# Create generator with seed for deterministic generation
if seed is not None:
seed = int(seed)
generator = torch.Generator(device=self.device).manual_seed(seed)
print(f"[SD1.5 Pipeline] Using seed: {seed}")
else:
generator = None
print("[SD1.5 Pipeline] No seed provided, using random")
if use_lyra and self.lyra_available:
prompt_embeds, negative_prompt_embeds = self.encode_prompt_lyra(prompt, negative_prompt)
else:
prompt_embeds, negative_prompt_embeds = self.encode_prompt(prompt, negative_prompt)
latent_channels = 4
latent_height = height // 8
latent_width = width // 8
latents = torch.randn(
(1, latent_channels, latent_height, latent_width),
generator=generator,
device=self.device,
dtype=torch.float32
)
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.scheduler.timesteps
if not use_flow_matching:
latents = latents * self.scheduler.init_noise_sigma
for i, t in enumerate(timesteps):
if progress_callback:
progress_callback(i, num_inference_steps, f"Step {i+1}/{num_inference_steps}")
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
if use_flow_matching and shift > 0:
sigma = t.float() / 1000.0
sigma_shifted = (shift * sigma) / (1 + (shift - 1) * sigma)
scaling = torch.sqrt(1 + sigma_shifted ** 2)
latent_model_input = latent_model_input / scaling
else:
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
timestep = t.expand(latent_model_input.shape[0])
text_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if guidance_scale > 1.0 else prompt_embeds
noise_pred = self.unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeds,
return_dict=False
)[0]
if guidance_scale > 1.0:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if use_flow_matching:
sigma = t.float() / 1000.0
sigma_shifted = (shift * sigma) / (1 + (shift - 1) * sigma)
if prediction_type == "v_prediction":
v_pred = noise_pred
alpha_t = torch.sqrt(1 - sigma_shifted ** 2)
sigma_t = sigma_shifted
noise_pred = alpha_t * v_pred + sigma_t * latents
dt = -1.0 / num_inference_steps
latents = latents + dt * noise_pred
else:
# Pass generator for deterministic ancestral/SDE sampling
latents = self.scheduler.step(
noise_pred, t, latents, generator=generator, return_dict=False
)[0]
latents = latents / self.vae_scale_factor
if self.is_lune_model:
latents = latents * 5.52
with torch.no_grad():
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = (image * 255).round().astype("uint8")
image = Image.fromarray(image[0])
return image
# ============================================================================
# MODEL LOADERS
# ============================================================================
def load_lune_checkpoint(repo_id: str, filename: str, device: str = "cuda"):
"""Load Lune checkpoint from .pt file."""
print(f"π₯ Downloading: {repo_id}/{filename}")
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="model")
checkpoint = torch.load(checkpoint_path, map_location="cpu")
print(f"ποΈ Initializing SD1.5 UNet...")
unet = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="unet",
torch_dtype=torch.float32
)
student_state_dict = checkpoint["student"]
cleaned_dict = {}
for key, value in student_state_dict.items():
if key.startswith("unet."):
cleaned_dict[key[5:]] = value
else:
cleaned_dict[key] = value
unet.load_state_dict(cleaned_dict, strict=False)
step = checkpoint.get("gstep", "unknown")
print(f"β
Loaded Lune from step {step}")
return unet.to(device)
def load_illustrious_xl(
repo_id: str = "AbstractPhil/vae-lyra-xl-adaptive-cantor-illustrious",
filename: str = "",
device: str = "cuda"
) -> Tuple[UNet2DConditionModel, AutoencoderKL, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPTokenizer]:
"""Load Illustrious XL from single safetensors file."""
from diffusers import StableDiffusionXLPipeline
# Default checkpoint if none specified
if not filename or not filename.strip():
filename = "illustriousXL_v01.safetensors"
print(f"π₯ Loading Illustrious XL: {repo_id}/{filename}")
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="model")
print(f"β Downloaded: {checkpoint_path}")
print("π¦ Loading with StableDiffusionXLPipeline.from_single_file()...")
pipe = StableDiffusionXLPipeline.from_single_file(
checkpoint_path,
torch_dtype=torch.float16,
use_safetensors=True,
)
unet = pipe.unet.to(device)
vae = pipe.vae.to(device)
text_encoder = pipe.text_encoder.to(device)
text_encoder_2 = pipe.text_encoder_2.to(device)
tokenizer = pipe.tokenizer
tokenizer_2 = pipe.tokenizer_2
del pipe
torch.cuda.empty_cache()
print("β
Illustrious XL loaded!")
print(f" UNet params: {sum(p.numel() for p in unet.parameters()):,}")
print(f" VAE params: {sum(p.numel() for p in vae.parameters()):,}")
return unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2
def load_sdxl_base(device: str = "cuda"):
"""Load standard SDXL base model."""
print("π₯ Loading SDXL Base 1.0...")
unet = UNet2DConditionModel.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
subfolder="unet",
torch_dtype=torch.float16
).to(device)
# Use fp16-fix VAE to avoid NaN issues with SDXL's original VAE in fp16
print(" Using madebyollin/sdxl-vae-fp16-fix for stable fp16 decoding...")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16
).to(device)
text_encoder = CLIPTextModel.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
subfolder="text_encoder",
torch_dtype=torch.float16
).to(device)
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
subfolder="text_encoder_2",
torch_dtype=torch.float16
).to(device)
tokenizer = CLIPTokenizer.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
subfolder="tokenizer"
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
subfolder="tokenizer_2"
)
print("β
SDXL Base loaded!")
return unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2
# ============================================================================
# PIPELINE INITIALIZATION
# ============================================================================
def initialize_pipeline(model_choice: str, device: str = "cuda", checkpoint: str = "", lyra_checkpoint: str = ""):
"""Initialize the complete pipeline based on model choice.
Uses lazy loading for T5 and Lyra - they won't be downloaded until first use.
Args:
model_choice: Model selection from dropdown
device: Target device
checkpoint: Optional custom checkpoint filename (e.g., "my_model.safetensors")
lyra_checkpoint: Optional custom Lyra VAE checkpoint filename
"""
print(f"π Initializing {model_choice} pipeline...")
if checkpoint:
print(f" Custom model checkpoint: {checkpoint}")
if lyra_checkpoint:
print(f" Custom Lyra checkpoint: {lyra_checkpoint}")
is_sdxl = "Illustrious" in model_choice or "SDXL" in model_choice
is_lune = "Lune" in model_choice
if is_sdxl:
# SDXL-based models
if "Illustrious" in model_choice:
unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2 = load_illustrious_xl(
device=device,
filename=checkpoint
)
else:
unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2 = load_sdxl_base(device=device)
# Create LAZY loaders for T5 and Lyra (no download yet!)
print("π Configuring lazy loaders for T5-XL and Lyra VAE (will download on first use)")
t5_loader = LazyT5Encoder(
model_name=T5_XL_MODEL, # google/flan-t5-xl
device=device,
dtype=torch.float16
)
lyra_loader = LazyLyraModel(
repo_id=LYRA_ILLUSTRIOUS_REPO,
device=device,
checkpoint=lyra_checkpoint if lyra_checkpoint and lyra_checkpoint.strip() else None
)
# Default scheduler: Euler Ancestral
scheduler = get_scheduler(SCHEDULER_EULER_A, is_sdxl=True)
pipeline = SDXLFlowMatchingPipeline(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=scheduler,
device=device,
t5_loader=t5_loader,
lyra_loader=lyra_loader,
clip_skip=1
)
else:
# SD1.5-based models
vae = AutoencoderKL.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="vae",
torch_dtype=torch.float32
).to(device)
text_encoder = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14",
torch_dtype=torch.float32
).to(device)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
# Lazy loaders for SD1.5 Lyra (T5-base)
print("π Configuring lazy loaders for T5-base and Lyra VAE v1 (will download on first use)")
t5_loader = LazyT5Encoder(
model_name=T5_BASE_MODEL, # google/flan-t5-base
device=device,
dtype=torch.float32
)
lyra_loader = LazyLyraModel(
repo_id=LYRA_SD15_REPO,
device=device,
checkpoint=lyra_checkpoint if lyra_checkpoint and lyra_checkpoint.strip() else None
)
# Load UNet
if is_lune:
repo_id = "AbstractPhil/sd15-flow-lune"
# Use custom checkpoint or default
if checkpoint and checkpoint.strip():
filename = checkpoint
else:
filename = "sd15_flow_lune_e34_s34000.pt"
unet = load_lune_checkpoint(repo_id, filename, device)
else:
unet = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="unet",
torch_dtype=torch.float32
).to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="scheduler"
)
pipeline = SD15FlowMatchingPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
device=device,
t5_loader=t5_loader,
lyra_loader=lyra_loader,
)
pipeline.is_lune_model = is_lune
print("β
Pipeline initialized! (T5 and Lyra will load on first use)")
return pipeline
# ============================================================================
# GLOBAL STATE
# ============================================================================
CURRENT_PIPELINE = None
CURRENT_MODEL = None
CURRENT_CHECKPOINT = None
CURRENT_LYRA_CHECKPOINT = None
def get_pipeline(model_choice: str, checkpoint: str = "", lyra_checkpoint: str = ""):
"""Get or create pipeline for selected model."""
global CURRENT_PIPELINE, CURRENT_MODEL, CURRENT_CHECKPOINT, CURRENT_LYRA_CHECKPOINT
# Normalize empty values
checkpoint = checkpoint.strip() if checkpoint else ""
lyra_checkpoint = lyra_checkpoint.strip() if lyra_checkpoint else ""
# Reinitialize if model or any checkpoint changed
if (CURRENT_PIPELINE is None or
CURRENT_MODEL != model_choice or
CURRENT_CHECKPOINT != checkpoint or
CURRENT_LYRA_CHECKPOINT != lyra_checkpoint):
CURRENT_PIPELINE = initialize_pipeline(
model_choice, device="cuda",
checkpoint=checkpoint,
lyra_checkpoint=lyra_checkpoint
)
CURRENT_MODEL = model_choice
CURRENT_CHECKPOINT = checkpoint
CURRENT_LYRA_CHECKPOINT = lyra_checkpoint
return CURRENT_PIPELINE
# ============================================================================
# INFERENCE
# ============================================================================
def estimate_duration(num_steps: int, width: int, height: int, use_lyra: bool = False, is_sdxl: bool = False) -> int:
"""Estimate GPU duration."""
base_time_per_step = 0.5 if is_sdxl else 0.3
resolution_factor = (width * height) / (512 * 512)
estimated = num_steps * base_time_per_step * resolution_factor
if use_lyra:
estimated *= 2
estimated += 10 # Extra time for lazy loading on first use
return int(estimated + 20)
@spaces.GPU(duration=lambda *args: estimate_duration(
args[8], args[10], args[11], args[14],
"SDXL" in args[3] or "Illustrious" in args[3]
))
def generate_image(
prompt: str,
t5_summary: str,
negative_prompt: str,
model_choice: str,
checkpoint: str,
lyra_checkpoint: str,
scheduler_choice: str,
clip_skip: int,
num_steps: int,
cfg_scale: float,
width: int,
height: int,
shift: float,
use_flow_matching: bool,
use_lyra: bool,
lyra_strength: float,
use_separator: bool,
clip_include_summary: bool,
seed: int,
randomize_seed: bool,
progress=gr.Progress()
):
"""Generate image with ZeroGPU support.
Args:
prompt: Tags/keywords (CLIP input)
t5_summary: Natural language summary (T5 input, unless clip_include_summary)
checkpoint: Custom model checkpoint filename (empty for default)
lyra_checkpoint: Custom Lyra VAE checkpoint filename (empty for default)
use_separator: Use ΒΆ separator between tags and summary
clip_include_summary: If True, CLIP also sees the summary
"""
# Ensure seed is an integer (Gradio sliders return floats)
seed = int(seed)
if randomize_seed:
seed = np.random.randint(0, 2**32 - 1)
print(f"π² Using seed: {seed} (randomize={randomize_seed})")
def progress_callback(step, total, desc):
progress((step + 1) / total, desc=desc)
try:
pipeline = get_pipeline(model_choice, checkpoint, lyra_checkpoint)
# Update scheduler if needed (SDXL only)
is_sdxl = "SDXL" in model_choice or "Illustrious" in model_choice
if is_sdxl and hasattr(pipeline, 'set_scheduler'):
pipeline.set_scheduler(scheduler_choice)
prediction_type = "epsilon"
if not is_sdxl and "Lune" in model_choice:
prediction_type = "v_prediction"
if not use_lyra or not pipeline.lyra_available:
progress(0.05, desc="Generating...")
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=cfg_scale,
shift=shift,
use_flow_matching=use_flow_matching,
prediction_type=prediction_type,
seed=seed,
use_lyra=False,
clip_skip=clip_skip,
progress_callback=progress_callback
)
progress(1.0, desc="Complete!")
return image, None, seed
else:
# Side-by-side comparison: SAME seed for both!
progress(0.05, desc="Generating standard...")
image_standard = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=cfg_scale,
shift=shift,
use_flow_matching=use_flow_matching,
prediction_type=prediction_type,
seed=seed, # Same seed
use_lyra=False,
clip_skip=clip_skip,
progress_callback=lambda s, t, d: progress(0.05 + (s/t) * 0.45, desc=d)
)
progress(0.5, desc="Generating Lyra fusion (loading T5 + Lyra if needed)...")
image_lyra = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=cfg_scale,
shift=shift,
use_flow_matching=use_flow_matching,
prediction_type=prediction_type,
seed=seed, # Same seed for deterministic comparison
use_lyra=True,
clip_skip=clip_skip,
t5_summary=t5_summary,
lyra_strength=lyra_strength,
use_separator=use_separator,
clip_include_summary=clip_include_summary,
progress_callback=lambda s, t, d: progress(0.5 + (s/t) * 0.45, desc=d)
)
progress(1.0, desc="Complete!")
return image_standard, image_lyra, seed
except Exception as e:
print(f"β Generation failed: {e}")
import traceback
traceback.print_exc()
raise e
# ============================================================================
# GRADIO UI
# ============================================================================
def create_demo():
"""Create Gradio interface."""
with gr.Blocks() as demo:
gr.Markdown("""
# π Lyra/Lune Flow-Matching Image Generation
**Geometric crystalline diffusion** by [AbstractPhil](https://huggingface.co/AbstractPhil)
Generate images using SD1.5 and SDXL-based models with geometric deep learning:
| Model | Architecture | Lyra Version | Best For |
|-------|-------------|--------------|----------|
| **Illustrious XL** | SDXL | v2 (T5-XL) | Anime/illustration, high detail |
| **SDXL Base** | SDXL | v2 (T5-XL) | Photorealistic, general purpose |
| **Flow-Lune** | SD1.5 | v1 (T5-base) | Fast flow matching (15-25 steps) |
| **SD1.5 Base** | SD1.5 | v1 (T5-base) | Baseline comparison |
**Lazy Loading**: T5 and Lyra VAE are only downloaded when you enable Lyra fusion!
""")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.TextArea(
label="Prompt (Tags for CLIP)",
value="masterpiece, best quality, 1girl, blue hair, school uniform, cherry blossoms, detailed background",
lines=3,
info="CLIP encoders see these tags. T5 also sees these + the summary below."
)
t5_summary = gr.TextArea(
label="T5 Summary (Natural Language - T5 Only)",
value="A beautiful anime girl with flowing blue hair wearing a school uniform, surrounded by delicate pink cherry blossoms against a bright sky",
lines=2,
info="T5 sees: tags ΒΆ summary. CLIP sees: tags only (unless 'Include Summary in CLIP' is enabled)."
)
negative_prompt = gr.TextArea(
label="Negative Prompt",
value="lowres, bad anatomy, bad hands, text, error, cropped, worst quality, low quality",
lines=2
)
model_choice = gr.Dropdown(
label="Model",
choices=[
"Illustrious XL",
"SDXL Base",
"Flow-Lune (SD1.5)",
"SD1.5 Base"
],
value="Illustrious XL"
)
with gr.Accordion("Advanced Options", open=False):
checkpoint = gr.Textbox(
label="Model Checkpoint (optional)",
value="",
placeholder="e.g., illustriousXL_v01.safetensors",
info="Leave empty for default. Illustrious: .safetensors, Lune: .pt"
)
lyra_checkpoint = gr.Textbox(
label="Lyra VAE Checkpoint (optional)",
value="weights/lyra_illustrious_step_12000.safetensors",
placeholder="e.g., lyra_e100_s50000.safetensors",
info="Leave empty for latest. Loaded from weights/ folder in Lyra repo."
)
scheduler_choice = gr.Dropdown(
label="Scheduler (SDXL only)",
choices=SCHEDULER_CHOICES,
value=SCHEDULER_EULER_A,
info="Euler Ancestral recommended for Illustrious"
)
clip_skip = gr.Slider(
label="CLIP Skip",
minimum=1,
maximum=4,
value=2,
step=1,
info="2 recommended for Illustrious, 1 for others"
)
use_lyra = gr.Checkbox(
label="Enable Lyra VAE (CLIP+T5 Fusion)",
value=True, # DEFAULT: ON
info="Enables lazy loading of T5 and Lyra on first use"
)
lyra_strength = gr.Slider(
label="Lyra Blend Strength",
minimum=0.0,
maximum=3.0,
value=1.0,
step=0.05,
info="0.0 = pure CLIP, 1.0 = pure Lyra reconstruction"
)
with gr.Accordion("Lyra Advanced Settings", open=False):
use_separator = gr.Checkbox(
label="Use ΒΆ Separator",
value=True,
info="Insert ΒΆ between tags and summary in T5 input"
)
clip_include_summary = gr.Checkbox(
label="Include Summary in CLIP",
value=False,
info="By default CLIP sees tags only. Enable to append summary to CLIP input."
)
with gr.Accordion("Generation Settings", open=True):
num_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
value=25,
step=1
)
cfg_scale = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=20.0,
value=7.0,
step=0.5
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=1536,
value=1024,
step=64
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1536,
value=1024,
step=64
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2**32 - 1,
value=42, # DEFAULT: 42
step=1
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=False # DEFAULT: OFF for reproducibility
)
with gr.Accordion("Advanced (Flow Matching)", open=False):
use_flow_matching = gr.Checkbox(
label="Enable Flow Matching",
value=False,
info="Use flow matching ODE (for Lune only)"
)
shift = gr.Slider(
label="Shift",
minimum=0.0,
maximum=5.0,
value=0.0,
step=0.1,
info="Flow matching shift (0=disabled)"
)
generate_btn = gr.Button("π¨ Generate", variant="primary", size="lg")
with gr.Column(scale=1):
with gr.Row():
output_image_standard = gr.Image(
label="Standard",
type="pil"
)
output_image_lyra = gr.Image(
label="Lyra Fusion π΅",
type="pil",
visible=True # Visible by default since Lyra is on
)
output_seed = gr.Number(label="Seed Used", precision=0)
gr.Markdown("""
### Tips
- **Lazy Loading**: T5-XL (~3GB) and Lyra VAE only download when you enable Lyra
- **Illustrious XL**: Use CLIP skip 2, Euler Ancestral scheduler
- **Schedulers**: DPM++ 2M SDE for detail, Euler A for speed
- **Lyra v2**: Uses `google/flan-t5-xl` for richer semantics
- **Same Seed**: Both Standard and Lyra use the same seed for fair comparison
""")
# Event handlers
def on_model_change(model_name):
"""Update defaults based on model."""
if "Illustrious" in model_name:
return {
clip_skip: gr.update(value=2),
width: gr.update(value=1024),
height: gr.update(value=1024),
num_steps: gr.update(value=25),
use_flow_matching: gr.update(value=False),
shift: gr.update(value=0.0),
scheduler_choice: gr.update(visible=True, value=SCHEDULER_EULER_A)
}
elif "SDXL" in model_name:
return {
clip_skip: gr.update(value=1),
width: gr.update(value=1024),
height: gr.update(value=1024),
num_steps: gr.update(value=30),
use_flow_matching: gr.update(value=False),
shift: gr.update(value=0.0),
scheduler_choice: gr.update(visible=True, value=SCHEDULER_EULER_A)
}
elif "Lune" in model_name:
return {
clip_skip: gr.update(value=1),
width: gr.update(value=512),
height: gr.update(value=512),
num_steps: gr.update(value=20),
use_flow_matching: gr.update(value=True),
shift: gr.update(value=2.5),
scheduler_choice: gr.update(visible=False)
}
else: # SD1.5 Base
return {
clip_skip: gr.update(value=1),
width: gr.update(value=512),
height: gr.update(value=512),
num_steps: gr.update(value=30),
use_flow_matching: gr.update(value=False),
shift: gr.update(value=0.0),
scheduler_choice: gr.update(visible=False)
}
def on_lyra_toggle(enabled):
"""Show/hide Lyra comparison."""
if enabled:
return {
output_image_standard: gr.update(visible=True, label="Standard"),
output_image_lyra: gr.update(visible=True, label="Lyra Fusion π΅")
}
else:
return {
output_image_standard: gr.update(visible=True, label="Generated Image"),
output_image_lyra: gr.update(visible=False)
}
model_choice.change(
fn=on_model_change,
inputs=[model_choice],
outputs=[clip_skip, width, height, num_steps, use_flow_matching, shift, scheduler_choice]
)
use_lyra.change(
fn=on_lyra_toggle,
inputs=[use_lyra],
outputs=[output_image_standard, output_image_lyra]
)
generate_btn.click(
fn=generate_image,
inputs=[
prompt, t5_summary, negative_prompt, model_choice, checkpoint, lyra_checkpoint,
scheduler_choice, clip_skip,
num_steps, cfg_scale, width, height, shift,
use_flow_matching, use_lyra, lyra_strength, use_separator, clip_include_summary,
seed, randomize_seed
],
outputs=[output_image_standard, output_image_lyra, output_seed]
)
return demo
# ============================================================================
# LAUNCH
# ============================================================================
if __name__ == "__main__":
demo = create_demo()
demo.queue(max_size=20)
demo.launch() |