Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,6 +12,7 @@ Lyra VAE Versions:
|
|
| 12 |
"""
|
| 13 |
|
| 14 |
import os
|
|
|
|
| 15 |
import torch
|
| 16 |
import gradio as gr
|
| 17 |
import numpy as np
|
|
@@ -901,17 +902,20 @@ def load_lyra_vae(repo_id: str = "AbstractPhil/vae-lyra", device: str = "cuda"):
|
|
| 901 |
print(f"π΅ Loading Lyra VAE v1 from {repo_id}...")
|
| 902 |
|
| 903 |
try:
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
|
|
|
|
|
|
|
|
|
| 915 |
config_dict = {
|
| 916 |
'modality_dims': {"clip": 768, "t5": 768},
|
| 917 |
'latent_dim': 768,
|
|
@@ -925,6 +929,24 @@ def load_lyra_vae(repo_id: str = "AbstractPhil/vae-lyra", device: str = "cuda"):
|
|
| 925 |
'fusion_dropout': 0.1
|
| 926 |
}
|
| 927 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 928 |
vae_config = LyraV1Config(
|
| 929 |
modality_dims=config_dict.get('modality_dims', {"clip": 768, "t5": 768}),
|
| 930 |
latent_dim=config_dict.get('latent_dim', 768),
|
|
@@ -948,11 +970,18 @@ def load_lyra_vae(repo_id: str = "AbstractPhil/vae-lyra", device: str = "cuda"):
|
|
| 948 |
lyra_model.to(device)
|
| 949 |
lyra_model.eval()
|
| 950 |
|
| 951 |
-
print(f"β
Lyra VAE v1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 952 |
return lyra_model
|
| 953 |
|
| 954 |
except Exception as e:
|
| 955 |
print(f"β Failed to load Lyra VAE v1: {e}")
|
|
|
|
|
|
|
| 956 |
return None
|
| 957 |
|
| 958 |
|
|
@@ -968,46 +997,52 @@ def load_lyra_vae_xl(
|
|
| 968 |
print(f"π΅ Loading Lyra VAE v2 from {repo_id}...")
|
| 969 |
|
| 970 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 971 |
checkpoint_path = hf_hub_download(
|
| 972 |
repo_id=repo_id,
|
| 973 |
-
filename="
|
| 974 |
repo_type="model"
|
| 975 |
)
|
| 976 |
|
| 977 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 978 |
|
| 979 |
-
|
| 980 |
-
config_dict = checkpoint['config']
|
| 981 |
-
else:
|
| 982 |
-
# XL v2 defaults - larger dimensions for SDXL
|
| 983 |
-
config_dict = {
|
| 984 |
-
'modality_dims': {"clip": 768, "t5": 2048}, # T5-XL
|
| 985 |
-
'latent_dim': 2048,
|
| 986 |
-
'seq_len': 77,
|
| 987 |
-
'encoder_layers': 4,
|
| 988 |
-
'decoder_layers': 4,
|
| 989 |
-
'hidden_dim': 2048,
|
| 990 |
-
'dropout': 0.1,
|
| 991 |
-
'fusion_strategy': 'adaptive_cantor',
|
| 992 |
-
'fusion_heads': 16,
|
| 993 |
-
'fusion_dropout': 0.1
|
| 994 |
-
}
|
| 995 |
-
|
| 996 |
vae_config = LyraV2Config(
|
| 997 |
-
modality_dims=config_dict.get('modality_dims', {"
|
|
|
|
|
|
|
| 998 |
latent_dim=config_dict.get('latent_dim', 2048),
|
| 999 |
seq_len=config_dict.get('seq_len', 77),
|
| 1000 |
-
encoder_layers=config_dict.get('encoder_layers',
|
| 1001 |
-
decoder_layers=config_dict.get('decoder_layers',
|
| 1002 |
hidden_dim=config_dict.get('hidden_dim', 2048),
|
| 1003 |
dropout=config_dict.get('dropout', 0.1),
|
| 1004 |
fusion_strategy=config_dict.get('fusion_strategy', 'adaptive_cantor'),
|
| 1005 |
-
fusion_heads=config_dict.get('fusion_heads',
|
| 1006 |
-
fusion_dropout=config_dict.get('fusion_dropout', 0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1007 |
)
|
| 1008 |
|
| 1009 |
lyra_model = LyraV2(vae_config)
|
| 1010 |
|
|
|
|
| 1011 |
if 'model_state_dict' in checkpoint:
|
| 1012 |
lyra_model.load_state_dict(checkpoint['model_state_dict'])
|
| 1013 |
else:
|
|
@@ -1016,14 +1051,21 @@ def load_lyra_vae_xl(
|
|
| 1016 |
lyra_model.to(device)
|
| 1017 |
lyra_model.eval()
|
| 1018 |
|
| 1019 |
-
print(f"β
Lyra VAE v2
|
|
|
|
|
|
|
|
|
|
| 1020 |
if 'global_step' in checkpoint:
|
| 1021 |
print(f" Step: {checkpoint['global_step']:,}")
|
|
|
|
|
|
|
| 1022 |
|
| 1023 |
return lyra_model
|
| 1024 |
|
| 1025 |
except Exception as e:
|
| 1026 |
print(f"β Failed to load Lyra VAE v2: {e}")
|
|
|
|
|
|
|
| 1027 |
return None
|
| 1028 |
|
| 1029 |
|
|
|
|
| 12 |
"""
|
| 13 |
|
| 14 |
import os
|
| 15 |
+
import json
|
| 16 |
import torch
|
| 17 |
import gradio as gr
|
| 18 |
import numpy as np
|
|
|
|
| 902 |
print(f"π΅ Loading Lyra VAE v1 from {repo_id}...")
|
| 903 |
|
| 904 |
try:
|
| 905 |
+
# Try to download config.json first
|
| 906 |
+
try:
|
| 907 |
+
print(" π₯ Downloading config.json...")
|
| 908 |
+
config_path = hf_hub_download(
|
| 909 |
+
repo_id=repo_id,
|
| 910 |
+
filename="config.json",
|
| 911 |
+
repo_type="model"
|
| 912 |
+
)
|
| 913 |
+
with open(config_path, 'r') as f:
|
| 914 |
+
config_dict = json.load(f)
|
| 915 |
+
print(f" β Config loaded: {config_dict.get('fusion_strategy', 'unknown')} fusion")
|
| 916 |
+
except Exception:
|
| 917 |
+
# Fallback to defaults if no config.json
|
| 918 |
+
print(" β οΈ No config.json found, using defaults")
|
| 919 |
config_dict = {
|
| 920 |
'modality_dims': {"clip": 768, "t5": 768},
|
| 921 |
'latent_dim': 768,
|
|
|
|
| 929 |
'fusion_dropout': 0.1
|
| 930 |
}
|
| 931 |
|
| 932 |
+
# Download model weights
|
| 933 |
+
print(" π₯ Downloading model weights...")
|
| 934 |
+
try:
|
| 935 |
+
checkpoint_path = hf_hub_download(
|
| 936 |
+
repo_id=repo_id,
|
| 937 |
+
filename="model.pt",
|
| 938 |
+
repo_type="model"
|
| 939 |
+
)
|
| 940 |
+
except Exception:
|
| 941 |
+
# Fallback to best_model.pt
|
| 942 |
+
checkpoint_path = hf_hub_download(
|
| 943 |
+
repo_id=repo_id,
|
| 944 |
+
filename="best_model.pt",
|
| 945 |
+
repo_type="model"
|
| 946 |
+
)
|
| 947 |
+
|
| 948 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 949 |
+
|
| 950 |
vae_config = LyraV1Config(
|
| 951 |
modality_dims=config_dict.get('modality_dims', {"clip": 768, "t5": 768}),
|
| 952 |
latent_dim=config_dict.get('latent_dim', 768),
|
|
|
|
| 970 |
lyra_model.to(device)
|
| 971 |
lyra_model.eval()
|
| 972 |
|
| 973 |
+
print(f"β
Lyra VAE v1 loaded")
|
| 974 |
+
print(f" Fusion: {config_dict.get('fusion_strategy')}")
|
| 975 |
+
print(f" Latent dim: {config_dict.get('latent_dim')}")
|
| 976 |
+
if 'global_step' in checkpoint:
|
| 977 |
+
print(f" Step: {checkpoint['global_step']:,}")
|
| 978 |
+
|
| 979 |
return lyra_model
|
| 980 |
|
| 981 |
except Exception as e:
|
| 982 |
print(f"β Failed to load Lyra VAE v1: {e}")
|
| 983 |
+
import traceback
|
| 984 |
+
traceback.print_exc()
|
| 985 |
return None
|
| 986 |
|
| 987 |
|
|
|
|
| 997 |
print(f"π΅ Loading Lyra VAE v2 from {repo_id}...")
|
| 998 |
|
| 999 |
try:
|
| 1000 |
+
# Download config.json first to get model architecture
|
| 1001 |
+
print(" π₯ Downloading config.json...")
|
| 1002 |
+
config_path = hf_hub_download(
|
| 1003 |
+
repo_id=repo_id,
|
| 1004 |
+
filename="config.json",
|
| 1005 |
+
repo_type="model"
|
| 1006 |
+
)
|
| 1007 |
+
|
| 1008 |
+
with open(config_path, 'r') as f:
|
| 1009 |
+
config_dict = json.load(f)
|
| 1010 |
+
|
| 1011 |
+
print(f" β Config loaded: {config_dict.get('fusion_strategy', 'unknown')} fusion")
|
| 1012 |
+
|
| 1013 |
+
# Download model weights
|
| 1014 |
+
print(" π₯ Downloading model.pt...")
|
| 1015 |
checkpoint_path = hf_hub_download(
|
| 1016 |
repo_id=repo_id,
|
| 1017 |
+
filename="model.pt",
|
| 1018 |
repo_type="model"
|
| 1019 |
)
|
| 1020 |
|
| 1021 |
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 1022 |
|
| 1023 |
+
# Build config from repo's config.json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1024 |
vae_config = LyraV2Config(
|
| 1025 |
+
modality_dims=config_dict.get('modality_dims', {"clip_l": 768, "clip_g": 1280, "t5_xl_l": 2048, "t5_xl_g": 2048}),
|
| 1026 |
+
modality_seq_lens=config_dict.get('modality_seq_lens', {"clip_l": 77, "clip_g": 77, "t5_xl_l": 512, "t5_xl_g": 512}),
|
| 1027 |
+
binding_config=config_dict.get('binding_config'),
|
| 1028 |
latent_dim=config_dict.get('latent_dim', 2048),
|
| 1029 |
seq_len=config_dict.get('seq_len', 77),
|
| 1030 |
+
encoder_layers=config_dict.get('encoder_layers', 3),
|
| 1031 |
+
decoder_layers=config_dict.get('decoder_layers', 3),
|
| 1032 |
hidden_dim=config_dict.get('hidden_dim', 2048),
|
| 1033 |
dropout=config_dict.get('dropout', 0.1),
|
| 1034 |
fusion_strategy=config_dict.get('fusion_strategy', 'adaptive_cantor'),
|
| 1035 |
+
fusion_heads=config_dict.get('fusion_heads', 8),
|
| 1036 |
+
fusion_dropout=config_dict.get('fusion_dropout', 0.1),
|
| 1037 |
+
cantor_depth=config_dict.get('cantor_depth', 8),
|
| 1038 |
+
cantor_local_window=config_dict.get('cantor_local_window', 3),
|
| 1039 |
+
alpha_init=config_dict.get('alpha_init', 1.0),
|
| 1040 |
+
beta_init=config_dict.get('beta_init', 0.3),
|
| 1041 |
)
|
| 1042 |
|
| 1043 |
lyra_model = LyraV2(vae_config)
|
| 1044 |
|
| 1045 |
+
# Load weights from checkpoint
|
| 1046 |
if 'model_state_dict' in checkpoint:
|
| 1047 |
lyra_model.load_state_dict(checkpoint['model_state_dict'])
|
| 1048 |
else:
|
|
|
|
| 1051 |
lyra_model.to(device)
|
| 1052 |
lyra_model.eval()
|
| 1053 |
|
| 1054 |
+
print(f"β
Lyra VAE v2 loaded")
|
| 1055 |
+
print(f" Fusion: {config_dict.get('fusion_strategy')}")
|
| 1056 |
+
print(f" Latent dim: {config_dict.get('latent_dim')}")
|
| 1057 |
+
print(f" Hidden dim: {config_dict.get('hidden_dim')}")
|
| 1058 |
if 'global_step' in checkpoint:
|
| 1059 |
print(f" Step: {checkpoint['global_step']:,}")
|
| 1060 |
+
if 'best_loss' in checkpoint:
|
| 1061 |
+
print(f" Loss: {checkpoint['best_loss']:.4f}")
|
| 1062 |
|
| 1063 |
return lyra_model
|
| 1064 |
|
| 1065 |
except Exception as e:
|
| 1066 |
print(f"β Failed to load Lyra VAE v2: {e}")
|
| 1067 |
+
import traceback
|
| 1068 |
+
traceback.print_exc()
|
| 1069 |
return None
|
| 1070 |
|
| 1071 |
|