Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,556 Bytes
eb18eb8 81aa2cc a7aafe6 eb18eb8 9348685 eb18eb8 6e0a758 eb18eb8 6e0a758 eb18eb8 a7aafe6 eb18eb8 6e0a758 a7aafe6 4b5a45d a7aafe6 3b9b8cb 6e0a758 eb18eb8 6e0a758 eb18eb8 6e0a758 a7aafe6 6e0a758 eb18eb8 a7aafe6 eb18eb8 6e0a758 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 6e0a758 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 6e0a758 eb18eb8 0c67338 93038cf eb18eb8 a7aafe6 93038cf eb18eb8 a7aafe6 0c67338 eb18eb8 0c67338 93038cf eb18eb8 f6dab9d 93038cf f6dab9d 93038cf a7aafe6 93038cf a7aafe6 93038cf f5c1dd1 eb18eb8 a7aafe6 eb18eb8 6e0a758 eb18eb8 a7aafe6 eb18eb8 a7aafe6 0c67338 0f1416b eb18eb8 a7aafe6 eb18eb8 93038cf 6e0a758 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 6e0a758 eb18eb8 a7aafe6 eb18eb8 a7aafe6 b4d2a92 eb18eb8 b4d2a92 eb18eb8 a7aafe6 b4d2a92 eb18eb8 b4d2a92 eb18eb8 b4d2a92 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 0c67338 eb18eb8 a7aafe6 eb18eb8 93038cf eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 0c67338 93038cf eb18eb8 a7aafe6 eb18eb8 757995e eb18eb8 a7aafe6 eb18eb8 81aa2cc 0c67338 a7aafe6 eb18eb8 a7aafe6 eb18eb8 0c67338 a7aafe6 0c67338 a7aafe6 0c67338 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 6e0a758 eb18eb8 93038cf a7aafe6 93038cf eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 a7aafe6 eb18eb8 6e0a758 eb18eb8 6e0a758 eb18eb8 3b9b8cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 |
"""
Lyra/Lune Flow-Matching Inference Space
Author: AbstractPhil
License: MIT
SD1.5 and SDXL-based flow matching with geometric crystalline architectures.
Supports Illustrious XL, standard SDXL, and SD1.5 variants.
Lyra VAE Versions:
- v1: SD1.5 (768 dim CLIP + T5-base) - geofractal.model.vae.vae_lyra
- v2: SDXL/Illustrious (768 CLIP-L + 1280 CLIP-G + 2048 T5-XL) - geofractal.model.vae.vae_lyra_v2
"""
import os
import json
import torch
import gradio as gr
import numpy as np
from PIL import Image
from typing import Optional, Dict, Tuple
import spaces
from safetensors.torch import load_file as load_safetensors
from diffusers import (
UNet2DConditionModel,
AutoencoderKL,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSDEScheduler,
)
from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPTextModelWithProjection,
T5EncoderModel,
T5Tokenizer
)
from huggingface_hub import hf_hub_download
# Lazy imports for Lyra
LYRA_V1_AVAILABLE = False
LYRA_V2_AVAILABLE = False
LyraV1 = None
LyraV1Config = None
LyraV2 = None
LyraV2Config = None
def _load_lyra_imports():
"""Lazy load Lyra VAE modules."""
global LYRA_V1_AVAILABLE, LYRA_V2_AVAILABLE
global LyraV1, LyraV1Config, LyraV2, LyraV2Config
try:
from geofractal.model.vae.vae_lyra import MultiModalVAE as _LyraV1, MultiModalVAEConfig as _LyraV1Config
LyraV1 = _LyraV1
LyraV1Config = _LyraV1Config
LYRA_V1_AVAILABLE = True
except ImportError:
print("β οΈ Lyra VAE v1 not available")
try:
from geofractal.model.vae.vae_lyra_v2 import MultiModalVAE as _LyraV2, MultiModalVAEConfig as _LyraV2Config
LyraV2 = _LyraV2
LyraV2Config = _LyraV2Config
LYRA_V2_AVAILABLE = True
except ImportError:
print("β οΈ Lyra VAE v2 not available")
# ============================================================================
# CONSTANTS
# ============================================================================
ARCH_SD15 = "sd15"
ARCH_SDXL = "sdxl"
# Scheduler options
SCHEDULER_EULER_A = "Euler Ancestral"
SCHEDULER_EULER = "Euler"
SCHEDULER_DPM_2M_SDE = "DPM++ 2M SDE"
SCHEDULER_DPM_2M = "DPM++ 2M"
SDXL_SCHEDULERS = [SCHEDULER_EULER_A, SCHEDULER_EULER, SCHEDULER_DPM_2M_SDE, SCHEDULER_DPM_2M]
# ============================================================================
# SCHEDULER FACTORY
# ============================================================================
def get_scheduler(scheduler_name: str, config_path: str = "stabilityai/stable-diffusion-xl-base-1.0"):
"""Create scheduler by name."""
if scheduler_name == SCHEDULER_EULER_A:
return EulerAncestralDiscreteScheduler.from_pretrained(
config_path, subfolder="scheduler"
)
elif scheduler_name == SCHEDULER_EULER:
return EulerDiscreteScheduler.from_pretrained(
config_path, subfolder="scheduler"
)
elif scheduler_name == SCHEDULER_DPM_2M_SDE:
return DPMSolverSDEScheduler.from_pretrained(
config_path, subfolder="scheduler",
algorithm_type="sde-dpmsolver++",
solver_order=2,
)
elif scheduler_name == SCHEDULER_DPM_2M:
return DPMSolverMultistepScheduler.from_pretrained(
config_path, subfolder="scheduler",
algorithm_type="dpmsolver++",
solver_order=2,
)
else:
# Default to Euler Ancestral
return EulerAncestralDiscreteScheduler.from_pretrained(
config_path, subfolder="scheduler"
)
# ============================================================================
# MODEL LOADING UTILITIES
# ============================================================================
def get_clip_hidden_state(
model_output,
clip_skip: int = 1,
output_hidden_states: bool = True
) -> torch.Tensor:
"""Extract hidden state with clip_skip support."""
if clip_skip == 1 or not output_hidden_states:
return model_output.last_hidden_state
if hasattr(model_output, 'hidden_states') and model_output.hidden_states is not None:
return model_output.hidden_states[-clip_skip]
return model_output.last_hidden_state
# ============================================================================
# LAZY LOADERS
# ============================================================================
class LazyT5Encoder:
"""Lazy loader for T5 encoder - only loads when first accessed."""
def __init__(self, model_name: str = "google/flan-t5-xl", device: str = "cuda"):
self.model_name = model_name
self.device = device
self._encoder = None
self._tokenizer = None
@property
def encoder(self):
if self._encoder is None:
print(f"π₯ Loading T5 encoder: {self.model_name}...")
self._encoder = T5EncoderModel.from_pretrained(
self.model_name,
torch_dtype=torch.float16
).to(self.device)
self._encoder.eval()
print("β T5 encoder loaded")
return self._encoder
@property
def tokenizer(self):
if self._tokenizer is None:
print(f"π₯ Loading T5 tokenizer: {self.model_name}...")
self._tokenizer = T5Tokenizer.from_pretrained(self.model_name)
print("β T5 tokenizer loaded")
return self._tokenizer
def is_loaded(self):
return self._encoder is not None
class LazyLyraModel:
"""Lazy loader for Lyra VAE - only loads when first accessed."""
def __init__(self, repo_id: str, device: str = "cuda", version: int = 2):
self.repo_id = repo_id
self.device = device
self.version = version
self._model = None
@property
def model(self):
if self._model is None:
_load_lyra_imports()
if self.version == 2:
self._model = self._load_v2()
else:
self._model = self._load_v1()
return self._model
def _load_v2(self):
if not LYRA_V2_AVAILABLE:
print("β οΈ Lyra VAE v2 not available")
return None
print(f"π΅ Loading Lyra VAE v2 from {self.repo_id}...")
try:
from huggingface_hub import list_repo_files
config_path = hf_hub_download(
repo_id=self.repo_id,
filename="config.json",
repo_type="model"
)
with open(config_path, 'r') as f:
config_dict = json.load(f)
print(f" β Config: {config_dict.get('fusion_strategy', 'unknown')} fusion")
# Auto-detect checkpoint
repo_files = list_repo_files(self.repo_id, repo_type="model")
checkpoint_files = [f for f in repo_files if f.endswith('.pt')]
checkpoint_files = [f for f in checkpoint_files if 'checkpoint' in f.lower()]
if not checkpoint_files:
raise FileNotFoundError(f"No checkpoint found in {self.repo_id}")
import re
def extract_step(name):
match = re.search(r'(\d+)\.pt', name)
return int(match.group(1)) if match else 0
checkpoint_files.sort(key=extract_step, reverse=True)
checkpoint_filename = checkpoint_files[0]
print(f" β Using: {checkpoint_filename}")
checkpoint_path = hf_hub_download(
repo_id=self.repo_id,
filename=checkpoint_filename,
repo_type="model"
)
checkpoint = torch.load(checkpoint_path, map_location="cpu")
vae_config = LyraV2Config(
modality_dims=config_dict.get('modality_dims', {
"clip_l": 768, "clip_g": 1280,
"t5_xl_l": 2048, "t5_xl_g": 2048
}),
modality_seq_lens=config_dict.get('modality_seq_lens', {
"clip_l": 77, "clip_g": 77,
"t5_xl_l": 512, "t5_xl_g": 512
}),
binding_config=config_dict.get('binding_config', {
"clip_l": {"t5_xl_l": 0.3},
"clip_g": {"t5_xl_g": 0.3},
"t5_xl_l": {},
"t5_xl_g": {}
}),
latent_dim=config_dict.get('latent_dim', 2048),
seq_len=config_dict.get('seq_len', 77),
encoder_layers=config_dict.get('encoder_layers', 3),
decoder_layers=config_dict.get('decoder_layers', 3),
hidden_dim=config_dict.get('hidden_dim', 2048),
dropout=config_dict.get('dropout', 0.1),
fusion_strategy=config_dict.get('fusion_strategy', 'adaptive_cantor'),
fusion_heads=config_dict.get('fusion_heads', 8),
fusion_dropout=config_dict.get('fusion_dropout', 0.1),
cantor_depth=config_dict.get('cantor_depth', 8),
cantor_local_window=config_dict.get('cantor_local_window', 3),
alpha_init=config_dict.get('alpha_init', 1.0),
beta_init=config_dict.get('beta_init', 0.3),
)
lyra_model = LyraV2(vae_config)
state_dict = checkpoint.get('model_state_dict', checkpoint)
missing, unexpected = lyra_model.load_state_dict(state_dict, strict=False)
if missing:
print(f" β οΈ Missing keys: {len(missing)}")
if unexpected:
print(f" β οΈ Unexpected keys: {len(unexpected)}")
lyra_model.to(self.device)
lyra_model.eval()
total_params = sum(p.numel() for p in lyra_model.parameters())
print(f"β
Lyra VAE v2 loaded ({total_params/1e6:.1f}M params)")
return lyra_model
except Exception as e:
print(f"β Failed to load Lyra VAE v2: {e}")
import traceback
traceback.print_exc()
return None
def _load_v1(self):
if not LYRA_V1_AVAILABLE:
print("β οΈ Lyra VAE v1 not available")
return None
# Similar implementation for v1...
return None
def is_loaded(self):
return self._model is not None
# ============================================================================
# SDXL PIPELINE
# ============================================================================
class SDXLFlowMatchingPipeline:
"""Pipeline for SDXL-based flow-matching inference with dual CLIP encoders."""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler,
device: str = "cuda",
t5_loader: Optional[LazyT5Encoder] = None,
lyra_loader: Optional[LazyLyraModel] = None,
clip_skip: int = 1
):
self.vae = vae
self.text_encoder = text_encoder
self.text_encoder_2 = text_encoder_2
self.tokenizer = tokenizer
self.tokenizer_2 = tokenizer_2
self.unet = unet
self.scheduler = scheduler
self.device = device
# Lazy loaders
self.t5_loader = t5_loader
self.lyra_loader = lyra_loader
# Settings
self.clip_skip = clip_skip
self.vae_scale_factor = 0.13025
self.arch = ARCH_SDXL
def set_scheduler(self, scheduler_name: str):
"""Switch scheduler."""
self.scheduler = get_scheduler(scheduler_name)
@property
def t5_encoder(self):
return self.t5_loader.encoder if self.t5_loader else None
@property
def t5_tokenizer(self):
return self.t5_loader.tokenizer if self.t5_loader else None
@property
def lyra_model(self):
return self.lyra_loader.model if self.lyra_loader else None
def encode_prompt(
self,
prompt: str,
negative_prompt: str = "",
clip_skip: int = 1
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Encode prompts using dual CLIP encoders for SDXL."""
# CLIP-L encoding
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.device)
with torch.no_grad():
output_hidden_states = clip_skip > 1
clip_l_output = self.text_encoder(
text_input_ids,
output_hidden_states=output_hidden_states
)
prompt_embeds_l = get_clip_hidden_state(clip_l_output, clip_skip, output_hidden_states)
# CLIP-G encoding
text_inputs_2 = self.tokenizer_2(
prompt,
padding="max_length",
max_length=self.tokenizer_2.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids_2 = text_inputs_2.input_ids.to(self.device)
with torch.no_grad():
clip_g_output = self.text_encoder_2(
text_input_ids_2,
output_hidden_states=output_hidden_states
)
prompt_embeds_g = get_clip_hidden_state(clip_g_output, clip_skip, output_hidden_states)
pooled_prompt_embeds = clip_g_output.text_embeds
prompt_embeds = torch.cat([prompt_embeds_l, prompt_embeds_g], dim=-1)
# Negative prompt
if negative_prompt:
uncond_inputs = self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_inputs.input_ids.to(self.device)
uncond_inputs_2 = self.tokenizer_2(
negative_prompt,
padding="max_length",
max_length=self.tokenizer_2.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids_2 = uncond_inputs_2.input_ids.to(self.device)
with torch.no_grad():
uncond_output_l = self.text_encoder(
uncond_input_ids,
output_hidden_states=output_hidden_states
)
negative_embeds_l = get_clip_hidden_state(uncond_output_l, clip_skip, output_hidden_states)
uncond_output_g = self.text_encoder_2(
uncond_input_ids_2,
output_hidden_states=output_hidden_states
)
negative_embeds_g = get_clip_hidden_state(uncond_output_g, clip_skip, output_hidden_states)
negative_pooled = uncond_output_g.text_embeds
negative_prompt_embeds = torch.cat([negative_embeds_l, negative_embeds_g], dim=-1)
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled = torch.zeros_like(pooled_prompt_embeds)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled
def encode_prompt_lyra(
self,
prompt: str,
negative_prompt: str = "",
clip_skip: int = 1,
t5_summary: str = "",
lyra_strength: float = 0.3
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Encode prompts using Lyra VAE v2 fusion (CLIP + T5)."""
if self.lyra_model is None or self.t5_encoder is None:
raise ValueError("Lyra VAE components not initialized")
# Get standard CLIP embeddings first
prompt_embeds, negative_prompt_embeds, pooled, negative_pooled = self.encode_prompt(
prompt, negative_prompt, clip_skip
)
# Format T5 input
SUMMARY_SEPARATOR = "ΒΆ"
if t5_summary.strip():
t5_prompt = f"{prompt} {SUMMARY_SEPARATOR} {t5_summary}"
else:
t5_prompt = f"{prompt} {SUMMARY_SEPARATOR} {prompt}"
# Get T5 embeddings
t5_inputs = self.t5_tokenizer(
t5_prompt,
max_length=512,
padding='max_length',
truncation=True,
return_tensors='pt'
).to(self.device)
with torch.no_grad():
t5_embeds = self.t5_encoder(**t5_inputs).last_hidden_state
clip_l_dim = 768
clip_l_embeds = prompt_embeds[..., :clip_l_dim]
clip_g_embeds = prompt_embeds[..., clip_l_dim:]
with torch.no_grad():
modality_inputs = {
'clip_l': clip_l_embeds.float(),
'clip_g': clip_g_embeds.float(),
't5_xl_l': t5_embeds.float(),
't5_xl_g': t5_embeds.float()
}
reconstructions, mu, logvar, _ = self.lyra_model(
modality_inputs,
target_modalities=['clip_l', 'clip_g']
)
lyra_clip_l = reconstructions['clip_l'].to(prompt_embeds.dtype)
lyra_clip_g = reconstructions['clip_g'].to(prompt_embeds.dtype)
# Normalize if stats are off
clip_l_std_ratio = lyra_clip_l.std() / (clip_l_embeds.std() + 1e-8)
clip_g_std_ratio = lyra_clip_g.std() / (clip_g_embeds.std() + 1e-8)
if clip_l_std_ratio > 2.0 or clip_l_std_ratio < 0.5:
lyra_clip_l = (lyra_clip_l - lyra_clip_l.mean()) / (lyra_clip_l.std() + 1e-8)
lyra_clip_l = lyra_clip_l * clip_l_embeds.std() + clip_l_embeds.mean()
if clip_g_std_ratio > 2.0 or clip_g_std_ratio < 0.5:
lyra_clip_g = (lyra_clip_g - lyra_clip_g.mean()) / (lyra_clip_g.std() + 1e-8)
lyra_clip_g = lyra_clip_g * clip_g_embeds.std() + clip_g_embeds.mean()
# Blend
fused_clip_l = (1 - lyra_strength) * clip_l_embeds + lyra_strength * lyra_clip_l
fused_clip_g = (1 - lyra_strength) * clip_g_embeds + lyra_strength * lyra_clip_g
prompt_embeds_fused = torch.cat([fused_clip_l, fused_clip_g], dim=-1)
# Negative prompt - just use original CLIP
return prompt_embeds_fused, negative_prompt_embeds, pooled, negative_pooled
def _get_add_time_ids(
self,
original_size: Tuple[int, int],
crops_coords_top_left: Tuple[int, int],
target_size: Tuple[int, int],
dtype: torch.dtype
) -> torch.Tensor:
"""Create time embedding IDs for SDXL."""
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype, device=self.device)
return add_time_ids
@torch.no_grad()
def __call__(
self,
prompt: str,
negative_prompt: str = "",
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 25,
guidance_scale: float = 7.0,
seed: Optional[int] = None,
use_lyra: bool = False,
clip_skip: int = 2,
t5_summary: str = "",
lyra_strength: float = 1.0,
progress_callback=None
):
"""Generate image using SDXL architecture."""
if seed is not None:
generator = torch.Generator(device=self.device).manual_seed(seed)
else:
generator = None
# Encode prompts
if use_lyra and self.lyra_loader is not None:
prompt_embeds, negative_prompt_embeds, pooled, negative_pooled = self.encode_prompt_lyra(
prompt, negative_prompt, clip_skip, t5_summary, lyra_strength
)
else:
prompt_embeds, negative_prompt_embeds, pooled, negative_pooled = self.encode_prompt(
prompt, negative_prompt, clip_skip
)
# Prepare latents
latent_channels = 4
latent_height = height // 8
latent_width = width // 8
latents = torch.randn(
(1, latent_channels, latent_height, latent_width),
generator=generator,
device=self.device,
dtype=torch.float16
)
# Set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.scheduler.timesteps
latents = latents * self.scheduler.init_noise_sigma
# Time embeddings for SDXL
original_size = (height, width)
target_size = (height, width)
crops_coords_top_left = (0, 0)
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=torch.float16
)
negative_add_time_ids = add_time_ids
# Denoising loop
for i, t in enumerate(timesteps):
if progress_callback:
progress_callback(i, num_inference_steps, f"Step {i+1}/{num_inference_steps}")
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
timestep = t.expand(latent_model_input.shape[0])
if guidance_scale > 1.0:
text_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
add_text_embeds = torch.cat([negative_pooled, pooled])
add_time_ids_input = torch.cat([negative_add_time_ids, add_time_ids])
else:
text_embeds = prompt_embeds
add_text_embeds = pooled
add_time_ids_input = add_time_ids
added_cond_kwargs = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids_input
}
noise_pred = self.unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeds,
added_cond_kwargs=added_cond_kwargs,
return_dict=False
)[0]
if guidance_scale > 1.0:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
# Decode
latents = latents / self.vae_scale_factor
with torch.no_grad():
image = self.vae.decode(latents.to(self.vae.dtype)).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = (image * 255).round().astype("uint8")
image = Image.fromarray(image[0])
return image
# ============================================================================
# MODEL LOADERS
# ============================================================================
def load_illustrious_xl(
repo_id: str = "AbstractPhil/illustrious-xl-v1",
filename: str = "illustriousXL_v01.safetensors",
device: str = "cuda"
) -> Tuple[UNet2DConditionModel, AutoencoderKL, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPTokenizer]:
"""Load Illustrious XL from single safetensors file."""
from diffusers import StableDiffusionXLPipeline
print(f"π₯ Loading Illustrious XL: {repo_id}/{filename}")
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="model")
print(f"β Downloaded: {checkpoint_path}")
print("π¦ Loading pipeline...")
pipe = StableDiffusionXLPipeline.from_single_file(
checkpoint_path,
torch_dtype=torch.float16,
use_safetensors=True,
)
unet = pipe.unet.to(device)
vae = pipe.vae.to(device)
text_encoder = pipe.text_encoder.to(device)
text_encoder_2 = pipe.text_encoder_2.to(device)
tokenizer = pipe.tokenizer
tokenizer_2 = pipe.tokenizer_2
del pipe
torch.cuda.empty_cache()
print("β
Illustrious XL loaded!")
return unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2
# ============================================================================
# PIPELINE INITIALIZATION
# ============================================================================
def initialize_sdxl_pipeline(
model_choice: str,
scheduler_name: str = SCHEDULER_EULER_A,
device: str = "cuda"
):
"""Initialize SDXL pipeline with lazy T5/Lyra loading."""
print(f"π Initializing {model_choice} pipeline...")
# Load base model
if "Illustrious" in model_choice:
unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2 = load_illustrious_xl(device=device)
else:
# SDXL Base
from diffusers import StableDiffusionXLPipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
)
unet = pipe.unet.to(device)
vae = pipe.vae.to(device)
text_encoder = pipe.text_encoder.to(device)
text_encoder_2 = pipe.text_encoder_2.to(device)
tokenizer = pipe.tokenizer
tokenizer_2 = pipe.tokenizer_2
del pipe
torch.cuda.empty_cache()
# Create lazy loaders (don't download yet)
t5_loader = LazyT5Encoder(model_name="google/flan-t5-xl", device=device)
lyra_loader = LazyLyraModel(
repo_id="AbstractPhil/vae-lyra-xl-adaptive-cantor-illustrious",
device=device,
version=2
)
# Get scheduler
scheduler = get_scheduler(scheduler_name)
pipeline = SDXLFlowMatchingPipeline(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=scheduler,
device=device,
t5_loader=t5_loader,
lyra_loader=lyra_loader,
clip_skip=2
)
print("β
Pipeline initialized (T5/Lyra will load on first use)")
return pipeline
# ============================================================================
# GLOBAL STATE
# ============================================================================
CURRENT_PIPELINE = None
CURRENT_MODEL = None
CURRENT_SCHEDULER = None
def get_pipeline(model_choice: str, scheduler_name: str = SCHEDULER_EULER_A):
"""Get or create pipeline for selected model."""
global CURRENT_PIPELINE, CURRENT_MODEL, CURRENT_SCHEDULER
if CURRENT_PIPELINE is None or CURRENT_MODEL != model_choice:
CURRENT_PIPELINE = initialize_sdxl_pipeline(model_choice, scheduler_name, device="cuda")
CURRENT_MODEL = model_choice
CURRENT_SCHEDULER = scheduler_name
elif CURRENT_SCHEDULER != scheduler_name:
CURRENT_PIPELINE.set_scheduler(scheduler_name)
CURRENT_SCHEDULER = scheduler_name
return CURRENT_PIPELINE
# ============================================================================
# INFERENCE
# ============================================================================
@spaces.GPU(duration=120)
def generate_image(
prompt: str,
t5_summary: str,
negative_prompt: str,
model_choice: str,
scheduler_name: str,
clip_skip: int,
num_steps: int,
cfg_scale: float,
width: int,
height: int,
use_lyra: bool,
lyra_strength: float,
seed: int,
randomize_seed: bool,
progress=gr.Progress()
):
"""Generate image with ZeroGPU support."""
if randomize_seed:
seed = np.random.randint(0, 2**32 - 1)
def progress_callback(step, total, desc):
progress((step + 1) / total, desc=desc)
try:
pipeline = get_pipeline(model_choice, scheduler_name)
if not use_lyra or pipeline.lyra_loader is None:
progress(0.05, desc="Generating...")
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=cfg_scale,
seed=seed,
use_lyra=False,
clip_skip=clip_skip,
progress_callback=progress_callback
)
progress(1.0, desc="Complete!")
return image, None, seed
else:
progress(0.05, desc="Generating standard...")
image_standard = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=cfg_scale,
seed=seed,
use_lyra=False,
clip_skip=clip_skip,
progress_callback=lambda s, t, d: progress(0.05 + (s/t) * 0.45, desc=d)
)
progress(0.5, desc="Loading Lyra + T5 (first run only)...")
image_lyra = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=cfg_scale,
seed=seed,
use_lyra=True,
clip_skip=clip_skip,
t5_summary=t5_summary,
lyra_strength=lyra_strength,
progress_callback=lambda s, t, d: progress(0.5 + (s/t) * 0.45, desc=d)
)
progress(1.0, desc="Complete!")
return image_standard, image_lyra, seed
except Exception as e:
print(f"β Generation failed: {e}")
import traceback
traceback.print_exc()
raise e
# ============================================================================
# GRADIO UI
# ============================================================================
def create_demo():
"""Create Gradio interface."""
with gr.Blocks() as demo:
gr.Markdown("""
# π Lyra/Illustrious XL Image Generation
**Geometric crystalline diffusion** by [AbstractPhil](https://huggingface.co/AbstractPhil)
| Model | Architecture | Lyra Version | Best For |
|-------|-------------|--------------|----------|
| **Illustrious XL** | SDXL | v2 (T5-XL) | Anime/illustration, high detail |
| **SDXL Base** | SDXL | v2 (T5-XL) | Photorealistic, general purpose |
**Lyra VAE** fuses CLIP + T5-XL embeddings using adaptive Cantor attention.
T5 and Lyra only load when you enable the Lyra checkbox!
""")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.TextArea(
label="Prompt",
value="masterpiece, best quality, 1girl, blue hair, school uniform, cherry blossoms, detailed background",
lines=3
)
t5_summary = gr.TextArea(
label="T5 Summary (for Lyra)",
value="A beautiful anime girl with flowing blue hair wearing a school uniform, surrounded by delicate pink cherry blossoms",
lines=2,
info="Natural language description for T5. Leave empty to use prompt."
)
negative_prompt = gr.TextArea(
label="Negative Prompt",
value="lowres, bad anatomy, bad hands, text, error, worst quality, low quality",
lines=2
)
with gr.Row():
model_choice = gr.Dropdown(
label="Model",
choices=["Illustrious XL", "SDXL Base"],
value="Illustrious XL"
)
scheduler_name = gr.Dropdown(
label="Scheduler",
choices=SDXL_SCHEDULERS,
value=SCHEDULER_EULER_A
)
clip_skip = gr.Slider(
label="CLIP Skip",
minimum=1, maximum=4, value=2, step=1,
info="2 recommended for Illustrious"
)
use_lyra = gr.Checkbox(
label="Enable Lyra VAE (loads T5-XL on first use)",
value=False,
info="Compare standard vs geometric fusion"
)
lyra_strength = gr.Slider(
label="Lyra Blend Strength",
minimum=0.0, maximum=2.0, value=1.0, step=0.05,
info="0.0 = pure CLIP, 1.0 = pure Lyra"
)
with gr.Accordion("Generation Settings", open=True):
num_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=25, step=1)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1.0, maximum=15.0, value=7.0, step=0.5)
with gr.Row():
width = gr.Slider(label="Width", minimum=512, maximum=1536, value=1024, step=64)
height = gr.Slider(label="Height", minimum=512, maximum=1536, value=1024, step=64)
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32 - 1, value=42, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_btn = gr.Button("π¨ Generate", variant="primary", size="lg")
with gr.Column(scale=1):
with gr.Row():
output_image_standard = gr.Image(label="Standard", type="pil")
output_image_lyra = gr.Image(label="Lyra Fusion π΅", type="pil", visible=True)
output_seed = gr.Number(label="Seed", precision=0)
# Event handlers
def on_lyra_toggle(enabled):
if enabled:
return {
output_image_standard: gr.update(visible=True, label="Standard"),
output_image_lyra: gr.update(visible=True, label="Lyra Fusion π΅")
}
else:
return {
output_image_standard: gr.update(visible=True, label="Generated Image"),
output_image_lyra: gr.update(visible=False)
}
use_lyra.change(
fn=on_lyra_toggle,
inputs=[use_lyra],
outputs=[output_image_standard, output_image_lyra]
)
generate_btn.click(
fn=generate_image,
inputs=[
prompt, t5_summary, negative_prompt, model_choice, scheduler_name,
clip_skip, num_steps, cfg_scale, width, height,
use_lyra, lyra_strength, seed, randomize_seed
],
outputs=[output_image_standard, output_image_lyra, output_seed]
)
return demo
# ============================================================================
# LAUNCH
# ============================================================================
if __name__ == "__main__":
demo = create_demo()
demo.queue(max_size=20)
demo.launch() |