File size: 10,616 Bytes
9e8d516 7a97282 5557b72 b7bf529 5557b72 b7bf529 5557b72 b7bf529 5557b72 b7bf529 ea0ea08 7a97282 ea0ea08 7a97282 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 5557b72 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ec96a84 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 67507e0 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 b7bf529 ea0ea08 ec96a84 ea0ea08 736b620 ea0ea08 b7bf529 ea0ea08 7a97282 5557b72 b7bf529 ea0ea08 b7bf529 7a97282 b7bf529 ea0ea08 7a97282 73a7a8c 7a97282 b7bf529 ea0ea08 b7bf529 1752e5c 9e8d516 ea0ea08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
import pandas as pd
from detector import (
yolov8_detect,
download_sample_images,
get_ocr_status,
ADVANCED_OCR_AVAILABLE,
OCR_AVAILABLE
)
# Import advanced OCR functions if available
try:
from advanced_ocr import get_available_models
except ImportError:
def get_available_models():
return {}
# Download sample images
download_sample_images()
# Get OCR status
ocr_status = get_ocr_status()
# ====== UI ======
custom_css = """
#title { text-align: center; }
#description { text-align: center; }
.footer { text-align: center; margin-top: 20px; color: #666; }
.important { font-weight: bold; color: red; }
.download-section { background-color: #f6f6f6; padding: 15px; border-radius: 10px; margin-top: 10px; }
.ocr-section { background-color: #eef7ff; padding: 15px; border-radius: 10px; margin-top: 10px; }
.card { background: white; border-radius: 16px; padding: 16px; box-shadow: 0 10px 25px rgba(0,0,0,0.06); }
"""
def toggle_sections(extract_text_checked, crop_checked):
"""Control visibility of Cropped Plates & OCR sections.
Requirement: If user checks the OCR checkbox, show the cropped plates AND OCR text.
Otherwise, hide both sections. Crops also require crop_checkbox True.
"""
show_gallery = bool(extract_text_checked and crop_checked)
show_ocr = bool(extract_text_checked)
return (
gr.update(visible=show_gallery), # license_gallery
gr.update(visible=show_ocr), # ocr group container (textbox)
)
with gr.Blocks(
css=custom_css,
title="YOLOv11 Motorcyclist Helmet Detection",
theme=gr.themes.Soft(primary_hue="blue", neutral_hue="slate"),
) as demo:
gr.HTML("<h1 id='title'>YOLOv11 Motorcyclist Helmet Detection</h1>")
gr.HTML(
f"""
<div id='description'>
<p>This app detects motorcyclists <strong>with</strong> / <strong>without</strong> helmets and can optionally read license plates.</p>
<p><strong>OCR Status:</strong>
{'β
Advanced OCR Available' if ADVANCED_OCR_AVAILABLE else 'π‘ Basic OCR Available' if OCR_AVAILABLE else 'β OCR Not Available (install requirements)'}
</p>
</div>
"""
)
with gr.Tabs():
with gr.TabItem("Inference"):
with gr.Row():
with gr.Column(scale=1):
with gr.Group(elem_classes=["card"]):
gr.Markdown("### Input Parameters")
input_image = gr.Image(
type="filepath", label="Input Image", sources=["upload", "webcam"]
)
with gr.Row():
image_size = gr.Slider(
minimum=320, maximum=1280, value=640, step=32, label="Image Size"
)
conf_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold"
)
with gr.Row():
iou_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="IOU Threshold"
)
show_stats = gr.Checkbox(value=True, label="Show Stats on Image")
with gr.Group(elem_classes=["card"]):
gr.Markdown("### Options")
crop_plates = gr.Checkbox(value=True, label="Enable License Plate Cropping")
if ocr_status["any_available"]:
extract_text = gr.Checkbox(
value=False,
label="Enable OCR (Show Cropped Plates & Text)",
info="When enabled: shows cropped plates + runs OCR",
)
ocr_on_no_helmet = gr.Checkbox(
value=True,
label="π¨ Auto-OCR when No Helmet Detected",
)
if ADVANCED_OCR_AVAILABLE:
models = get_available_models()
model_choices = [("Auto (Recommended)", "auto"), ("Basic EasyOCR", "basic")]
for key, info in models.items():
model_choices.append((info["name"], key))
selected_ocr_model = gr.Dropdown(
choices=model_choices,
value="auto",
label="OCR Model Selection",
info="Choose OCR model (Advanced models may require setup)",
)
else:
selected_ocr_model = gr.State("basic")
gr.Markdown("*Note: OCR may increase processing time*")
else:
extract_text = gr.Checkbox(
value=False,
label="OCR Not Available",
interactive=False,
)
ocr_on_no_helmet = gr.Checkbox(
value=False,
label="π¨ Auto-OCR when No Helmet (Not Available)",
interactive=False,
)
selected_ocr_model = gr.State("basic")
with gr.Row():
submit_btn = gr.Button("π Detect", variant="primary")
clear_btn = gr.Button("π§Ή Clear")
with gr.Column(scale=2):
with gr.Group(elem_classes=["card"]):
gr.Markdown("### Output")
output_image = gr.Image(type="pil", label="Annotated Image")
output_table = gr.Dataframe(
headers=["Object", "Confidence", "Position", "Dimensions"],
label="Detection Details",
interactive=False,
)
output_stats = gr.Textbox(
label="Detection Summary", interactive=False, lines=6
)
# ---- Cropped plates & OCR (conditionally visible) ----
license_gallery = gr.Gallery(
label="Extracted License Plates",
show_label=True,
elem_id="license_gallery",
columns=3,
rows=2,
object_fit="contain",
height="auto",
visible=False, # hidden until OCR checkbox is enabled
)
ocr_group = gr.Group(elem_classes=["ocr-section"], visible=False)
with ocr_group:
gr.Markdown("### License Plate Text Recognition")
plate_text_output = gr.Textbox(
label="Extracted Text",
placeholder="License plate text will appear here when OCR is enabled",
lines=4,
interactive=False,
)
with gr.Group(elem_classes=["download-section", "card"]):
gr.Markdown("### Download Results")
download_file = gr.File(
label="Download Complete Results (ZIP)",
interactive=False,
visible=True,
)
gr.Markdown(
"*ZIP contains: annotated image, cropped plates (if any), and a CSV report with OCR results*"
)
with gr.TabItem("Examples"):
gr.Markdown("### Example Images")
gr.Examples(
examples=[["sample_1.jpg"], ["sample_2.jpg"], ["sample_3.jpg"], ["sample_4.jpg"], ["sample_5.jpg"],["sample_6.jpg"], ["sample_7.jpg"], ["sample_8.jpg"]],
inputs=input_image,
outputs=[
output_image,
output_table,
output_stats,
license_gallery,
download_file,
plate_text_output,
],
fn=lambda img: yolov8_detect(
img, 640, 0.4, 0.5, True, True, True, False
),
cache_examples=True,
)
gr.HTML(
"""
<div class='footer'>
<p>Built with Gradio and Ultralytics YOLO</p>
<p><strong>License Plate Privacy:</strong> Extracted plate images & text are for demo purposes only.</p>
<p><strong>Requirements for OCR:</strong> torch, transformers, easyocr, opencv-python</p>
</div>
"""
)
# ===== Wire events =====
# 1) Main click
submit_btn.click(
fn=yolov8_detect,
inputs=[
input_image,
image_size,
conf_threshold,
iou_threshold,
show_stats,
gr.State(True), # show_confidence placeholder
crop_plates,
extract_text,
ocr_on_no_helmet,
selected_ocr_model,
],
outputs=[
output_image,
output_table,
output_stats,
license_gallery,
download_file,
plate_text_output,
],
)
# 2) Clear
clear_btn.click(
fn=lambda: [None, None, None, None, None, None],
inputs=[],
outputs=[
input_image,
output_image,
output_table,
output_stats,
license_gallery,
download_file,
plate_text_output,
],
)
# 3) Toggle visibility when user toggles OCR or Crop checkboxes
extract_text.change(
fn=toggle_sections,
inputs=[extract_text, crop_plates],
outputs=[license_gallery, ocr_group],
)
crop_plates.change(
fn=toggle_sections,
inputs=[extract_text, crop_plates],
outputs=[license_gallery, ocr_group],
)
if __name__ == "__main__":
demo.launch(debug=True, share=True) |