Update app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,178 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
|
|
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
| 4 |
import cv2
|
| 5 |
-
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import requests
|
| 8 |
-
import json
|
| 9 |
|
| 10 |
-
# Download sample images
|
| 11 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-1.jpg?raw=true', 'sample_1.jpg')
|
| 12 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-2.jpg?raw=true', 'sample_2.jpg')
|
| 13 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-3.jpg?raw=true', 'sample_3.jpg')
|
| 14 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-4.jpg?raw=true', 'sample_4.jpg')
|
| 15 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-5.jpg?raw=true', 'sample_5.jpg')
|
| 16 |
|
|
|
|
| 17 |
model = YOLO("best.pt")
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
"contents": [{"parts": [{"text": prompt}]}]
|
| 29 |
-
}
|
| 30 |
-
|
| 31 |
-
try:
|
| 32 |
-
response = requests.post(
|
| 33 |
-
f"{GEMINI_API_URL}?key={GEMINI_API_KEY}",
|
| 34 |
-
headers=headers,
|
| 35 |
-
json=data
|
| 36 |
-
)
|
| 37 |
-
response.raise_for_status()
|
| 38 |
-
result = response.json()
|
| 39 |
-
return result['candidates'][0]['content']['parts'][0]['text']
|
| 40 |
-
except Exception as e:
|
| 41 |
-
print(f"Error calling Gemini API: {str(e)}")
|
| 42 |
-
return "Unable to get analysis at the moment."
|
| 43 |
-
|
| 44 |
-
def get_safety_analysis(stats: dict) -> str:
|
| 45 |
-
prompt = f"""
|
| 46 |
-
You are a traffic safety analyst. Analyze the following statistics and provide a brief safety report:
|
| 47 |
-
|
| 48 |
-
Detection Results:
|
| 49 |
-
- Total Detections: {stats.get('total_detections', 0)}
|
| 50 |
-
- Riders with Helmet: {stats.get('with_helmet', 0)}
|
| 51 |
-
- Riders without Helmet: {stats.get('without_helmet', 0)}
|
| 52 |
-
- Helmet Compliance Rate: {stats.get('helmet_compliance', 0)}%
|
| 53 |
-
- License Plates Detected: {stats.get('license_plates', 0)}
|
| 54 |
-
|
| 55 |
-
Provide a 3-4 sentence safety analysis focusing on helmet compliance and potential safety concerns.
|
| 56 |
-
"""
|
| 57 |
-
return get_gemini_response(prompt)
|
| 58 |
-
|
| 59 |
-
def yoloV8_func(image=None, image_size=640, conf_threshold=0.4, iou_threshold=0.5):
|
| 60 |
-
print(f"Received image_size: {image_size}")
|
| 61 |
-
|
| 62 |
if image_size is None:
|
| 63 |
image_size = 640
|
| 64 |
|
|
|
|
| 65 |
if not isinstance(image_size, int):
|
| 66 |
image_size = int(image_size)
|
| 67 |
|
|
|
|
| 68 |
imgsz = [image_size, image_size]
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
stats
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
'
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
|
|
|
| 97 |
|
| 98 |
-
return annotated_image
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
with gr.Row():
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
label="
|
| 128 |
-
interactive=True
|
| 129 |
-
)
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
fn=yoloV8_func,
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
)
|
| 137 |
-
|
| 138 |
-
outputs = gr.Image(type="pil", label="Output Image")
|
| 139 |
-
|
| 140 |
-
title = "YOLOv11 Motorcyclist Helmet Detection"
|
| 141 |
-
description = """
|
| 142 |
-
This application uses YOLOv11 to detect Motorcyclists with and without Helmets in images.
|
| 143 |
-
Upload an image, adjust the confidence and IOU thresholds, and view the detection results.
|
| 144 |
-
You can customize the model's performance to fit your needs.
|
| 145 |
-
"""
|
| 146 |
-
article = """
|
| 147 |
-
<h2>How It Works:</h2>
|
| 148 |
-
<p>This model detects Motorcyclists with and without Helmets in images and highlights them with bounding boxes.
|
| 149 |
-
Adjust the confidence threshold to control detection accuracy and the IOU threshold for overlap sensitivity.</p>
|
| 150 |
-
<p>Upload your images and try it out!</p>
|
| 151 |
-
"""
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo.launch(debug=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from ultralytics import YOLO
|
| 4 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 5 |
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import os
|
| 8 |
import cv2
|
| 9 |
+
import time
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Download sample images (optional)
|
| 12 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-1.jpg?raw=true', 'sample_1.jpg')
|
| 13 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-2.jpg?raw=true', 'sample_2.jpg')
|
| 14 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-3.jpg?raw=true', 'sample_3.jpg')
|
| 15 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-4.jpg?raw=true', 'sample_4.jpg')
|
| 16 |
torch.hub.download_url_to_file('https://github.com/Janno1402/Helmet-License-Plate-Detection/blob/main/Sample-Image-5.jpg?raw=true', 'sample_5.jpg')
|
| 17 |
|
| 18 |
+
# Load model (cached for performance)
|
| 19 |
model = YOLO("best.pt")
|
| 20 |
+
class_names = {0: 'With Helmet', 1: 'Without Helmet', 2: 'License Plate'}
|
| 21 |
|
| 22 |
+
def yoloV8_func(
|
| 23 |
+
image=None,
|
| 24 |
+
image_size=640,
|
| 25 |
+
conf_threshold=0.4,
|
| 26 |
+
iou_threshold=0.5,
|
| 27 |
+
show_stats=True,
|
| 28 |
+
show_confidence=True
|
| 29 |
+
):
|
| 30 |
+
# Handle NoneType for image_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
if image_size is None:
|
| 32 |
image_size = 640
|
| 33 |
|
| 34 |
+
# Ensure image_size is an integer
|
| 35 |
if not isinstance(image_size, int):
|
| 36 |
image_size = int(image_size)
|
| 37 |
|
| 38 |
+
# Construct imgsz as a list of two integers [width, height]
|
| 39 |
imgsz = [image_size, image_size]
|
| 40 |
|
| 41 |
+
# Make predictions
|
| 42 |
+
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=imgsz)
|
| 43 |
+
|
| 44 |
+
# Get the output image with bounding boxes
|
| 45 |
+
annotated_image = results[0].plot() # This returns a PIL image
|
| 46 |
+
|
| 47 |
+
# Convert to PIL if it's a numpy array
|
| 48 |
+
if isinstance(annotated_image, np.ndarray):
|
| 49 |
+
annotated_image = Image.fromarray(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB))
|
| 50 |
|
| 51 |
+
# Extract detection information
|
| 52 |
+
boxes = results[0].boxes
|
| 53 |
+
detections = []
|
| 54 |
|
| 55 |
+
if boxes is not None and len(boxes) > 0:
|
| 56 |
+
for i, (box, cls, conf) in enumerate(zip(boxes.xyxy, boxes.cls, boxes.conf)):
|
| 57 |
+
x1, y1, x2, y2 = box.tolist()
|
| 58 |
+
class_id = int(cls)
|
| 59 |
+
confidence = float(conf)
|
| 60 |
+
label = class_names.get(class_id, f"Class {class_id}")
|
| 61 |
+
|
| 62 |
+
detections.append({
|
| 63 |
+
"Object": label,
|
| 64 |
+
"Confidence": f"{confidence:.2f}",
|
| 65 |
+
"Position": f"({int(x1)}, {int(y1)})",
|
| 66 |
+
"Dimensions": f"{int(x2-x1)}x{int(y2-y1)}"
|
| 67 |
+
})
|
| 68 |
|
| 69 |
+
# Create stats text
|
| 70 |
+
stats_text = ""
|
| 71 |
+
if show_stats and detections:
|
| 72 |
+
df = pd.DataFrame(detections)
|
| 73 |
+
counts = df['Object'].value_counts().to_dict()
|
| 74 |
+
stats_text = "Detection Summary:\n"
|
| 75 |
+
for obj, count in counts.items():
|
| 76 |
+
stats_text += f"- {obj}: {count}\n"
|
| 77 |
|
| 78 |
+
# Add stats to image if requested
|
| 79 |
+
if show_stats and stats_text:
|
| 80 |
+
draw = ImageDraw.Draw(annotated_image)
|
| 81 |
+
try:
|
| 82 |
+
font = ImageFont.truetype("arial.ttf", 20)
|
| 83 |
+
except:
|
| 84 |
+
font = ImageFont.load_default()
|
| 85 |
+
|
| 86 |
+
# Add semi-transparent background for text
|
| 87 |
+
text_bbox = draw.textbbox((0, 0), stats_text, font=font)
|
| 88 |
+
text_width = text_bbox[2] - text_bbox[0]
|
| 89 |
+
text_height = text_bbox[3] - text_bbox[1]
|
| 90 |
+
draw.rectangle([10, 10, 20 + text_width, 20 + text_height], fill=(0, 0, 0, 128))
|
| 91 |
+
|
| 92 |
+
# Add text
|
| 93 |
+
draw.text((15, 15), stats_text, font=font, fill=(255, 255, 255))
|
| 94 |
|
| 95 |
+
# Create a detection table for display
|
| 96 |
+
detection_table = pd.DataFrame(detections) if detections else pd.DataFrame(columns=["Object", "Confidence", "Position", "Dimensions"])
|
| 97 |
|
| 98 |
+
return annotated_image, detection_table, stats_text
|
| 99 |
|
| 100 |
+
# Define custom CSS for styling
|
| 101 |
+
custom_css = """
|
| 102 |
+
#title { text-align: center; }
|
| 103 |
+
#description { text-align: center; }
|
| 104 |
+
.footer {
|
| 105 |
+
text-align: center;
|
| 106 |
+
margin-top: 20px;
|
| 107 |
+
color: #666;
|
| 108 |
+
}
|
| 109 |
+
.important { font-weight: bold; color: red; }
|
| 110 |
+
"""
|
| 111 |
+
|
| 112 |
+
# Set up Gradio interface with Blocks for more control
|
| 113 |
+
with gr.Blocks(css=custom_css, title="YOLOv11 Motorcyclist Helmet Detection") as demo:
|
| 114 |
+
gr.HTML("<h1 id='title'>YOLOv11 Motorcyclist Helmet Detection</h1>")
|
| 115 |
+
gr.HTML("""
|
| 116 |
+
<div id='description'>
|
| 117 |
+
<p>This application uses YOLOv11 to detect Motorcyclists with and without Helmets in images.</p>
|
| 118 |
+
<p>Upload an image, adjust the parameters, and view the detection results with detailed statistics.</p>
|
| 119 |
+
</div>
|
| 120 |
+
""")
|
| 121 |
|
| 122 |
with gr.Row():
|
| 123 |
+
with gr.Column(scale=1):
|
| 124 |
+
gr.Markdown("### Input Parameters")
|
| 125 |
+
input_image = gr.Image(type="filepath", label="Input Image", sources=["upload", "webcam"])
|
| 126 |
+
with gr.Row():
|
| 127 |
+
image_size = gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size")
|
| 128 |
+
conf_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Confidence Threshold")
|
| 129 |
+
with gr.Row():
|
| 130 |
+
iou_threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="IOU Threshold")
|
| 131 |
+
show_stats = gr.Checkbox(value=True, label="Show Statistics on Image")
|
| 132 |
+
|
| 133 |
+
submit_btn = gr.Button("Detect Objects", variant="primary")
|
| 134 |
+
clear_btn = gr.Button("Clear")
|
| 135 |
+
|
| 136 |
+
with gr.Column(scale=2):
|
| 137 |
+
gr.Markdown("### Output Results")
|
| 138 |
+
output_image = gr.Image(type="pil", label="Output Image")
|
| 139 |
+
output_table = gr.Dataframe(
|
| 140 |
+
headers=["Object", "Confidence", "Position", "Dimensions"],
|
| 141 |
+
label="Detection Details",
|
| 142 |
+
interactive=False
|
| 143 |
+
)
|
| 144 |
+
output_stats = gr.Textbox(label="Detection Summary", interactive=False)
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
# Examples
|
| 147 |
+
gr.Markdown("### Example Images")
|
| 148 |
+
gr.Examples(
|
| 149 |
+
examples=[["sample_1.jpg"], ["sample_2.jpg"], ["sample_3.jpg"], ["sample_4.jpg"], ["sample_5.jpg"]],
|
| 150 |
+
inputs=input_image,
|
| 151 |
+
outputs=[output_image, output_table, output_stats],
|
| 152 |
fn=yoloV8_func,
|
| 153 |
+
cache_examples=True,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Footer
|
| 157 |
+
gr.HTML("""
|
| 158 |
+
<div class='footer'>
|
| 159 |
+
<p>Built with Gradio and Ultralytics YOLO</p>
|
| 160 |
+
<p>Note: This is a demonstration application. Detection accuracy may vary based on image quality and conditions.</p>
|
| 161 |
+
</div>
|
| 162 |
+
""")
|
| 163 |
+
|
| 164 |
+
# Button actions
|
| 165 |
+
submit_btn.click(
|
| 166 |
+
fn=yoloV8_func,
|
| 167 |
+
inputs=[input_image, image_size, conf_threshold, iou_threshold, show_stats],
|
| 168 |
+
outputs=[output_image, output_table, output_stats]
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
clear_btn.click(
|
| 172 |
+
fn=lambda: [None, None, None],
|
| 173 |
+
inputs=[],
|
| 174 |
+
outputs=[input_image, output_image, output_table, output_stats]
|
| 175 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
if __name__ == "__main__":
|
| 178 |
+
demo.launch(debug=True, share=True)
|