Spaces:
Sleeping
Sleeping
| from duckduckgo_search import DDGS | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| def search_web(query): | |
| with DDGS() as ddgs: | |
| results = ddgs.text(query, max_results=5) | |
| return "\n".join([r["body"] for r in results]) | |
| tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-it") | |
| model = AutoModelForCausalLM.from_pretrained("google/gemma-7b-it") | |
| def ask(question): | |
| context = search_web(question) | |
| prompt = f"Use this information:\n{context}\n\nQuestion: {question}\nAnswer:" | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| output = model.generate(**inputs, max_new_tokens=200) | |
| return tokenizer.decode(output[0], skip_special_tokens=True) | |
| if __name__ == "__main__": | |
| print(ask("When was the Eiffel Tower built?")) | |
| python rag.py |