BOXTRON-AI / rag.py
4therapy's picture
Create rag.py
0ae184c verified
raw
history blame contribute delete
787 Bytes
from duckduckgo_search import DDGS
from transformers import AutoTokenizer, AutoModelForCausalLM
def search_web(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return "\n".join([r["body"] for r in results])
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-it")
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b-it")
def ask(question):
context = search_web(question)
prompt = f"Use this information:\n{context}\n\nQuestion: {question}\nAnswer:"
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=200)
return tokenizer.decode(output[0], skip_special_tokens=True)
if __name__ == "__main__":
print(ask("When was the Eiffel Tower built?"))
python rag.py