from duckduckgo_search import DDGS from transformers import AutoTokenizer, AutoModelForCausalLM def search_web(query): with DDGS() as ddgs: results = ddgs.text(query, max_results=5) return "\n".join([r["body"] for r in results]) tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-it") model = AutoModelForCausalLM.from_pretrained("google/gemma-7b-it") def ask(question): context = search_web(question) prompt = f"Use this information:\n{context}\n\nQuestion: {question}\nAnswer:" inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, max_new_tokens=200) return tokenizer.decode(output[0], skip_special_tokens=True) if __name__ == "__main__": print(ask("When was the Eiffel Tower built?")) python rag.py