Easy Circle FLUX LoRA
LoRA fine-tuned on FLUX Kontext model to add red dots to images.
Training Details
- Base Model: lrzjason/flux-kontext-nf4
- Task: Add red dots on specified objects in images
- Dataset: 7,000 synthetic image pairs (blank โ blank with red dots)
- Training Steps: 20,100 steps over 5.7 epochs
- Training Time: ~20 hours on A100 GPU
- LoRA Rank: 16
- Learning Rate: 0.0001 with cosine scheduler
- Batch Size: 2
- Image Resolution: 512x512
Available Checkpoints
checkpoint-5-20100/- Final checkpoint (step 20,100)checkpoint-5-20000/- Step 20,000checkpoint-5-19900/- Step 19,900
Usage
from diffusers import FluxKontextPipeline
import torch
# Load base model
pipe = FluxKontextPipeline.from_pretrained("lrzjason/flux-kontext-nf4")
# Load LoRA weights
pipe.load_lora_weights("sanjanachintalapati/easy-circle-flux-lora",
subfolder="checkpoint-5-20100")
# Generate
prompt = "Add red dots"
control_image = ... # Your input image
output = pipe(prompt=prompt, image=control_image)
Training Code
Full training code and configuration available at: https://github.com/sanjanachin/qwen-image-finetune
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for sanjanachintalapati/easy-circle-flux-lora
Base model
lrzjason/flux-kontext-nf4