longformer-base-4096-tqacd
This model is a fine-tuned version of allenai/longformer-base-4096 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8100
- F1 Macro: 0.2577
- Precision: 0.2667
- Recall: 0.2705
- Accuracy: 0.3663
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 114 | 2.4005 | 0.0156 | 0.0086 | 0.0909 | 0.0941 |
| No log | 2.0 | 228 | 2.3264 | 0.1611 | 0.1567 | 0.2007 | 0.3663 |
| No log | 3.0 | 342 | 2.2406 | 0.1608 | 0.1706 | 0.2238 | 0.2079 |
| No log | 4.0 | 456 | 2.2328 | 0.1905 | 0.2013 | 0.2166 | 0.3317 |
| 2.2426 | 5.0 | 570 | 2.2308 | 0.2492 | 0.2648 | 0.2990 | 0.3069 |
| 2.2426 | 6.0 | 684 | 2.3385 | 0.2694 | 0.3077 | 0.3001 | 0.3515 |
| 2.2426 | 7.0 | 798 | 2.4807 | 0.2756 | 0.3171 | 0.2876 | 0.3960 |
| 2.2426 | 8.0 | 912 | 2.5591 | 0.2712 | 0.2808 | 0.3050 | 0.3020 |
| 0.9769 | 9.0 | 1026 | 2.8100 | 0.2577 | 0.2667 | 0.2705 | 0.3663 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 50
Model tree for rendchevi/longformer-base-4096-tqacd
Base model
allenai/longformer-base-4096