Redis fine-tuned CrossEncoder model for semantic caching on LangCache

This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L6-v2 on the LangCache Sentence Pairs (subsets=['all'], train+val=True) dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for sentence pair classification.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("redis/langcache-reranker-v1-miniL6-softmnrl-triplet")
# Get scores for pairs of texts
pairs = [
    [' What high potential jobs are there other than computer science?', ' What high potential jobs are there other than computer science?'],
    [' Would India ever be able to develop a missile system like S300 or S400 missile?', ' Would India ever be able to develop a missile system like S300 or S400 missile?'],
    [' water from the faucet is being drunk by a yellow dog', 'A yellow dog is drinking water from the faucet'],
    [' water from the faucet is being drunk by a yellow dog', 'The yellow dog is drinking water from a bottle'],
    ['! colspan = `` 14 `` `` Players who appeared for Colchester who left during the season ``', '! colspan = `` 14 `` `` Players who appeared for Colchester who left during the season ``'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    ' What high potential jobs are there other than computer science?',
    [
        ' What high potential jobs are there other than computer science?',
        ' Would India ever be able to develop a missile system like S300 or S400 missile?',
        'A yellow dog is drinking water from the faucet',
        'The yellow dog is drinking water from a bottle',
        '! colspan = `` 14 `` `` Players who appeared for Colchester who left during the season ``',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Classification

Metric Value
accuracy 0.8275
accuracy_threshold 0.0032
f1 0.8104
f1_threshold -0.2988
precision 0.7458
recall 0.8874
average_precision 0.8722

Training Details

Training Dataset

LangCache Sentence Pairs (subsets=['all'], train+val=True)

  • Dataset: LangCache Sentence Pairs (subsets=['all'], train+val=True)
  • Size: 1,452,533 training samples
  • Columns: anchor, positive, and negative_1
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative_1
    type string string string
    details
    • min: 24 characters
    • mean: 114.25 characters
    • max: 268 characters
    • min: 19 characters
    • mean: 114.1 characters
    • max: 226 characters
    • min: 4 characters
    • mean: 93.04 characters
    • max: 234 characters
  • Samples:
    anchor positive negative_1
    Any Canadian teachers (B.Ed. holders) teaching in U.S. schools? Any Canadian teachers (B.Ed. holders) teaching in U.S. schools? Are there many Canadians living and working illegally in the United States?
    Are there any underlying psychological tricks/tactics that are used when designing the lines for rides at amusement parks? Are there any underlying psychological tricks/tactics that are used when designing the lines for rides at amusement parks? Is there any tricks for straight lines mcqs?
    Can I pay with a debit card on PayPal? Can I pay with a debit card on PayPal? Can you transfer PayPal funds onto a debit card/credit card?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "num_negatives": 1,
        "activation_fn": "torch.nn.modules.activation.Sigmoid"
    }
    

Evaluation Dataset

LangCache Sentence Pairs (split=test)

  • Dataset: LangCache Sentence Pairs (split=test)
  • Size: 110,066 evaluation samples
  • Columns: anchor, positive, and negative_1
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative_1
    type string string string
    details
    • min: 3 characters
    • mean: 97.95 characters
    • max: 314 characters
    • min: 3 characters
    • mean: 97.03 characters
    • max: 314 characters
    • min: 11 characters
    • mean: 74.49 characters
    • max: 295 characters
  • Samples:
    anchor positive negative_1
    What high potential jobs are there other than computer science? What high potential jobs are there other than computer science? Why IT or Computer Science jobs are being over rated than other Engineering jobs?
    Would India ever be able to develop a missile system like S300 or S400 missile? Would India ever be able to develop a missile system like S300 or S400 missile? Should India buy the Russian S400 air defence missile system?
    water from the faucet is being drunk by a yellow dog A yellow dog is drinking water from the faucet Do you get more homework in 9th grade than 8th?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "num_negatives": 1,
        "activation_fn": "torch.nn.modules.activation.Sigmoid"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 48
  • learning_rate: 0.0002
  • weight_decay: 0.001
  • num_train_epochs: 50
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • optim: adamw_torch
  • ddp_find_unused_parameters: False
  • push_to_hub: True
  • hub_model_id: redis/langcache-reranker-v1-miniL6-softmnrl-triplet
  • eval_on_start: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 48
  • per_device_eval_batch_size: 48
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0002
  • weight_decay: 0.001
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 50
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: False
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: redis/langcache-reranker-v1-miniL6-softmnrl-triplet
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss test_cls_average_precision
0 0 - 0.3223 0.5734
0.1322 1000 0.4286 0.3215 0.5736
0.2644 2000 0.4241 0.3151 0.5742
0.3966 3000 0.4182 0.3038 0.5755
0.5288 4000 0.4036 0.2876 0.5770
0.6609 5000 0.3919 0.2619 0.5824
0.7931 6000 0.3694 0.2290 0.5908
0.9253 7000 0.3481 0.1966 0.6039
1.0575 8000 0.3109 0.1650 0.6231
1.1897 9000 0.2665 0.1384 0.6565
1.3219 10000 0.2281 0.1154 0.6911
1.4541 11000 0.1984 0.0928 0.7130
1.5863 12000 0.1794 0.0814 0.7341
1.7184 13000 0.1619 0.0698 0.7376
1.8506 14000 0.1498 0.0619 0.7523
1.9828 15000 0.1409 0.0581 0.7584
2.1150 16000 0.1315 0.0537 0.7699
2.2472 17000 0.1239 0.0495 0.7712
2.3794 18000 0.1157 0.0471 0.7847
2.5116 19000 0.1093 0.0415 0.7978
2.6438 20000 0.1026 0.0428 0.8013
2.7759 21000 0.0958 0.0393 0.8096
2.9081 22000 0.0922 0.0387 0.8105
3.0403 23000 0.0873 0.0415 0.8138
3.1725 24000 0.0823 0.0382 0.8178
3.3047 25000 0.0807 0.0369 0.8084
3.4369 26000 0.0772 0.0370 0.8199
3.5691 27000 0.0734 0.0348 0.8261
3.7013 28000 0.0709 0.0335 0.8286
3.8334 29000 0.067 0.0363 0.8374
3.9656 30000 0.0675 0.0359 0.8271
4.0978 31000 0.0629 0.0337 0.8275
4.2300 32000 0.0611 0.0350 0.8378
4.3622 33000 0.0618 0.0372 0.8441
4.4944 34000 0.0585 0.0341 0.8423
4.6266 35000 0.0569 0.0364 0.8469
4.7588 36000 0.055 0.0355 0.8398
4.8909 37000 0.0529 0.0316 0.8474
5.0231 38000 0.0522 0.0346 0.8442
5.1553 39000 0.0501 0.0384 0.8468
5.2875 40000 0.0503 0.0345 0.8534
5.4197 41000 0.0487 0.0321 0.8523
5.5519 42000 0.0465 0.0321 0.8519
5.6841 43000 0.0453 0.0316 0.8527
5.8163 44000 0.0426 0.0355 0.8600
5.9484 45000 0.043 0.0329 0.8527
6.0806 46000 0.0405 0.0358 0.8568
6.2128 47000 0.0398 0.0345 0.8514
6.3450 48000 0.0406 0.0336 0.8499
6.4772 49000 0.0381 0.0324 0.8589
6.6094 50000 0.0377 0.0322 0.8534
6.7416 51000 0.0357 0.0321 0.8518
6.8738 52000 0.035 0.0338 0.8554
7.0059 53000 0.035 0.0348 0.8585
7.1381 54000 0.033 0.0341 0.8582
7.2703 55000 0.0347 0.0341 0.8591
7.4025 56000 0.0339 0.0327 0.8575
7.5347 57000 0.0325 0.0315 0.8636
7.6669 58000 0.0313 0.0353 0.8628
7.7991 59000 0.0305 0.0353 0.8638
7.9313 60000 0.0296 0.0358 0.8641
8.0635 61000 0.0292 0.0348 0.8625
8.1956 62000 0.0301 0.0366 0.8521
8.3278 63000 0.03 0.0336 0.8608
8.4600 64000 0.0287 0.0336 0.8695
8.5922 65000 0.0279 0.0315 0.8627
8.7244 66000 0.027 0.0322 0.8617
8.8566 67000 0.026 0.0336 0.8613
8.9888 68000 0.0268 0.0369 0.8648
9.1210 69000 0.0259 0.0333 0.8646
9.2531 70000 0.0261 0.0350 0.8559
9.3853 71000 0.0261 0.0332 0.8613
9.5175 72000 0.0253 0.0336 0.8666
9.6497 73000 0.0252 0.0342 0.8629
9.7819 74000 0.0243 0.0348 0.8635
9.9141 75000 0.0244 0.0338 0.8656
10.0463 76000 0.0238 0.0349 0.8643
10.1785 77000 0.0239 0.0359 0.8650
10.3106 78000 0.0241 0.0337 0.8628
10.4428 79000 0.0236 0.0349 0.8689
10.5750 80000 0.0234 0.0348 0.8675
10.7072 81000 0.0225 0.0345 0.8668
10.8394 82000 0.0217 0.0354 0.8722
10.9716 83000 0.0226 0.0339 0.8706
11.1038 84000 0.0215 0.0354 0.8680
11.2360 85000 0.022 0.0364 0.8653
11.3681 86000 0.022 0.0348 0.8678
11.5003 87000 0.0217 0.0353 0.8712
11.6325 88000 0.0221 0.0338 0.8682
11.7647 89000 0.0213 0.0324 0.8642
11.8969 90000 0.021 0.0336 0.869
12.0291 91000 0.0206 0.0352 0.8707
12.1613 92000 0.0203 0.0344 0.8686
12.2935 93000 0.0207 0.0349 0.8658
12.4256 94000 0.0206 0.0339 0.8668
12.5578 95000 0.0199 0.0342 0.8687
12.6900 96000 0.0202 0.0323 0.8709
12.8222 97000 0.0192 0.0357 0.8697
12.9544 98000 0.0196 0.0359 0.8716
13.0866 99000 0.0196 0.0357 0.8723
13.2188 100000 0.0195 0.0347 0.8687
13.3510 101000 0.0198 0.0343 0.8681
13.4831 102000 0.0192 0.0329 0.8724
13.6153 103000 0.0191 0.0336 0.8680
13.7475 104000 0.0186 0.0326 0.8685
13.8797 105000 0.0183 0.0338 0.8708
14.0119 106000 0.0186 0.0346 0.8681
14.1441 107000 0.0177 0.0357 0.8698
14.2763 108000 0.0193 0.0344 0.8677
14.4085 109000 0.0186 0.0323 0.8692
14.5406 110000 0.018 0.0336 0.8676
14.6728 111000 0.0177 0.0353 0.8705
14.8050 112000 0.0176 0.0338 0.8704
14.9372 113000 0.0178 0.0348 0.8715
15.0694 114000 0.017 0.0353 0.8707
15.2016 115000 0.0181 0.0349 0.8698
15.3338 116000 0.0182 0.0341 0.8681
15.4660 117000 0.0171 0.0343 0.8689
15.5981 118000 0.0176 0.0341 0.8682
15.7303 119000 0.0173 0.0336 0.8703
15.8625 120000 0.0161 0.0342 0.8701
15.9947 121000 0.0174 0.0349 0.8714
16.1269 122000 0.0171 0.0341 0.8715
16.2591 123000 0.0171 0.0342 0.8669
16.3913 124000 0.0174 0.0336 0.8682
16.5235 125000 0.0167 0.0339 0.8709
16.6557 126000 0.0169 0.0344 0.8703
16.7878 127000 0.016 0.0341 0.8707
16.9200 128000 0.0163 0.0342 0.8717
17.0522 129000 0.0163 0.0342 0.8706
17.1844 130000 0.0163 0.0347 0.8679
17.3166 131000 0.017 0.0335 0.8683
17.4488 132000 0.0166 0.0337 0.8688
17.5810 133000 0.0165 0.0334 0.8706
17.7132 134000 0.0157 0.0334 0.8708
17.8453 135000 0.0154 0.0345 0.8692
17.9775 136000 0.0159 0.0340 0.8719
18.1097 137000 0.0156 0.0338 0.8698
18.2419 138000 0.0162 0.0333 0.8680
18.3741 139000 0.0161 0.0337 0.8694
18.5063 140000 0.0161 0.0345 0.8715
18.6385 141000 0.0163 0.0331 0.8722
18.7707 142000 0.015 0.0336 0.8733
18.9028 143000 0.0153 0.0350 0.8735
19.0350 144000 0.0152 0.0355 0.8722
19.1672 145000 0.0158 0.0354 0.8708
19.2994 146000 0.0158 0.0345 0.8690
19.4316 147000 0.0161 0.0327 0.8705
19.5638 148000 0.0155 0.0335 0.8721
19.6960 149000 0.015 0.0330 0.8709
19.8282 150000 0.0143 0.0339 0.8717
19.9603 151000 0.0156 0.0340 0.8712
20.0925 152000 0.0149 0.0337 0.8709
20.2247 153000 0.0154 0.0334 0.8701
20.3569 154000 0.0155 0.0337 0.8692
20.4891 155000 0.0156 0.0335 0.8708
20.6213 156000 0.0153 0.0337 0.8698
20.7535 157000 0.0149 0.0328 0.8699
20.8857 158000 0.0144 0.0331 0.8691
21.0178 159000 0.0148 0.0339 0.8729
21.1500 160000 0.0152 0.0331 0.8705
21.2822 161000 0.0156 0.0333 0.8690
21.4144 162000 0.0147 0.0328 0.8706
21.5466 163000 0.0148 0.0335 0.8691
21.6788 164000 0.0145 0.0342 0.8698
21.8110 165000 0.0142 0.0336 0.8701
21.9432 166000 0.0141 0.0346 0.8708
22.0753 167000 0.0148 0.0344 0.8713
22.2075 168000 0.0151 0.0335 0.8712
22.3397 169000 0.0147 0.0344 0.8715
22.4719 170000 0.0145 0.0343 0.8711
22.6041 171000 0.0144 0.0331 0.8709
22.7363 172000 0.014 0.0333 0.8716
22.8685 173000 0.0142 0.0341 0.8718
23.0007 174000 0.015 0.0344 0.8717
23.1328 175000 0.0141 0.0337 0.8713
23.2650 176000 0.0146 0.0336 0.8694
23.3972 177000 0.0143 0.0338 0.8700
23.5294 178000 0.0147 0.0330 0.8700
23.6616 179000 0.0141 0.0334 0.8711
23.7938 180000 0.0142 0.0329 0.8707
23.9260 181000 0.014 0.0338 0.8711
24.0582 182000 0.0141 0.0334 0.8726
24.1904 183000 0.0143 0.0350 0.8712
24.3225 184000 0.0144 0.0340 0.8710
24.4547 185000 0.015 0.0330 0.8707
24.5869 186000 0.0144 0.0341 0.8711
24.7191 187000 0.0143 0.0332 0.8707
24.8513 188000 0.014 0.0345 0.8720
24.9835 189000 0.0141 0.0353 0.8718
25.1157 190000 0.0137 0.0349 0.8716
25.2479 191000 0.0142 0.0345 0.8713
25.3800 192000 0.0143 0.0334 0.8706
25.5122 193000 0.0137 0.0332 0.8709
25.6444 194000 0.0143 0.0339 0.8692
25.7766 195000 0.0136 0.0338 0.8706
25.9088 196000 0.0134 0.0333 0.8705
26.0410 197000 0.0136 0.0350 0.8718
26.1732 198000 0.0136 0.0345 0.8713
26.3054 199000 0.0142 0.0340 0.8701
26.4375 200000 0.0141 0.0335 0.8707
26.5697 201000 0.0146 0.0343 0.8707
26.7019 202000 0.0136 0.0341 0.8700
26.8341 203000 0.0131 0.0348 0.8713
26.9663 204000 0.014 0.0345 0.8719
27.0985 205000 0.0135 0.0349 0.8713
27.2307 206000 0.0135 0.0337 0.8714
27.3629 207000 0.0146 0.0334 0.8713
27.4950 208000 0.0138 0.0337 0.8722
27.6272 209000 0.0136 0.0331 0.8709
27.7594 210000 0.0133 0.0343 0.8712
27.8916 211000 0.0137 0.0341 0.8716
28.0238 212000 0.0132 0.0340 0.8730
28.1560 213000 0.0136 0.0344 0.8718
28.2882 214000 0.0143 0.0337 0.8717
28.4204 215000 0.0136 0.0340 0.8716
28.5525 216000 0.014 0.0334 0.8713
28.6847 217000 0.0131 0.0338 0.8714
28.8169 218000 0.0131 0.0337 0.8716
28.9491 219000 0.0136 0.0346 0.8715
29.0813 220000 0.0132 0.0347 0.8722
29.2135 221000 0.0136 0.0344 0.8719
29.3457 222000 0.0137 0.0345 0.8710
29.4779 223000 0.0138 0.0337 0.8708
29.6100 224000 0.013 0.0337 0.8708
29.7422 225000 0.0134 0.0343 0.8714
29.8744 226000 0.0132 0.0338 0.8717
30.0066 227000 0.0133 0.0335 0.8718
30.1388 228000 0.013 0.0340 0.8718
30.2710 229000 0.0144 0.0332 0.8710
30.4032 230000 0.014 0.0346 0.8716
30.5354 231000 0.0137 0.0330 0.8717
30.6675 232000 0.0131 0.0342 0.8718
30.7997 233000 0.0128 0.0337 0.8721
30.9319 234000 0.0135 0.0342 0.8718
31.0641 235000 0.0138 0.0346 0.8720
31.1963 236000 0.0133 0.0347 0.8717
31.3285 237000 0.0137 0.0335 0.8712
31.4607 238000 0.0137 0.0337 0.8718
31.5929 239000 0.0131 0.0340 0.8719
31.7250 240000 0.0129 0.0334 0.8720
31.8572 241000 0.0133 0.0336 0.8725
31.9894 242000 0.0137 0.0343 0.8722
32.1216 243000 0.0132 0.0329 0.8720
32.2538 244000 0.0135 0.0338 0.8718
32.3860 245000 0.0129 0.0344 0.8724
32.5182 246000 0.0136 0.0342 0.8722
32.6504 247000 0.0133 0.0331 0.8716
32.7826 248000 0.0128 0.0337 0.8718
32.9147 249000 0.0127 0.0338 0.8724
33.0469 250000 0.013 0.0328 0.8724
33.1791 251000 0.0135 0.0337 0.8724
33.3113 252000 0.0131 0.0334 0.8723
33.4435 253000 0.0134 0.0339 0.8726
33.5757 254000 0.0135 0.0338 0.8725
33.7079 255000 0.013 0.0341 0.8730
33.8401 256000 0.0126 0.0334 0.8731
33.9722 257000 0.0136 0.0338 0.8730
34.1044 258000 0.0123 0.0338 0.8727
34.2366 259000 0.0135 0.0336 0.8724
34.3688 260000 0.0136 0.0343 0.8722
34.5010 261000 0.0134 0.0341 0.8723
34.6332 262000 0.0136 0.0343 0.8718
34.7654 263000 0.0131 0.0344 0.8721
34.8976 264000 0.0128 0.0343 0.8724
35.0297 265000 0.0129 0.0336 0.8725
35.1619 266000 0.0128 0.0334 0.8726
35.2941 267000 0.013 0.0340 0.8723
35.4263 268000 0.0133 0.0341 0.8723
35.5585 269000 0.0132 0.0331 0.8722
35.6907 270000 0.0127 0.0335 0.8721
35.8229 271000 0.0123 0.0334 0.8725
35.9551 272000 0.0135 0.0343 0.8726
36.0872 273000 0.0125 0.0345 0.8724
36.2194 274000 0.0134 0.0336 0.8722
36.3516 275000 0.0132 0.0338 0.8721
36.4838 276000 0.0136 0.0331 0.8722
36.6160 277000 0.0133 0.0335 0.8718
36.7482 278000 0.0125 0.0336 0.8721
36.8804 279000 0.0122 0.0344 0.8721
37.0126 280000 0.013 0.0336 0.8725
37.1447 281000 0.0132 0.0333 0.8726
37.2769 282000 0.0137 0.0333 0.8722
37.4091 283000 0.0133 0.0339 0.8723
37.5413 284000 0.013 0.0335 0.8723
37.6735 285000 0.0129 0.0329 0.8721
37.8057 286000 0.013 0.0327 0.8721
37.9379 287000 0.0124 0.0338 0.8722
38.0701 288000 0.0131 0.0338 0.8722
38.2022 289000 0.0129 0.0342 0.8722
38.3344 290000 0.013 0.0336 0.8721
38.4666 291000 0.0134 0.0335 0.8722
38.5988 292000 0.0129 0.0338 0.8720
38.7310 293000 0.0122 0.0337 0.8720
38.8632 294000 0.0123 0.0338 0.8722
38.9954 295000 0.0132 0.0335 0.8723
39.1276 296000 0.0128 0.0333 0.8722
39.2597 297000 0.0135 0.0336 0.8721
39.3919 298000 0.0132 0.0342 0.8722
39.5241 299000 0.0136 0.0328 0.8723
39.6563 300000 0.0125 0.0339 0.8722
39.7885 301000 0.0125 0.0343 0.8722
39.9207 302000 0.0126 0.0339 0.8723
40.0529 303000 0.0129 0.0338 0.8723
40.1851 304000 0.0133 0.0334 0.8723
40.3173 305000 0.0134 0.0336 0.8723
40.4494 306000 0.0127 0.0336 0.8724
40.5816 307000 0.0126 0.0342 0.8723
40.7138 308000 0.013 0.0340 0.8721
40.8460 309000 0.013 0.0332 0.8721
40.9782 310000 0.0129 0.0337 0.8723
41.1104 311000 0.0123 0.0328 0.8723
41.2426 312000 0.013 0.0336 0.8723
41.3748 313000 0.0132 0.0337 0.8722
41.5069 314000 0.0132 0.0335 0.8722
41.6391 315000 0.0131 0.0343 0.8722
41.7713 316000 0.0122 0.0339 0.8722
41.9035 317000 0.0125 0.0340 0.8722
42.0357 318000 0.0122 0.0342 0.8722
42.1679 319000 0.0129 0.0337 0.8721
42.3001 320000 0.013 0.0330 0.8721
42.4323 321000 0.013 0.0332 0.8721
42.5644 322000 0.0141 0.0349 0.8721
42.6966 323000 0.013 0.0334 0.8720
42.8288 324000 0.0125 0.0339 0.8721
42.9610 325000 0.0126 0.0342 0.8721
43.0932 326000 0.0127 0.0339 0.8721
43.2254 327000 0.0126 0.0330 0.8721
43.3576 328000 0.013 0.0343 0.8721
43.4898 329000 0.0135 0.0334 0.8721
43.6219 330000 0.0131 0.0327 0.8721
43.7541 331000 0.0124 0.0334 0.8722
43.8863 332000 0.0126 0.0344 0.8721
44.0185 333000 0.0131 0.0338 0.8722
44.1507 334000 0.0121 0.0340 0.8722
44.2829 335000 0.0131 0.0336 0.8721
44.4151 336000 0.0135 0.0340 0.8722
44.5473 337000 0.0131 0.0335 0.8722
44.6794 338000 0.0132 0.0340 0.8722
44.8116 339000 0.0128 0.0333 0.8722
44.9438 340000 0.0124 0.0333 0.8722
45.0760 341000 0.0131 0.0337 0.8722
45.2082 342000 0.0129 0.0341 0.8722
45.3404 343000 0.0133 0.0335 0.8722
45.4726 344000 0.0133 0.0341 0.8722
45.6048 345000 0.013 0.0334 0.8722
45.7369 346000 0.0129 0.0343 0.8722
45.8691 347000 0.0125 0.0335 0.8722
46.0013 348000 0.0133 0.0344 0.8722
46.1335 349000 0.013 0.0332 0.8722
46.2657 350000 0.0128 0.0337 0.8722
46.3979 351000 0.0132 0.0334 0.8722
46.5301 352000 0.0127 0.0343 0.8722
46.6623 353000 0.0127 0.0334 0.8722
46.7944 354000 0.0126 0.0332 0.8722
46.9266 355000 0.013 0.0339 0.8722
47.0588 356000 0.0126 0.0340 0.8722
47.1910 357000 0.0132 0.0336 0.8722
47.3232 358000 0.0138 0.0334 0.8722
47.4554 359000 0.0133 0.0336 0.8722
47.5876 360000 0.0135 0.0340 0.8722
47.7198 361000 0.0129 0.0341 0.8722
47.8519 362000 0.0123 0.0334 0.8722
47.9841 363000 0.0126 0.0334 0.8722
48.1163 364000 0.0121 0.0337 0.8722
48.2485 365000 0.0127 0.0342 0.8722
48.3807 366000 0.0124 0.0336 0.8722
48.5129 367000 0.0125 0.0338 0.8722
48.6451 368000 0.0125 0.0341 0.8721
48.7773 369000 0.0122 0.0333 0.8722
48.9095 370000 0.0123 0.0336 0.8722
49.0416 371000 0.0124 0.0341 0.8722
49.1738 372000 0.0132 0.0330 0.8722
49.3060 373000 0.0128 0.0342 0.8722
49.4382 374000 0.0132 0.0341 0.8722
49.5704 375000 0.013 0.0334 0.8722
49.7026 376000 0.0126 0.0340 0.8722
49.8348 377000 0.0126 0.0337 0.8722
49.9670 378000 0.0131 0.0337 0.8722
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.0
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.10.1
  • Datasets: 4.0.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
220
Safetensors
Model size
22.7M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for redis/langcache-reranker-v1-miniL6-softmnrl-triplet

Dataset used to train redis/langcache-reranker-v1-miniL6-softmnrl-triplet

Collection including redis/langcache-reranker-v1-miniL6-softmnrl-triplet

Evaluation results