File size: 23,697 Bytes
3b1fc6a 8fc0b9f 3b1fc6a 3f132bc 3b1fc6a 607e32f 3b1fc6a d1892a3 3b1fc6a 9a72f1a d1892a3 3b1fc6a d1c4f3a 3b1fc6a 8fc0b9f 3b1fc6a 3d508b7 3b1fc6a 8fc0b9f 416b07d 3b1fc6a 8fc0b9f 0cf4a58 b183278 3b1fc6a 1523020 3b1fc6a afbc5b4 3b1fc6a 4fc112d 3b1fc6a 3ecc805 3b1fc6a 3ecc805 3b1fc6a 3ecc805 3b1fc6a d1c4f3a 1523020 3b1fc6a 1523020 3b1fc6a 00f9c33 3b1fc6a 00f9c33 3b1fc6a 5e81cb2 3b1fc6a 00f9c33 3b1fc6a 1d61441 9608d55 3b1fc6a 1d61441 9608d55 3b1fc6a 3ecc805 3b1fc6a 1523020 3b1fc6a 42d8328 3b1fc6a 42d8328 3b1fc6a 0cf4a58 3b1fc6a afbc5b4 9a72f1a 0cf4a58 3b1fc6a 9a72f1a 3b1fc6a 0cf4a58 3b1fc6a eb74a21 3b1fc6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: keypoint-detection
---

# HRNetPose: Optimized for Mobile Deployment
## Perform accurate human pose estimation
HRNet performs pose estimation in high-resolution representations.
This model is an implementation of HRNetPose found [here](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch).
This repository provides scripts to run HRNetPose on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/hrnet_pose).
### Model Details
- **Model Type:** Model_use_case.pose_estimation
- **Model Stats:**
- Model checkpoint: hrnet_posenet_FP32_state_dict
- Input resolution: 256x192
- Number of parameters: 28.5M
- Model size (float): 109 MB
- Model size (w8a8): 28.1 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 14.321 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 14.27 ms | 1 - 45 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.623 ms | 0 - 124 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 4.788 ms | 0 - 57 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.632 ms | 0 - 18 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.615 ms | 1 - 15 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 2.761 ms | 0 - 127 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) |
| HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.398 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.292 ms | 1 - 45 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 14.321 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 14.27 ms | 1 - 45 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.642 ms | 0 - 17 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.616 ms | 1 - 15 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.532 ms | 0 - 74 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 4.477 ms | 1 - 41 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.628 ms | 0 - 22 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.607 ms | 1 - 17 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.398 ms | 0 - 80 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.292 ms | 1 - 45 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.905 ms | 0 - 126 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.951 ms | 1 - 63 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.994 ms | 0 - 80 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) |
| HRNetPose | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.572 ms | 0 - 83 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.584 ms | 1 - 49 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.676 ms | 0 - 53 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) |
| HRNetPose | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.322 ms | 0 - 83 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.263 ms | 1 - 51 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.424 ms | 1 - 55 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) |
| HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.79 ms | 89 - 89 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.681 ms | 55 - 55 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx.zip) |
| HRNetPose | w8a16 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 6.515 ms | 0 - 103 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 488.445 ms | 28 - 37 MB | CPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) |
| HRNetPose | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.239 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.657 ms | 0 - 90 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.892 ms | 0 - 14 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 2.068 ms | 0 - 22 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) |
| HRNetPose | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.269 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 208.194 ms | 27 - 36 MB | CPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) |
| HRNetPose | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.239 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.904 ms | 0 - 15 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.074 ms | 0 - 73 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.895 ms | 0 - 17 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.269 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.395 ms | 0 - 91 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.44 ms | 0 - 109 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) |
| HRNetPose | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.05 ms | 0 - 74 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.19 ms | 0 - 79 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) |
| HRNetPose | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 2.538 ms | 0 - 73 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 212.261 ms | 25 - 47 MB | CPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) |
| HRNetPose | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.813 ms | 0 - 70 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.999 ms | 0 - 80 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) |
| HRNetPose | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.15 ms | 133 - 133 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.dlc) |
| HRNetPose | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.978 ms | 28 - 28 MB | NPU | [HRNetPose.onnx.zip](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a16.onnx.zip) |
| HRNetPose | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 3.204 ms | 0 - 30 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 3.588 ms | 0 - 110 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.667 ms | 0 - 66 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.909 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.269 ms | 0 - 101 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.769 ms | 0 - 93 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.971 ms | 0 - 162 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.139 ms | 0 - 98 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.604 ms | 0 - 66 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.466 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 17.433 ms | 0 - 3 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.667 ms | 0 - 66 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.909 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.973 ms | 0 - 164 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.128 ms | 0 - 86 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.68 ms | 0 - 72 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.894 ms | 0 - 74 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.971 ms | 0 - 159 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.135 ms | 0 - 106 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.604 ms | 0 - 66 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.466 ms | 0 - 67 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.692 ms | 0 - 101 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.831 ms | 0 - 91 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.574 ms | 0 - 74 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.648 ms | 0 - 75 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 1.383 ms | 0 - 69 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 1.498 ms | 0 - 73 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.537 ms | 0 - 66 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.565 ms | 0 - 73 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.261 ms | 163 - 163 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
## Installation
Install the package via pip:
```bash
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install mmpose==1.2.0 --no-deps
pip install "qai-hub-models[hrnet-pose]"
```
## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.hrnet_pose.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.hrnet_pose.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.hrnet_pose.export
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/hrnet_pose/qai_hub_models/models/HRNetPose/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.hrnet_pose import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.hrnet_pose.demo --eval-mode on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.hrnet_pose.demo -- --eval-mode on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on HRNetPose's performance across various devices [here](https://aihub.qualcomm.com/models/hrnet_pose).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of HRNetPose can be found
[here](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212)
* [Source Model Implementation](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|