Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
library_name: pytorch
|
| 3 |
-
license:
|
| 4 |
tags:
|
| 5 |
- android
|
| 6 |
pipeline_tag: keypoint-detection
|
|
@@ -15,7 +15,7 @@ pipeline_tag: keypoint-detection
|
|
| 15 |
|
| 16 |
HRNet performs pose estimation in high-resolution representations.
|
| 17 |
|
| 18 |
-
This model is an implementation of HRNetPose found [here](https://github.com/
|
| 19 |
|
| 20 |
|
| 21 |
This repository provides scripts to run HRNetPose on Qualcomm® devices.
|
|
@@ -34,35 +34,35 @@ More details on model performance across various devices, can be found
|
|
| 34 |
|
| 35 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 36 |
|---|---|---|---|---|---|---|---|---|
|
| 37 |
-
| HRNetPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 2.
|
| 38 |
-
| HRNetPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.
|
| 39 |
-
| HRNetPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 2.
|
| 40 |
-
| HRNetPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.
|
| 41 |
-
| HRNetPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.
|
| 42 |
-
| HRNetPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.
|
| 43 |
-
| HRNetPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.
|
| 44 |
| HRNetPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.851 ms | 0 - 39 MB | FP16 | NPU | Use Export Script |
|
| 45 |
-
| HRNetPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.
|
| 46 |
-
| HRNetPose | SA7255P ADP | SA7255P | TFLITE | 102.
|
| 47 |
-
| HRNetPose | SA7255P ADP | SA7255P | QNN | 102.
|
| 48 |
-
| HRNetPose | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 2.
|
| 49 |
-
| HRNetPose | SA8255 (Proxy) | SA8255P Proxy | QNN | 2.
|
| 50 |
-
| HRNetPose | SA8295P ADP | SA8295P | TFLITE | 4.
|
| 51 |
-
| HRNetPose | SA8295P ADP | SA8295P | QNN | 4.
|
| 52 |
-
| HRNetPose | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 2.
|
| 53 |
-
| HRNetPose | SA8650 (Proxy) | SA8650P Proxy | QNN | 2.
|
| 54 |
-
| HRNetPose | SA8775P ADP | SA8775P | TFLITE | 5.
|
| 55 |
-
| HRNetPose | SA8775P ADP | SA8775P | QNN | 5.
|
| 56 |
-
| HRNetPose | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 102.
|
| 57 |
-
| HRNetPose | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 102.
|
| 58 |
-
| HRNetPose | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 2.
|
| 59 |
-
| HRNetPose | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.
|
| 60 |
-
| HRNetPose | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 5.
|
| 61 |
-
| HRNetPose | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 5.
|
| 62 |
-
| HRNetPose | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 3.
|
| 63 |
-
| HRNetPose | QCS8450 (Proxy) | QCS8450 Proxy | QNN |
|
| 64 |
-
| HRNetPose | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.
|
| 65 |
-
| HRNetPose | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.
|
| 66 |
|
| 67 |
|
| 68 |
|
|
@@ -127,7 +127,7 @@ HRNetPose
|
|
| 127 |
Device : Samsung Galaxy S23 (13)
|
| 128 |
Runtime : TFLITE
|
| 129 |
Estimated inference time (ms) : 2.7
|
| 130 |
-
Estimated peak memory usage (MB): [0,
|
| 131 |
Total # Ops : 516
|
| 132 |
Compute Unit(s) : NPU (516 ops)
|
| 133 |
```
|
|
@@ -247,14 +247,14 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
| 247 |
|
| 248 |
## License
|
| 249 |
* The license for the original implementation of HRNetPose can be found
|
| 250 |
-
[here](https://github.com/
|
| 251 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 252 |
|
| 253 |
|
| 254 |
|
| 255 |
## References
|
| 256 |
* [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212)
|
| 257 |
-
* [Source Model Implementation](https://github.com/
|
| 258 |
|
| 259 |
|
| 260 |
|
|
|
|
| 1 |
---
|
| 2 |
library_name: pytorch
|
| 3 |
+
license: mit
|
| 4 |
tags:
|
| 5 |
- android
|
| 6 |
pipeline_tag: keypoint-detection
|
|
|
|
| 15 |
|
| 16 |
HRNet performs pose estimation in high-resolution representations.
|
| 17 |
|
| 18 |
+
This model is an implementation of HRNetPose found [here](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch).
|
| 19 |
|
| 20 |
|
| 21 |
This repository provides scripts to run HRNetPose on Qualcomm® devices.
|
|
|
|
| 34 |
|
| 35 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 36 |
|---|---|---|---|---|---|---|---|---|
|
| 37 |
+
| HRNetPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 2.661 ms | 0 - 20 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 38 |
+
| HRNetPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.761 ms | 0 - 20 MB | FP16 | NPU | [HRNetPose.so](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.so) |
|
| 39 |
+
| HRNetPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 2.727 ms | 0 - 163 MB | FP16 | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx) |
|
| 40 |
+
| HRNetPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.942 ms | 0 - 115 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 41 |
+
| HRNetPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.959 ms | 0 - 54 MB | FP16 | NPU | [HRNetPose.so](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.so) |
|
| 42 |
+
| HRNetPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.003 ms | 0 - 92 MB | FP16 | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx) |
|
| 43 |
+
| HRNetPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.852 ms | 0 - 74 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 44 |
| HRNetPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.851 ms | 0 - 39 MB | FP16 | NPU | Use Export Script |
|
| 45 |
+
| HRNetPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.97 ms | 0 - 52 MB | FP16 | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx) |
|
| 46 |
+
| HRNetPose | SA7255P ADP | SA7255P | TFLITE | 102.856 ms | 0 - 72 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 47 |
+
| HRNetPose | SA7255P ADP | SA7255P | QNN | 102.654 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
|
| 48 |
+
| HRNetPose | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 2.66 ms | 0 - 19 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 49 |
+
| HRNetPose | SA8255 (Proxy) | SA8255P Proxy | QNN | 2.664 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
|
| 50 |
+
| HRNetPose | SA8295P ADP | SA8295P | TFLITE | 4.59 ms | 0 - 67 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 51 |
+
| HRNetPose | SA8295P ADP | SA8295P | QNN | 4.52 ms | 0 - 18 MB | FP16 | NPU | Use Export Script |
|
| 52 |
+
| HRNetPose | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 2.659 ms | 0 - 46 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 53 |
+
| HRNetPose | SA8650 (Proxy) | SA8650P Proxy | QNN | 2.692 ms | 1 - 4 MB | FP16 | NPU | Use Export Script |
|
| 54 |
+
| HRNetPose | SA8775P ADP | SA8775P | TFLITE | 5.313 ms | 0 - 71 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 55 |
+
| HRNetPose | SA8775P ADP | SA8775P | QNN | 5.176 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
|
| 56 |
+
| HRNetPose | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 102.856 ms | 0 - 72 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 57 |
+
| HRNetPose | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 102.654 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
|
| 58 |
+
| HRNetPose | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 2.672 ms | 0 - 148 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 59 |
+
| HRNetPose | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.658 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
|
| 60 |
+
| HRNetPose | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 5.313 ms | 0 - 71 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 61 |
+
| HRNetPose | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 5.176 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
|
| 62 |
+
| HRNetPose | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 3.887 ms | 0 - 115 MB | FP16 | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
|
| 63 |
+
| HRNetPose | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 3.845 ms | 0 - 48 MB | FP16 | NPU | Use Export Script |
|
| 64 |
+
| HRNetPose | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.831 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
| 65 |
+
| HRNetPose | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.722 ms | 55 - 55 MB | FP16 | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx) |
|
| 66 |
|
| 67 |
|
| 68 |
|
|
|
|
| 127 |
Device : Samsung Galaxy S23 (13)
|
| 128 |
Runtime : TFLITE
|
| 129 |
Estimated inference time (ms) : 2.7
|
| 130 |
+
Estimated peak memory usage (MB): [0, 20]
|
| 131 |
Total # Ops : 516
|
| 132 |
Compute Unit(s) : NPU (516 ops)
|
| 133 |
```
|
|
|
|
| 247 |
|
| 248 |
## License
|
| 249 |
* The license for the original implementation of HRNetPose can be found
|
| 250 |
+
[here](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/blob/master/LICENSE).
|
| 251 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 252 |
|
| 253 |
|
| 254 |
|
| 255 |
## References
|
| 256 |
* [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212)
|
| 257 |
+
* [Source Model Implementation](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch)
|
| 258 |
|
| 259 |
|
| 260 |
|