t5_dewata_reconstruct_task_mini
This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0385
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 800
- eval_batch_size: 800
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.6946 | 1.0 | 1060 | 0.6088 |
| 0.6003 | 2.0 | 2120 | 0.5319 |
| 0.5445 | 3.0 | 3180 | 0.4737 |
| 0.494 | 4.0 | 4240 | 0.4256 |
| 0.4539 | 5.0 | 5300 | 0.3879 |
| 0.4157 | 6.0 | 6360 | 0.3507 |
| 0.3861 | 7.0 | 7420 | 0.3223 |
| 0.3635 | 8.0 | 8480 | 0.2975 |
| 0.3414 | 9.0 | 9540 | 0.2718 |
| 0.3165 | 10.0 | 10600 | 0.2525 |
| 0.2959 | 11.0 | 11660 | 0.2370 |
| 0.2757 | 12.0 | 12720 | 0.2188 |
| 0.2607 | 13.0 | 13780 | 0.2060 |
| 0.2449 | 14.0 | 14840 | 0.1932 |
| 0.2333 | 15.0 | 15900 | 0.1796 |
| 0.2188 | 16.0 | 16960 | 0.1703 |
| 0.2075 | 17.0 | 18020 | 0.1613 |
| 0.1944 | 18.0 | 19080 | 0.1517 |
| 0.1821 | 19.0 | 20140 | 0.1434 |
| 0.1737 | 20.0 | 21200 | 0.1356 |
| 0.1661 | 21.0 | 22260 | 0.1292 |
| 0.158 | 22.0 | 23320 | 0.1220 |
| 0.1486 | 23.0 | 24380 | 0.1142 |
| 0.1423 | 24.0 | 25440 | 0.1124 |
| 0.1326 | 25.0 | 26500 | 0.1046 |
| 0.1287 | 26.0 | 27560 | 0.1017 |
| 0.1204 | 27.0 | 28620 | 0.0949 |
| 0.1136 | 28.0 | 29680 | 0.0917 |
| 0.1089 | 29.0 | 30740 | 0.0874 |
| 0.1031 | 30.0 | 31800 | 0.0837 |
| 0.0978 | 31.0 | 32860 | 0.0798 |
| 0.0944 | 32.0 | 33920 | 0.0773 |
| 0.0903 | 33.0 | 34980 | 0.0751 |
| 0.0873 | 34.0 | 36040 | 0.0727 |
| 0.0816 | 35.0 | 37100 | 0.0699 |
| 0.0792 | 36.0 | 38160 | 0.0666 |
| 0.0747 | 37.0 | 39220 | 0.0661 |
| 0.0709 | 38.0 | 40280 | 0.0639 |
| 0.0681 | 39.0 | 41340 | 0.0616 |
| 0.0658 | 40.0 | 42400 | 0.0598 |
| 0.0624 | 41.0 | 43460 | 0.0588 |
| 0.0618 | 42.0 | 44520 | 0.0569 |
| 0.0587 | 43.0 | 45580 | 0.0559 |
| 0.0546 | 44.0 | 46640 | 0.0548 |
| 0.0537 | 45.0 | 47700 | 0.0537 |
| 0.0517 | 46.0 | 48760 | 0.0529 |
| 0.0492 | 47.0 | 49820 | 0.0525 |
| 0.0475 | 48.0 | 50880 | 0.0509 |
| 0.0471 | 49.0 | 51940 | 0.0517 |
| 0.0432 | 50.0 | 53000 | 0.0491 |
| 0.0434 | 51.0 | 54060 | 0.0486 |
| 0.0414 | 52.0 | 55120 | 0.0484 |
| 0.0402 | 53.0 | 56180 | 0.0486 |
| 0.0391 | 54.0 | 57240 | 0.0486 |
| 0.0369 | 55.0 | 58300 | 0.0469 |
| 0.0363 | 56.0 | 59360 | 0.0466 |
| 0.0351 | 57.0 | 60420 | 0.0472 |
| 0.0336 | 58.0 | 61480 | 0.0461 |
| 0.033 | 59.0 | 62540 | 0.0461 |
| 0.0314 | 60.0 | 63600 | 0.0453 |
| 0.0306 | 61.0 | 64660 | 0.0457 |
| 0.0306 | 62.0 | 65720 | 0.0456 |
| 0.0293 | 63.0 | 66780 | 0.0451 |
| 0.0282 | 64.0 | 67840 | 0.0444 |
| 0.0267 | 65.0 | 68900 | 0.0446 |
| 0.0274 | 66.0 | 69960 | 0.0441 |
| 0.0276 | 67.0 | 71020 | 0.0431 |
| 0.0259 | 68.0 | 72080 | 0.0438 |
| 0.0256 | 69.0 | 73140 | 0.0435 |
| 0.0238 | 70.0 | 74200 | 0.0438 |
| 0.0234 | 71.0 | 75260 | 0.0437 |
| 0.0226 | 72.0 | 76320 | 0.0437 |
| 0.0225 | 73.0 | 77380 | 0.0436 |
| 0.0222 | 74.0 | 78440 | 0.0437 |
| 0.0211 | 75.0 | 79500 | 0.0423 |
| 0.0206 | 76.0 | 80560 | 0.0425 |
| 0.0202 | 77.0 | 81620 | 0.0428 |
| 0.02 | 78.0 | 82680 | 0.0420 |
| 0.0189 | 79.0 | 83740 | 0.0428 |
| 0.0196 | 80.0 | 84800 | 0.0421 |
| 0.0183 | 81.0 | 85860 | 0.0422 |
| 0.0181 | 82.0 | 86920 | 0.0418 |
| 0.0181 | 83.0 | 87980 | 0.0415 |
| 0.0175 | 84.0 | 89040 | 0.0413 |
| 0.0171 | 85.0 | 90100 | 0.0419 |
| 0.0172 | 86.0 | 91160 | 0.0419 |
| 0.0166 | 87.0 | 92220 | 0.0411 |
| 0.0156 | 88.0 | 93280 | 0.0410 |
| 0.0162 | 89.0 | 94340 | 0.0421 |
| 0.0159 | 90.0 | 95400 | 0.0412 |
| 0.0155 | 91.0 | 96460 | 0.0410 |
| 0.0152 | 92.0 | 97520 | 0.0414 |
| 0.0149 | 93.0 | 98580 | 0.0411 |
| 0.0142 | 94.0 | 99640 | 0.0414 |
| 0.0144 | 95.0 | 100700 | 0.0403 |
| 0.0139 | 96.0 | 101760 | 0.0414 |
| 0.0138 | 97.0 | 102820 | 0.0407 |
| 0.0138 | 98.0 | 103880 | 0.0407 |
| 0.0131 | 99.0 | 104940 | 0.0400 |
| 0.0125 | 100.0 | 106000 | 0.0398 |
| 0.0122 | 101.0 | 107060 | 0.0406 |
| 0.0128 | 102.0 | 108120 | 0.0407 |
| 0.0111 | 103.0 | 109180 | 0.0404 |
| 0.0118 | 104.0 | 110240 | 0.0396 |
| 0.012 | 105.0 | 111300 | 0.0402 |
| 0.0115 | 106.0 | 112360 | 0.0398 |
| 0.011 | 107.0 | 113420 | 0.0407 |
| 0.0107 | 108.0 | 114480 | 0.0403 |
| 0.0108 | 109.0 | 115540 | 0.0408 |
| 0.0107 | 110.0 | 116600 | 0.0406 |
| 0.0104 | 111.0 | 117660 | 0.0404 |
| 0.01 | 112.0 | 118720 | 0.0404 |
| 0.0099 | 113.0 | 119780 | 0.0406 |
| 0.0099 | 114.0 | 120840 | 0.0402 |
| 0.0095 | 115.0 | 121900 | 0.0405 |
| 0.0094 | 116.0 | 122960 | 0.0397 |
| 0.0094 | 117.0 | 124020 | 0.0397 |
| 0.0092 | 118.0 | 125080 | 0.0393 |
| 0.0091 | 119.0 | 126140 | 0.0401 |
| 0.0088 | 120.0 | 127200 | 0.0397 |
| 0.0087 | 121.0 | 128260 | 0.0394 |
| 0.0087 | 122.0 | 129320 | 0.0394 |
| 0.0086 | 123.0 | 130380 | 0.0397 |
| 0.008 | 124.0 | 131440 | 0.0397 |
| 0.0083 | 125.0 | 132500 | 0.0397 |
| 0.0083 | 126.0 | 133560 | 0.0395 |
| 0.0082 | 127.0 | 134620 | 0.0394 |
| 0.0078 | 128.0 | 135680 | 0.0394 |
| 0.0075 | 129.0 | 136740 | 0.0385 |
| 0.0071 | 130.0 | 137800 | 0.0392 |
| 0.0075 | 131.0 | 138860 | 0.0389 |
| 0.007 | 132.0 | 139920 | 0.0392 |
| 0.0074 | 133.0 | 140980 | 0.0394 |
| 0.0071 | 134.0 | 142040 | 0.0391 |
| 0.0071 | 135.0 | 143100 | 0.0390 |
| 0.007 | 136.0 | 144160 | 0.0391 |
| 0.0069 | 137.0 | 145220 | 0.0397 |
| 0.0065 | 138.0 | 146280 | 0.0392 |
| 0.0061 | 139.0 | 147340 | 0.0395 |
| 0.0064 | 140.0 | 148400 | 0.0395 |
| 0.0058 | 141.0 | 149460 | 0.0402 |
| 0.0063 | 142.0 | 150520 | 0.0391 |
| 0.0058 | 143.0 | 151580 | 0.0391 |
| 0.006 | 144.0 | 152640 | 0.0396 |
| 0.006 | 145.0 | 153700 | 0.0392 |
| 0.006 | 146.0 | 154760 | 0.0394 |
| 0.0056 | 147.0 | 155820 | 0.0402 |
| 0.0058 | 148.0 | 156880 | 0.0395 |
| 0.0056 | 149.0 | 157940 | 0.0392 |
| 0.0055 | 150.0 | 159000 | 0.0395 |
| 0.0051 | 151.0 | 160060 | 0.0389 |
| 0.005 | 152.0 | 161120 | 0.0396 |
| 0.0053 | 153.0 | 162180 | 0.0394 |
| 0.0049 | 154.0 | 163240 | 0.0396 |
| 0.0048 | 155.0 | 164300 | 0.0391 |
| 0.0047 | 156.0 | 165360 | 0.0392 |
| 0.0047 | 157.0 | 166420 | 0.0389 |
| 0.0046 | 158.0 | 167480 | 0.0395 |
| 0.0048 | 159.0 | 168540 | 0.0388 |
| 0.0042 | 160.0 | 169600 | 0.0391 |
| 0.0043 | 161.0 | 170660 | 0.0393 |
| 0.0043 | 162.0 | 171720 | 0.0391 |
| 0.0042 | 163.0 | 172780 | 0.0389 |
| 0.0044 | 164.0 | 173840 | 0.0392 |
| 0.0041 | 165.0 | 174900 | 0.0386 |
| 0.004 | 166.0 | 175960 | 0.0388 |
| 0.004 | 167.0 | 177020 | 0.0387 |
| 0.0041 | 168.0 | 178080 | 0.0390 |
| 0.0038 | 169.0 | 179140 | 0.0387 |
| 0.0041 | 170.0 | 180200 | 0.0391 |
| 0.0039 | 171.0 | 181260 | 0.0384 |
| 0.0036 | 172.0 | 182320 | 0.0387 |
| 0.0034 | 173.0 | 183380 | 0.0388 |
| 0.0035 | 174.0 | 184440 | 0.0388 |
| 0.0035 | 175.0 | 185500 | 0.0389 |
| 0.0035 | 176.0 | 186560 | 0.0386 |
| 0.0033 | 177.0 | 187620 | 0.0387 |
| 0.0031 | 178.0 | 188680 | 0.0392 |
| 0.0032 | 179.0 | 189740 | 0.0386 |
| 0.0032 | 180.0 | 190800 | 0.0383 |
| 0.0033 | 181.0 | 191860 | 0.0385 |
| 0.0029 | 182.0 | 192920 | 0.0385 |
| 0.003 | 183.0 | 193980 | 0.0386 |
| 0.0033 | 184.0 | 195040 | 0.0385 |
| 0.003 | 185.0 | 196100 | 0.0384 |
| 0.0031 | 186.0 | 197160 | 0.0386 |
| 0.0029 | 187.0 | 198220 | 0.0385 |
| 0.0029 | 188.0 | 199280 | 0.0386 |
| 0.0028 | 189.0 | 200340 | 0.0386 |
| 0.0027 | 190.0 | 201400 | 0.0388 |
| 0.0028 | 191.0 | 202460 | 0.0387 |
| 0.0026 | 192.0 | 203520 | 0.0387 |
| 0.0025 | 193.0 | 204580 | 0.0387 |
| 0.0026 | 194.0 | 205640 | 0.0387 |
| 0.0027 | 195.0 | 206700 | 0.0386 |
| 0.0026 | 196.0 | 207760 | 0.0387 |
| 0.0025 | 197.0 | 208820 | 0.0386 |
| 0.0026 | 198.0 | 209880 | 0.0385 |
| 0.0027 | 199.0 | 210940 | 0.0384 |
| 0.0022 | 200.0 | 212000 | 0.0385 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 381
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for pijarcandra22/t5_dewata_reconstruct_task_mini
Base model
google-t5/t5-small