t5_dewata_reconstruct_task_mini

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 800
  • eval_batch_size: 800
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.6946 1.0 1060 0.6088
0.6003 2.0 2120 0.5319
0.5445 3.0 3180 0.4737
0.494 4.0 4240 0.4256
0.4539 5.0 5300 0.3879
0.4157 6.0 6360 0.3507
0.3861 7.0 7420 0.3223
0.3635 8.0 8480 0.2975
0.3414 9.0 9540 0.2718
0.3165 10.0 10600 0.2525
0.2959 11.0 11660 0.2370
0.2757 12.0 12720 0.2188
0.2607 13.0 13780 0.2060
0.2449 14.0 14840 0.1932
0.2333 15.0 15900 0.1796
0.2188 16.0 16960 0.1703
0.2075 17.0 18020 0.1613
0.1944 18.0 19080 0.1517
0.1821 19.0 20140 0.1434
0.1737 20.0 21200 0.1356
0.1661 21.0 22260 0.1292
0.158 22.0 23320 0.1220
0.1486 23.0 24380 0.1142
0.1423 24.0 25440 0.1124
0.1326 25.0 26500 0.1046
0.1287 26.0 27560 0.1017
0.1204 27.0 28620 0.0949
0.1136 28.0 29680 0.0917
0.1089 29.0 30740 0.0874
0.1031 30.0 31800 0.0837
0.0978 31.0 32860 0.0798
0.0944 32.0 33920 0.0773
0.0903 33.0 34980 0.0751
0.0873 34.0 36040 0.0727
0.0816 35.0 37100 0.0699
0.0792 36.0 38160 0.0666
0.0747 37.0 39220 0.0661
0.0709 38.0 40280 0.0639
0.0681 39.0 41340 0.0616
0.0658 40.0 42400 0.0598
0.0624 41.0 43460 0.0588
0.0618 42.0 44520 0.0569
0.0587 43.0 45580 0.0559
0.0546 44.0 46640 0.0548
0.0537 45.0 47700 0.0537
0.0517 46.0 48760 0.0529
0.0492 47.0 49820 0.0525
0.0475 48.0 50880 0.0509
0.0471 49.0 51940 0.0517
0.0432 50.0 53000 0.0491
0.0434 51.0 54060 0.0486
0.0414 52.0 55120 0.0484
0.0402 53.0 56180 0.0486
0.0391 54.0 57240 0.0486
0.0369 55.0 58300 0.0469
0.0363 56.0 59360 0.0466
0.0351 57.0 60420 0.0472
0.0336 58.0 61480 0.0461
0.033 59.0 62540 0.0461
0.0314 60.0 63600 0.0453
0.0306 61.0 64660 0.0457
0.0306 62.0 65720 0.0456
0.0293 63.0 66780 0.0451
0.0282 64.0 67840 0.0444
0.0267 65.0 68900 0.0446
0.0274 66.0 69960 0.0441
0.0276 67.0 71020 0.0431
0.0259 68.0 72080 0.0438
0.0256 69.0 73140 0.0435
0.0238 70.0 74200 0.0438
0.0234 71.0 75260 0.0437
0.0226 72.0 76320 0.0437
0.0225 73.0 77380 0.0436
0.0222 74.0 78440 0.0437
0.0211 75.0 79500 0.0423
0.0206 76.0 80560 0.0425
0.0202 77.0 81620 0.0428
0.02 78.0 82680 0.0420
0.0189 79.0 83740 0.0428
0.0196 80.0 84800 0.0421
0.0183 81.0 85860 0.0422
0.0181 82.0 86920 0.0418
0.0181 83.0 87980 0.0415
0.0175 84.0 89040 0.0413
0.0171 85.0 90100 0.0419
0.0172 86.0 91160 0.0419
0.0166 87.0 92220 0.0411
0.0156 88.0 93280 0.0410
0.0162 89.0 94340 0.0421
0.0159 90.0 95400 0.0412
0.0155 91.0 96460 0.0410
0.0152 92.0 97520 0.0414
0.0149 93.0 98580 0.0411
0.0142 94.0 99640 0.0414
0.0144 95.0 100700 0.0403
0.0139 96.0 101760 0.0414
0.0138 97.0 102820 0.0407
0.0138 98.0 103880 0.0407
0.0131 99.0 104940 0.0400
0.0125 100.0 106000 0.0398
0.0122 101.0 107060 0.0406
0.0128 102.0 108120 0.0407
0.0111 103.0 109180 0.0404
0.0118 104.0 110240 0.0396
0.012 105.0 111300 0.0402
0.0115 106.0 112360 0.0398
0.011 107.0 113420 0.0407
0.0107 108.0 114480 0.0403
0.0108 109.0 115540 0.0408
0.0107 110.0 116600 0.0406
0.0104 111.0 117660 0.0404
0.01 112.0 118720 0.0404
0.0099 113.0 119780 0.0406
0.0099 114.0 120840 0.0402
0.0095 115.0 121900 0.0405
0.0094 116.0 122960 0.0397
0.0094 117.0 124020 0.0397
0.0092 118.0 125080 0.0393
0.0091 119.0 126140 0.0401
0.0088 120.0 127200 0.0397
0.0087 121.0 128260 0.0394
0.0087 122.0 129320 0.0394
0.0086 123.0 130380 0.0397
0.008 124.0 131440 0.0397
0.0083 125.0 132500 0.0397
0.0083 126.0 133560 0.0395
0.0082 127.0 134620 0.0394
0.0078 128.0 135680 0.0394
0.0075 129.0 136740 0.0385
0.0071 130.0 137800 0.0392
0.0075 131.0 138860 0.0389
0.007 132.0 139920 0.0392
0.0074 133.0 140980 0.0394
0.0071 134.0 142040 0.0391
0.0071 135.0 143100 0.0390
0.007 136.0 144160 0.0391
0.0069 137.0 145220 0.0397
0.0065 138.0 146280 0.0392
0.0061 139.0 147340 0.0395
0.0064 140.0 148400 0.0395
0.0058 141.0 149460 0.0402
0.0063 142.0 150520 0.0391
0.0058 143.0 151580 0.0391
0.006 144.0 152640 0.0396
0.006 145.0 153700 0.0392
0.006 146.0 154760 0.0394
0.0056 147.0 155820 0.0402
0.0058 148.0 156880 0.0395
0.0056 149.0 157940 0.0392
0.0055 150.0 159000 0.0395
0.0051 151.0 160060 0.0389
0.005 152.0 161120 0.0396
0.0053 153.0 162180 0.0394
0.0049 154.0 163240 0.0396
0.0048 155.0 164300 0.0391
0.0047 156.0 165360 0.0392
0.0047 157.0 166420 0.0389
0.0046 158.0 167480 0.0395
0.0048 159.0 168540 0.0388
0.0042 160.0 169600 0.0391
0.0043 161.0 170660 0.0393
0.0043 162.0 171720 0.0391
0.0042 163.0 172780 0.0389
0.0044 164.0 173840 0.0392
0.0041 165.0 174900 0.0386
0.004 166.0 175960 0.0388
0.004 167.0 177020 0.0387
0.0041 168.0 178080 0.0390
0.0038 169.0 179140 0.0387
0.0041 170.0 180200 0.0391
0.0039 171.0 181260 0.0384
0.0036 172.0 182320 0.0387
0.0034 173.0 183380 0.0388
0.0035 174.0 184440 0.0388
0.0035 175.0 185500 0.0389
0.0035 176.0 186560 0.0386
0.0033 177.0 187620 0.0387
0.0031 178.0 188680 0.0392
0.0032 179.0 189740 0.0386
0.0032 180.0 190800 0.0383
0.0033 181.0 191860 0.0385
0.0029 182.0 192920 0.0385
0.003 183.0 193980 0.0386
0.0033 184.0 195040 0.0385
0.003 185.0 196100 0.0384
0.0031 186.0 197160 0.0386
0.0029 187.0 198220 0.0385
0.0029 188.0 199280 0.0386
0.0028 189.0 200340 0.0386
0.0027 190.0 201400 0.0388
0.0028 191.0 202460 0.0387
0.0026 192.0 203520 0.0387
0.0025 193.0 204580 0.0387
0.0026 194.0 205640 0.0387
0.0027 195.0 206700 0.0386
0.0026 196.0 207760 0.0387
0.0025 197.0 208820 0.0386
0.0026 198.0 209880 0.0385
0.0027 199.0 210940 0.0384
0.0022 200.0 212000 0.0385

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
381
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for pijarcandra22/t5_dewata_reconstruct_task_mini

Base model

google-t5/t5-small
Finetuned
(2211)
this model

Evaluation results