SentenceTransformer based on thenlper/gte-base
This is a sentence-transformers model finetuned from thenlper/gte-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("neel2306/RE-cp-costgen")
# Run inference
sentences = [
'Lubricating And Similar Oils Not From Petroleum Refineries',
'Synthetic lubricants',
'Crude oil',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,439 training samples
- Columns:
anchor,positives, andnegatives - Approximate statistics based on the first 1000 samples:
anchor positives negatives type string string string details - min: 3 tokens
- mean: 9.72 tokens
- max: 34 tokens
- min: 3 tokens
- mean: 5.96 tokens
- max: 15 tokens
- min: 3 tokens
- mean: 5.0 tokens
- max: 11 tokens
- Samples:
anchor positives negatives Other Metal Valve and Pipe Fitting ManufacturingPipe fittingsRubber gasketsFluid Power Pump and Motor Manufacturing: Miscellaneous ReceiptsPneumatic motorsGear pumpsMaintenance and Repair for Commercial MachineryLabor costs for maintenance techniciansOffice supplies for administrative tasks - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 480 evaluation samples
- Columns:
anchor,positives, andnegatives - Approximate statistics based on the first 480 samples:
anchor positives negatives type string string string details - min: 3 tokens
- mean: 10.4 tokens
- max: 34 tokens
- min: 3 tokens
- mean: 5.97 tokens
- max: 14 tokens
- min: 3 tokens
- mean: 5.09 tokens
- max: 14 tokens
- Samples:
anchor positives negatives Other Metal Ore MiningAluminum ore processingMetal alloy productionBituminous Coal And Lignite Surface Mining: Processed Bituminous Coal And Lignite From Surface OperationsProcessed Bituminous CoalAnthracite CoalRoofing ContractorsLabor costs for roofing installationFoundation construction costs - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 4per_device_eval_batch_size: 4num_train_epochs: 15warmup_ratio: 0.1batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 15max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | loss |
|---|---|---|---|
| 0.1389 | 50 | 0.955 | 0.8155 |
| 0.2778 | 100 | 0.8643 | 0.6782 |
| 0.4167 | 150 | 0.6977 | 0.5452 |
| 0.5556 | 200 | 0.5738 | 0.4514 |
| 0.6944 | 250 | 0.3365 | 0.5229 |
| 0.8333 | 300 | 0.3888 | 0.4742 |
| 0.9722 | 350 | 0.4754 | 0.3900 |
| 1.1111 | 400 | 0.4109 | 0.4337 |
| 1.25 | 450 | 0.3081 | 0.3950 |
| 1.3889 | 500 | 0.3282 | 0.3345 |
| 1.5278 | 550 | 0.2371 | 0.3538 |
| 1.6667 | 600 | 0.1282 | 0.4055 |
| 1.8056 | 650 | 0.1091 | 0.5044 |
| 1.9444 | 700 | 0.2137 | 0.4423 |
| 2.0833 | 750 | 0.1169 | 0.4840 |
| 2.2222 | 800 | 0.1076 | 0.4867 |
| 2.3611 | 850 | 0.1669 | 0.4859 |
| 2.5 | 900 | 0.074 | 0.4873 |
| 2.6389 | 950 | 0.0519 | 0.4409 |
| 2.7778 | 1000 | 0.0257 | 0.4604 |
| 2.9167 | 1050 | 0.0749 | 0.4678 |
| 3.0556 | 1100 | 0.0393 | 0.4564 |
| 3.1944 | 1150 | 0.0454 | 0.4301 |
| 3.3333 | 1200 | 0.062 | 0.4882 |
| 3.4722 | 1250 | 0.0645 | 0.4434 |
| 3.6111 | 1300 | 0.0115 | 0.4296 |
| 3.75 | 1350 | 0.0172 | 0.4398 |
| 3.8889 | 1400 | 0.0429 | 0.4396 |
| 4.0278 | 1450 | 0.0115 | 0.4482 |
| 4.1667 | 1500 | 0.0141 | 0.4597 |
| 4.3056 | 1550 | 0.0032 | 0.4776 |
| 4.4444 | 1600 | 0.0288 | 0.4693 |
| 4.5833 | 1650 | 0.006 | 0.4990 |
| 4.7222 | 1700 | 0.0222 | 0.4693 |
| 4.8611 | 1750 | 0.0016 | 0.4755 |
| 5.0 | 1800 | 0.0016 | 0.4367 |
| 5.1389 | 1850 | 0.0084 | 0.3789 |
| 5.2778 | 1900 | 0.0013 | 0.3689 |
| 5.4167 | 1950 | 0.0554 | 0.3591 |
| 5.5556 | 2000 | 0.0022 | 0.3691 |
| 5.6944 | 2050 | 0.0019 | 0.3776 |
| 5.8333 | 2100 | 0.0008 | 0.3802 |
| 5.9722 | 2150 | 0.0006 | 0.3799 |
| 6.1111 | 2200 | 0.0007 | 0.3688 |
| 6.25 | 2250 | 0.0003 | 0.3635 |
| 6.3889 | 2300 | 0.0125 | 0.3526 |
| 6.5278 | 2350 | 0.0034 | 0.3338 |
| 6.6667 | 2400 | 0.0003 | 0.3482 |
| 6.8056 | 2450 | 0.0149 | 0.3730 |
| 6.9444 | 2500 | 0.0004 | 0.3932 |
| 7.0833 | 2550 | 0.0003 | 0.3977 |
| 7.2222 | 2600 | 0.0007 | 0.3915 |
| 7.3611 | 2650 | 0.0112 | 0.3923 |
| 7.5 | 2700 | 0.0006 | 0.3938 |
| 7.6389 | 2750 | 0.0002 | 0.3986 |
| 7.7778 | 2800 | 0.0005 | 0.3946 |
| 7.9167 | 2850 | 0.0003 | 0.3944 |
| 8.0556 | 2900 | 0.0002 | 0.3996 |
| 8.1944 | 2950 | 0.0001 | 0.4032 |
| 8.3333 | 3000 | 0.0001 | 0.4018 |
| 8.4722 | 3050 | 0.0119 | 0.3811 |
| 8.6111 | 3100 | 0.0001 | 0.3826 |
| 8.75 | 3150 | 0.0001 | 0.3844 |
| 8.8889 | 3200 | 0.0002 | 0.3893 |
| 9.0278 | 3250 | 0.0001 | 0.3942 |
| 9.1667 | 3300 | 0.0001 | 0.3963 |
| 9.3056 | 3350 | 0.0001 | 0.3965 |
| 9.4444 | 3400 | 0.0144 | 0.3766 |
| 9.5833 | 3450 | 0.0002 | 0.3792 |
| 9.7222 | 3500 | 0.0001 | 0.3830 |
| 9.8611 | 3550 | 0.0001 | 0.3870 |
| 10.0 | 3600 | 0.0002 | 0.3909 |
| 10.1389 | 3650 | 0.0001 | 0.3939 |
| 10.2778 | 3700 | 0.0001 | 0.3943 |
| 10.4167 | 3750 | 0.0103 | 0.3896 |
| 10.5556 | 3800 | 0.0001 | 0.3906 |
| 10.6944 | 3850 | 0.0001 | 0.3929 |
| 10.8333 | 3900 | 0.0001 | 0.3957 |
| 10.9722 | 3950 | 0.0001 | 0.3969 |
| 11.1111 | 4000 | 0.0001 | 0.4016 |
| 11.25 | 4050 | 0.0001 | 0.4012 |
| 11.3889 | 4100 | 0.0049 | 0.4058 |
| 11.5278 | 4150 | 0.0002 | 0.4117 |
| 11.6667 | 4200 | 0.0001 | 0.4121 |
| 11.8056 | 4250 | 0.0001 | 0.4131 |
| 11.9444 | 4300 | 0.0001 | 0.4140 |
| 12.0833 | 4350 | 0.0001 | 0.4145 |
| 12.2222 | 4400 | 0.0001 | 0.4145 |
| 12.3611 | 4450 | 0.0085 | 0.4135 |
| 12.5 | 4500 | 0.0001 | 0.4112 |
| 12.6389 | 4550 | 0.0001 | 0.4119 |
| 12.7778 | 4600 | 0.0001 | 0.4127 |
| 12.9167 | 4650 | 0.0001 | 0.4140 |
| 13.0556 | 4700 | 0.0001 | 0.4174 |
| 13.1944 | 4750 | 0.0001 | 0.4182 |
| 13.3333 | 4800 | 0.0001 | 0.4187 |
| 13.4722 | 4850 | 0.0051 | 0.4184 |
| 13.6111 | 4900 | 0.0001 | 0.4183 |
| 13.75 | 4950 | 0.0001 | 0.4190 |
| 13.8889 | 5000 | 0.0001 | 0.4195 |
| 14.0278 | 5050 | 0.0001 | 0.4199 |
| 14.1667 | 5100 | 0.0002 | 0.4177 |
| 14.3056 | 5150 | 0.0001 | 0.4177 |
| 14.4444 | 5200 | 0.0066 | 0.4153 |
| 14.5833 | 5250 | 0.0001 | 0.4155 |
| 14.7222 | 5300 | 0.0001 | 0.4155 |
| 14.8611 | 5350 | 0.0001 | 0.4155 |
| 15.0 | 5400 | 0.0001 | 0.4156 |
Framework Versions
- Python: 3.12.6
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cpu
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Model tree for neel2306/RE-cp-costgen
Base model
thenlper/gte-base