MSRNet / methods /backbone /pvt_v2_eff.py
linaa98's picture
Update methods/backbone/pvt_v2_eff.py
ddfcfee verified
#Author: Lart Pang (https://github.com/lartpang)
import math
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.vision_transformer import _cfg
from torch.backends import cuda
from torch.hub import load_state_dict_from_url
from torch.utils.checkpoint import checkpoint
class Mlp(nn.Module):
def __init__(
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, linear=False
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.dwconv = DWConv(hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
self.linear = linear
if self.linear:
self.relu = nn.ReLU(inplace=True)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
x = self.fc1(x)
if self.linear:
x = self.relu(x)
x = self.dwconv(x, H, W)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, sr_ratio=1, linear=False
):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.linear = linear
self.sr_ratio = sr_ratio
if not linear:
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
else:
self.pool = nn.AdaptiveAvgPool2d(7)
self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1)
self.norm = nn.LayerNorm(dim)
self.act = nn.GELU()
self.apply(self._init_weights)
device_properties = torch.cuda.get_device_properties(torch.device("cuda"))
if device_properties.major == 8 and device_properties.minor == 0:
# print("A100 GPU detected, using flash attention if input tensor is on cuda")
self.cuda_config = {"enable_flash": True, "enable_math": False, "enable_mem_efficient": False}
else:
# print("Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda")
self.cuda_config = {"enable_flash": False, "enable_math": True, "enable_mem_efficient": True}
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if not self.linear:
if self.sr_ratio > 1:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
else:
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
else:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
x_ = self.act(x_)
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
# attn = (q @ k.transpose(-2, -1)) * self.scale
# attn = attn.softmax(dim=-1)
# attn = self.attn_drop(attn)
# x = attn @ v
with cuda.sdp_kernel(**self.cuda_config):
# q: bs,nh,l,hd, k: bs,nh,s,hd, v: bs,nh,s,hd
# same as: (((q @ k.transpose(-1, -2)) * q.shape[-1] ** -0.5).softmax(dim=-1) @ v)
x = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0, is_causal=False) # built-in scale
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
sr_ratio=1,
linear=False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
sr_ratio=sr_ratio,
linear=linear,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class OverlapPatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
assert max(patch_size) > stride, "Set larger patch_size than stride"
self.img_size = img_size
self.patch_size = patch_size
self.H, self.W = img_size[0] // stride, img_size[1] // stride
self.num_patches = self.H * self.W
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2),
)
self.norm = nn.LayerNorm(embed_dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x, H, W
class PyramidVisionTransformerV2(nn.Module):
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dims=[64, 128, 256, 512],
num_heads=[1, 2, 4, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
num_stages=4,
linear=False,
use_checkpoint=False,
):
super().__init__()
self.num_classes = num_classes
self.depths = depths
self.num_stages = num_stages
self.embed_dims = embed_dims
self.use_checkpoint = use_checkpoint
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
for i in range(num_stages):
patch_embed = OverlapPatchEmbed(
img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
patch_size=7 if i == 0 else 3,
stride=4 if i == 0 else 2,
in_chans=in_chans if i == 0 else embed_dims[i - 1],
embed_dim=embed_dims[i],
)
block = nn.ModuleList(
[
Block(
dim=embed_dims[i],
num_heads=num_heads[i],
mlp_ratio=mlp_ratios[i],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + j],
norm_layer=norm_layer,
sr_ratio=sr_ratios[i],
linear=linear,
)
for j in range(depths[i])
]
)
norm = norm_layer(embed_dims[i])
cur += depths[i]
setattr(self, f"patch_embed{i + 1}", patch_embed)
setattr(self, f"block{i + 1}", block)
setattr(self, f"norm{i + 1}", norm)
# classification head
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def freeze_patch_emb(self):
self.patch_embed1.requires_grad = False
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed1", "pos_embed2", "pos_embed3", "pos_embed4", "cls_token"} # has pos_embed may be better
def extract_endpoints(self, x):
B = x.shape[0]
endpoints = dict()
for i in range(self.num_stages):
patch_embed = getattr(self, f"patch_embed{i + 1}")
block = getattr(self, f"block{i + 1}")
norm = getattr(self, f"norm{i + 1}")
x, H, W = patch_embed(x)
for blk in block:
if self.use_checkpoint:
x = checkpoint(blk, x, H, W)
else:
x = blk(x, H, W)
x = norm(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
# print(i + 2, x.shape)
endpoints["reduction_{}".format(i + 2)] = x
return endpoints
def forward(self, x):
endpoints = self.extract_endpoints(x)
return endpoints
class DWConv(nn.Module):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.transpose(1, 2).view(B, C, H, W)
x = self.dwconv(x)
x = x.flatten(2).transpose(1, 2)
return x
def _conv_filter(state_dict, patch_size=16):
"""convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if "patch_embed.proj.weight" in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
def pvt_v2_eff_b0(pretrained=False, **kwargs):
model = PyramidVisionTransformerV2(
patch_size=4,
embed_dims=[32, 64, 160, 256],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
state_dict = load_state_dict_from_url(
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b0.pth", progress=True
)
state_dict.pop("head.weight")
state_dict.pop("head.bias")
model.load_state_dict(state_dict)
return model
def pvt_v2_eff_b1(pretrained=False, **kwargs):
model = PyramidVisionTransformerV2(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
state_dict = load_state_dict_from_url(
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b1.pth", progress=True
)
state_dict.pop("head.weight")
state_dict.pop("head.bias")
model.load_state_dict(state_dict)
return model
def pvt_v2_eff_b2(pretrained=False, **kwargs):
model = PyramidVisionTransformerV2(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
state_dict = load_state_dict_from_url(
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth", progress=True
)
state_dict.pop("head.weight")
state_dict.pop("head.bias")
model.load_state_dict(state_dict)
return model
def pvt_v2_eff_b3(pretrained=False, **kwargs):
model = PyramidVisionTransformerV2(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 4, 18, 3],
sr_ratios=[8, 4, 2, 1],
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
state_dict = load_state_dict_from_url(
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b3.pth", progress=True
)
state_dict.pop("head.weight")
state_dict.pop("head.bias")
model.load_state_dict(state_dict)
return model
def pvt_v2_eff_b4(pretrained=False, **kwargs):
model = PyramidVisionTransformerV2(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 8, 27, 3],
sr_ratios=[8, 4, 2, 1],
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
state_dict = load_state_dict_from_url(
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b4.pth", progress=True
)
state_dict.pop("head.weight")
state_dict.pop("head.bias")
model.load_state_dict(state_dict)
return model
def pvt_v2_eff_b5(pretrained=False, **kwargs):
model = PyramidVisionTransformerV2(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 6, 40, 3],
sr_ratios=[8, 4, 2, 1],
**kwargs,
)
model.default_cfg = _cfg()
if pretrained:
state_dict = load_state_dict_from_url(
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b5.pth", progress=True
)
state_dict.pop("head.weight")
state_dict.pop("head.bias")
model.load_state_dict(state_dict)
return model
def pvt_v2_eff_b2_li(pretrained=False, **kwargs):
model = PyramidVisionTransformerV2(
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[8, 8, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
linear=True,
**kwargs,
)
model.default_cfg = _cfg()
return model