|
|
|
|
|
|
|
|
import math |
|
|
from functools import partial |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
from timm.models.vision_transformer import _cfg |
|
|
from torch.backends import cuda |
|
|
from torch.hub import load_state_dict_from_url |
|
|
from torch.utils.checkpoint import checkpoint |
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
|
def __init__( |
|
|
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, linear=False |
|
|
): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
self.dwconv = DWConv(hidden_features) |
|
|
self.act = act_layer() |
|
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
self.linear = linear |
|
|
if self.linear: |
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=0.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
elif isinstance(m, nn.Conv2d): |
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
|
fan_out //= m.groups |
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
|
if m.bias is not None: |
|
|
m.bias.data.zero_() |
|
|
|
|
|
def forward(self, x, H, W): |
|
|
x = self.fc1(x) |
|
|
if self.linear: |
|
|
x = self.relu(x) |
|
|
x = self.dwconv(x, H, W) |
|
|
x = self.act(x) |
|
|
x = self.drop(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
|
def __init__( |
|
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, sr_ratio=1, linear=False |
|
|
): |
|
|
super().__init__() |
|
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
|
|
|
self.dim = dim |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
|
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) |
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(dim, dim) |
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
self.linear = linear |
|
|
self.sr_ratio = sr_ratio |
|
|
if not linear: |
|
|
if sr_ratio > 1: |
|
|
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) |
|
|
self.norm = nn.LayerNorm(dim) |
|
|
else: |
|
|
self.pool = nn.AdaptiveAvgPool2d(7) |
|
|
self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1) |
|
|
self.norm = nn.LayerNorm(dim) |
|
|
self.act = nn.GELU() |
|
|
self.apply(self._init_weights) |
|
|
|
|
|
device_properties = torch.cuda.get_device_properties(torch.device("cuda")) |
|
|
if device_properties.major == 8 and device_properties.minor == 0: |
|
|
|
|
|
self.cuda_config = {"enable_flash": True, "enable_math": False, "enable_mem_efficient": False} |
|
|
else: |
|
|
|
|
|
self.cuda_config = {"enable_flash": False, "enable_math": True, "enable_mem_efficient": True} |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=0.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
elif isinstance(m, nn.Conv2d): |
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
|
fan_out //= m.groups |
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
|
if m.bias is not None: |
|
|
m.bias.data.zero_() |
|
|
|
|
|
def forward(self, x, H, W): |
|
|
B, N, C = x.shape |
|
|
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
|
|
if not self.linear: |
|
|
if self.sr_ratio > 1: |
|
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W) |
|
|
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) |
|
|
x_ = self.norm(x_) |
|
|
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
else: |
|
|
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
else: |
|
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W) |
|
|
x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1) |
|
|
x_ = self.norm(x_) |
|
|
x_ = self.act(x_) |
|
|
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
k, v = kv[0], kv[1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with cuda.sdp_kernel(**self.cuda_config): |
|
|
|
|
|
|
|
|
x = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0, is_causal=False) |
|
|
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
|
x = self.proj(x) |
|
|
x = self.proj_drop(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class Block(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
num_heads, |
|
|
mlp_ratio=4.0, |
|
|
qkv_bias=False, |
|
|
qk_scale=None, |
|
|
drop=0.0, |
|
|
attn_drop=0.0, |
|
|
drop_path=0.0, |
|
|
act_layer=nn.GELU, |
|
|
norm_layer=nn.LayerNorm, |
|
|
sr_ratio=1, |
|
|
linear=False, |
|
|
): |
|
|
super().__init__() |
|
|
self.norm1 = norm_layer(dim) |
|
|
self.attn = Attention( |
|
|
dim, |
|
|
num_heads=num_heads, |
|
|
qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, |
|
|
attn_drop=attn_drop, |
|
|
proj_drop=drop, |
|
|
sr_ratio=sr_ratio, |
|
|
linear=linear, |
|
|
) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=0.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
elif isinstance(m, nn.Conv2d): |
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
|
fan_out //= m.groups |
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
|
if m.bias is not None: |
|
|
m.bias.data.zero_() |
|
|
|
|
|
def forward(self, x, H, W): |
|
|
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) |
|
|
x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class OverlapPatchEmbed(nn.Module): |
|
|
"""Image to Patch Embedding""" |
|
|
|
|
|
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): |
|
|
super().__init__() |
|
|
|
|
|
img_size = to_2tuple(img_size) |
|
|
patch_size = to_2tuple(patch_size) |
|
|
|
|
|
assert max(patch_size) > stride, "Set larger patch_size than stride" |
|
|
|
|
|
self.img_size = img_size |
|
|
self.patch_size = patch_size |
|
|
self.H, self.W = img_size[0] // stride, img_size[1] // stride |
|
|
self.num_patches = self.H * self.W |
|
|
self.proj = nn.Conv2d( |
|
|
in_chans, |
|
|
embed_dim, |
|
|
kernel_size=patch_size, |
|
|
stride=stride, |
|
|
padding=(patch_size[0] // 2, patch_size[1] // 2), |
|
|
) |
|
|
self.norm = nn.LayerNorm(embed_dim) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=0.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
elif isinstance(m, nn.Conv2d): |
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
|
fan_out //= m.groups |
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
|
if m.bias is not None: |
|
|
m.bias.data.zero_() |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.proj(x) |
|
|
_, _, H, W = x.shape |
|
|
x = x.flatten(2).transpose(1, 2) |
|
|
x = self.norm(x) |
|
|
|
|
|
return x, H, W |
|
|
|
|
|
|
|
|
class PyramidVisionTransformerV2(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
img_size=224, |
|
|
patch_size=16, |
|
|
in_chans=3, |
|
|
num_classes=1000, |
|
|
embed_dims=[64, 128, 256, 512], |
|
|
num_heads=[1, 2, 4, 8], |
|
|
mlp_ratios=[4, 4, 4, 4], |
|
|
qkv_bias=False, |
|
|
qk_scale=None, |
|
|
drop_rate=0.0, |
|
|
attn_drop_rate=0.0, |
|
|
drop_path_rate=0.0, |
|
|
norm_layer=nn.LayerNorm, |
|
|
depths=[3, 4, 6, 3], |
|
|
sr_ratios=[8, 4, 2, 1], |
|
|
num_stages=4, |
|
|
linear=False, |
|
|
use_checkpoint=False, |
|
|
): |
|
|
super().__init__() |
|
|
self.num_classes = num_classes |
|
|
self.depths = depths |
|
|
self.num_stages = num_stages |
|
|
self.embed_dims = embed_dims |
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
cur = 0 |
|
|
|
|
|
for i in range(num_stages): |
|
|
patch_embed = OverlapPatchEmbed( |
|
|
img_size=img_size if i == 0 else img_size // (2 ** (i + 1)), |
|
|
patch_size=7 if i == 0 else 3, |
|
|
stride=4 if i == 0 else 2, |
|
|
in_chans=in_chans if i == 0 else embed_dims[i - 1], |
|
|
embed_dim=embed_dims[i], |
|
|
) |
|
|
|
|
|
block = nn.ModuleList( |
|
|
[ |
|
|
Block( |
|
|
dim=embed_dims[i], |
|
|
num_heads=num_heads[i], |
|
|
mlp_ratio=mlp_ratios[i], |
|
|
qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, |
|
|
drop=drop_rate, |
|
|
attn_drop=attn_drop_rate, |
|
|
drop_path=dpr[cur + j], |
|
|
norm_layer=norm_layer, |
|
|
sr_ratio=sr_ratios[i], |
|
|
linear=linear, |
|
|
) |
|
|
for j in range(depths[i]) |
|
|
] |
|
|
) |
|
|
norm = norm_layer(embed_dims[i]) |
|
|
cur += depths[i] |
|
|
|
|
|
setattr(self, f"patch_embed{i + 1}", patch_embed) |
|
|
setattr(self, f"block{i + 1}", block) |
|
|
setattr(self, f"norm{i + 1}", norm) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=0.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
elif isinstance(m, nn.Conv2d): |
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
|
fan_out //= m.groups |
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
|
if m.bias is not None: |
|
|
m.bias.data.zero_() |
|
|
|
|
|
def freeze_patch_emb(self): |
|
|
self.patch_embed1.requires_grad = False |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay(self): |
|
|
return {"pos_embed1", "pos_embed2", "pos_embed3", "pos_embed4", "cls_token"} |
|
|
|
|
|
def extract_endpoints(self, x): |
|
|
B = x.shape[0] |
|
|
endpoints = dict() |
|
|
for i in range(self.num_stages): |
|
|
patch_embed = getattr(self, f"patch_embed{i + 1}") |
|
|
block = getattr(self, f"block{i + 1}") |
|
|
norm = getattr(self, f"norm{i + 1}") |
|
|
x, H, W = patch_embed(x) |
|
|
for blk in block: |
|
|
if self.use_checkpoint: |
|
|
x = checkpoint(blk, x, H, W) |
|
|
else: |
|
|
x = blk(x, H, W) |
|
|
x = norm(x) |
|
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
endpoints["reduction_{}".format(i + 2)] = x |
|
|
return endpoints |
|
|
|
|
|
def forward(self, x): |
|
|
endpoints = self.extract_endpoints(x) |
|
|
return endpoints |
|
|
|
|
|
|
|
|
class DWConv(nn.Module): |
|
|
def __init__(self, dim=768): |
|
|
super(DWConv, self).__init__() |
|
|
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) |
|
|
|
|
|
def forward(self, x, H, W): |
|
|
B, N, C = x.shape |
|
|
x = x.transpose(1, 2).view(B, C, H, W) |
|
|
x = self.dwconv(x) |
|
|
x = x.flatten(2).transpose(1, 2) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
|
"""convert patch embedding weight from manual patchify + linear proj to conv""" |
|
|
out_dict = {} |
|
|
for k, v in state_dict.items(): |
|
|
if "patch_embed.proj.weight" in k: |
|
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
|
out_dict[k] = v |
|
|
|
|
|
return out_dict |
|
|
|
|
|
|
|
|
def pvt_v2_eff_b0(pretrained=False, **kwargs): |
|
|
model = PyramidVisionTransformerV2( |
|
|
patch_size=4, |
|
|
embed_dims=[32, 64, 160, 256], |
|
|
num_heads=[1, 2, 5, 8], |
|
|
mlp_ratios=[8, 8, 4, 4], |
|
|
qkv_bias=True, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
|
depths=[2, 2, 2, 2], |
|
|
sr_ratios=[8, 4, 2, 1], |
|
|
**kwargs, |
|
|
) |
|
|
model.default_cfg = _cfg() |
|
|
if pretrained: |
|
|
state_dict = load_state_dict_from_url( |
|
|
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b0.pth", progress=True |
|
|
) |
|
|
state_dict.pop("head.weight") |
|
|
state_dict.pop("head.bias") |
|
|
model.load_state_dict(state_dict) |
|
|
return model |
|
|
|
|
|
|
|
|
def pvt_v2_eff_b1(pretrained=False, **kwargs): |
|
|
model = PyramidVisionTransformerV2( |
|
|
patch_size=4, |
|
|
embed_dims=[64, 128, 320, 512], |
|
|
num_heads=[1, 2, 5, 8], |
|
|
mlp_ratios=[8, 8, 4, 4], |
|
|
qkv_bias=True, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
|
depths=[2, 2, 2, 2], |
|
|
sr_ratios=[8, 4, 2, 1], |
|
|
**kwargs, |
|
|
) |
|
|
model.default_cfg = _cfg() |
|
|
if pretrained: |
|
|
state_dict = load_state_dict_from_url( |
|
|
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b1.pth", progress=True |
|
|
) |
|
|
state_dict.pop("head.weight") |
|
|
state_dict.pop("head.bias") |
|
|
model.load_state_dict(state_dict) |
|
|
return model |
|
|
|
|
|
|
|
|
def pvt_v2_eff_b2(pretrained=False, **kwargs): |
|
|
model = PyramidVisionTransformerV2( |
|
|
patch_size=4, |
|
|
embed_dims=[64, 128, 320, 512], |
|
|
num_heads=[1, 2, 5, 8], |
|
|
mlp_ratios=[8, 8, 4, 4], |
|
|
qkv_bias=True, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
|
depths=[3, 4, 6, 3], |
|
|
sr_ratios=[8, 4, 2, 1], |
|
|
**kwargs, |
|
|
) |
|
|
model.default_cfg = _cfg() |
|
|
if pretrained: |
|
|
state_dict = load_state_dict_from_url( |
|
|
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth", progress=True |
|
|
) |
|
|
state_dict.pop("head.weight") |
|
|
state_dict.pop("head.bias") |
|
|
model.load_state_dict(state_dict) |
|
|
return model |
|
|
|
|
|
|
|
|
def pvt_v2_eff_b3(pretrained=False, **kwargs): |
|
|
model = PyramidVisionTransformerV2( |
|
|
patch_size=4, |
|
|
embed_dims=[64, 128, 320, 512], |
|
|
num_heads=[1, 2, 5, 8], |
|
|
mlp_ratios=[8, 8, 4, 4], |
|
|
qkv_bias=True, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
|
depths=[3, 4, 18, 3], |
|
|
sr_ratios=[8, 4, 2, 1], |
|
|
**kwargs, |
|
|
) |
|
|
model.default_cfg = _cfg() |
|
|
if pretrained: |
|
|
state_dict = load_state_dict_from_url( |
|
|
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b3.pth", progress=True |
|
|
) |
|
|
state_dict.pop("head.weight") |
|
|
state_dict.pop("head.bias") |
|
|
model.load_state_dict(state_dict) |
|
|
|
|
|
return model |
|
|
|
|
|
|
|
|
def pvt_v2_eff_b4(pretrained=False, **kwargs): |
|
|
model = PyramidVisionTransformerV2( |
|
|
patch_size=4, |
|
|
embed_dims=[64, 128, 320, 512], |
|
|
num_heads=[1, 2, 5, 8], |
|
|
mlp_ratios=[8, 8, 4, 4], |
|
|
qkv_bias=True, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
|
depths=[3, 8, 27, 3], |
|
|
sr_ratios=[8, 4, 2, 1], |
|
|
**kwargs, |
|
|
) |
|
|
model.default_cfg = _cfg() |
|
|
if pretrained: |
|
|
state_dict = load_state_dict_from_url( |
|
|
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b4.pth", progress=True |
|
|
) |
|
|
state_dict.pop("head.weight") |
|
|
state_dict.pop("head.bias") |
|
|
model.load_state_dict(state_dict) |
|
|
return model |
|
|
|
|
|
|
|
|
def pvt_v2_eff_b5(pretrained=False, **kwargs): |
|
|
model = PyramidVisionTransformerV2( |
|
|
patch_size=4, |
|
|
embed_dims=[64, 128, 320, 512], |
|
|
num_heads=[1, 2, 5, 8], |
|
|
mlp_ratios=[4, 4, 4, 4], |
|
|
qkv_bias=True, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
|
depths=[3, 6, 40, 3], |
|
|
sr_ratios=[8, 4, 2, 1], |
|
|
**kwargs, |
|
|
) |
|
|
model.default_cfg = _cfg() |
|
|
if pretrained: |
|
|
state_dict = load_state_dict_from_url( |
|
|
"https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b5.pth", progress=True |
|
|
) |
|
|
state_dict.pop("head.weight") |
|
|
state_dict.pop("head.bias") |
|
|
model.load_state_dict(state_dict) |
|
|
return model |
|
|
|
|
|
|
|
|
def pvt_v2_eff_b2_li(pretrained=False, **kwargs): |
|
|
model = PyramidVisionTransformerV2( |
|
|
patch_size=4, |
|
|
embed_dims=[64, 128, 320, 512], |
|
|
num_heads=[1, 2, 5, 8], |
|
|
mlp_ratios=[8, 8, 4, 4], |
|
|
qkv_bias=True, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
|
depths=[3, 4, 6, 3], |
|
|
sr_ratios=[8, 4, 2, 1], |
|
|
linear=True, |
|
|
**kwargs, |
|
|
) |
|
|
model.default_cfg = _cfg() |
|
|
|
|
|
return model |
|
|
|