#Author: Lart Pang (https://github.com/lartpang) import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.vision_transformer import _cfg from torch.backends import cuda from torch.hub import load_state_dict_from_url from torch.utils.checkpoint import checkpoint class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, linear=False ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.linear = linear if self.linear: self.relu = nn.ReLU(inplace=True) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): x = self.fc1(x) if self.linear: x = self.relu(x) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, sr_ratio=1, linear=False ): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.linear = linear self.sr_ratio = sr_ratio if not linear: if sr_ratio > 1: self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.LayerNorm(dim) else: self.pool = nn.AdaptiveAvgPool2d(7) self.sr = nn.Conv2d(dim, dim, kernel_size=1, stride=1) self.norm = nn.LayerNorm(dim) self.act = nn.GELU() self.apply(self._init_weights) device_properties = torch.cuda.get_device_properties(torch.device("cuda")) if device_properties.major == 8 and device_properties.minor == 0: # print("A100 GPU detected, using flash attention if input tensor is on cuda") self.cuda_config = {"enable_flash": True, "enable_math": False, "enable_mem_efficient": False} else: # print("Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda") self.cuda_config = {"enable_flash": False, "enable_math": True, "enable_mem_efficient": True} def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): B, N, C = x.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) if not self.linear: if self.sr_ratio > 1: x_ = x.permute(0, 2, 1).reshape(B, C, H, W) x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) x_ = self.norm(x_) kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) else: kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) else: x_ = x.permute(0, 2, 1).reshape(B, C, H, W) x_ = self.sr(self.pool(x_)).reshape(B, C, -1).permute(0, 2, 1) x_ = self.norm(x_) x_ = self.act(x_) kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] # attn = (q @ k.transpose(-2, -1)) * self.scale # attn = attn.softmax(dim=-1) # attn = self.attn_drop(attn) # x = attn @ v with cuda.sdp_kernel(**self.cuda_config): # q: bs,nh,l,hd, k: bs,nh,s,hd, v: bs,nh,s,hd # same as: (((q @ k.transpose(-1, -2)) * q.shape[-1] ** -0.5).softmax(dim=-1) @ v) x = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0, is_causal=False) # built-in scale x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, linear=False, ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio, linear=linear, ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, linear=linear) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) return x class OverlapPatchEmbed(nn.Module): """Image to Patch Embedding""" def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) assert max(patch_size) > stride, "Set larger patch_size than stride" self.img_size = img_size self.patch_size = patch_size self.H, self.W = img_size[0] // stride, img_size[1] // stride self.num_patches = self.H * self.W self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=(patch_size[0] // 2, patch_size[1] // 2), ) self.norm = nn.LayerNorm(embed_dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, x): x = self.proj(x) _, _, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) return x, H, W class PyramidVisionTransformerV2(nn.Module): def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], num_stages=4, linear=False, use_checkpoint=False, ): super().__init__() self.num_classes = num_classes self.depths = depths self.num_stages = num_stages self.embed_dims = embed_dims self.use_checkpoint = use_checkpoint dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule cur = 0 for i in range(num_stages): patch_embed = OverlapPatchEmbed( img_size=img_size if i == 0 else img_size // (2 ** (i + 1)), patch_size=7 if i == 0 else 3, stride=4 if i == 0 else 2, in_chans=in_chans if i == 0 else embed_dims[i - 1], embed_dim=embed_dims[i], ) block = nn.ModuleList( [ Block( dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j], norm_layer=norm_layer, sr_ratio=sr_ratios[i], linear=linear, ) for j in range(depths[i]) ] ) norm = norm_layer(embed_dims[i]) cur += depths[i] setattr(self, f"patch_embed{i + 1}", patch_embed) setattr(self, f"block{i + 1}", block) setattr(self, f"norm{i + 1}", norm) # classification head # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def freeze_patch_emb(self): self.patch_embed1.requires_grad = False @torch.jit.ignore def no_weight_decay(self): return {"pos_embed1", "pos_embed2", "pos_embed3", "pos_embed4", "cls_token"} # has pos_embed may be better def extract_endpoints(self, x): B = x.shape[0] endpoints = dict() for i in range(self.num_stages): patch_embed = getattr(self, f"patch_embed{i + 1}") block = getattr(self, f"block{i + 1}") norm = getattr(self, f"norm{i + 1}") x, H, W = patch_embed(x) for blk in block: if self.use_checkpoint: x = checkpoint(blk, x, H, W) else: x = blk(x, H, W) x = norm(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() # print(i + 2, x.shape) endpoints["reduction_{}".format(i + 2)] = x return endpoints def forward(self, x): endpoints = self.extract_endpoints(x) return endpoints class DWConv(nn.Module): def __init__(self, dim=768): super(DWConv, self).__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, x, H, W): B, N, C = x.shape x = x.transpose(1, 2).view(B, C, H, W) x = self.dwconv(x) x = x.flatten(2).transpose(1, 2) return x def _conv_filter(state_dict, patch_size=16): """convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if "patch_embed.proj.weight" in k: v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict def pvt_v2_eff_b0(pretrained=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], **kwargs, ) model.default_cfg = _cfg() if pretrained: state_dict = load_state_dict_from_url( "https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b0.pth", progress=True ) state_dict.pop("head.weight") state_dict.pop("head.bias") model.load_state_dict(state_dict) return model def pvt_v2_eff_b1(pretrained=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], **kwargs, ) model.default_cfg = _cfg() if pretrained: state_dict = load_state_dict_from_url( "https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b1.pth", progress=True ) state_dict.pop("head.weight") state_dict.pop("head.bias") model.load_state_dict(state_dict) return model def pvt_v2_eff_b2(pretrained=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs, ) model.default_cfg = _cfg() if pretrained: state_dict = load_state_dict_from_url( "https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b2.pth", progress=True ) state_dict.pop("head.weight") state_dict.pop("head.bias") model.load_state_dict(state_dict) return model def pvt_v2_eff_b3(pretrained=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs, ) model.default_cfg = _cfg() if pretrained: state_dict = load_state_dict_from_url( "https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b3.pth", progress=True ) state_dict.pop("head.weight") state_dict.pop("head.bias") model.load_state_dict(state_dict) return model def pvt_v2_eff_b4(pretrained=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs, ) model.default_cfg = _cfg() if pretrained: state_dict = load_state_dict_from_url( "https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b4.pth", progress=True ) state_dict.pop("head.weight") state_dict.pop("head.bias") model.load_state_dict(state_dict) return model def pvt_v2_eff_b5(pretrained=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], **kwargs, ) model.default_cfg = _cfg() if pretrained: state_dict = load_state_dict_from_url( "https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b5.pth", progress=True ) state_dict.pop("head.weight") state_dict.pop("head.bias") model.load_state_dict(state_dict) return model def pvt_v2_eff_b2_li(pretrained=False, **kwargs): model = PyramidVisionTransformerV2( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], linear=True, **kwargs, ) model.default_cfg = _cfg() return model