XLS-R-300m-korean
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1320
- Wer: 0.0678
Model description
본 모델은 Facebook의 facebook/wav2vec2-xls-r-300m 모델을 kresnik/zeroth_korean 한국어 음성 데이터셋으로 파인튜닝한 모델입니다.
Training and evaluation data
kresnik/zeroth_korean 한국어 음성 데이터셋
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 15.4029 | 0.1437 | 400 | 4.7553 | 0.9992 |
| 4.4278 | 0.2875 | 800 | 3.1016 | 0.9893 |
| 2.1991 | 0.4312 | 1200 | 1.7757 | 0.9133 |
| 1.3727 | 0.5749 | 1600 | 1.2008 | 0.7931 |
| 1.0682 | 0.7187 | 2000 | 1.0807 | 0.7359 |
| 0.9359 | 0.8624 | 2400 | 0.9476 | 0.6856 |
| 0.8484 | 1.0061 | 2800 | 0.8240 | 0.6258 |
| 0.7433 | 1.1498 | 3200 | 0.7457 | 0.6065 |
| 0.6888 | 1.2936 | 3600 | 0.7119 | 0.6159 |
| 0.6251 | 1.4373 | 4000 | 0.6032 | 0.5449 |
| 0.5748 | 1.5811 | 4400 | 0.5876 | 0.5478 |
| 0.5392 | 1.7248 | 4800 | 0.5805 | 0.5187 |
| 0.5132 | 1.8685 | 5200 | 0.4993 | 0.4618 |
| 0.4808 | 2.0122 | 5600 | 0.4804 | 0.4517 |
| 0.3949 | 2.1560 | 6000 | 0.4807 | 0.4603 |
| 0.3767 | 2.2997 | 6400 | 0.4220 | 0.4096 |
| 0.3711 | 2.4434 | 6800 | 0.4246 | 0.4042 |
| 0.3592 | 2.5872 | 7200 | 0.3800 | 0.3670 |
| 0.3288 | 2.7309 | 7600 | 0.3802 | 0.3740 |
| 0.3206 | 2.8746 | 8000 | 0.3670 | 0.3350 |
| 0.3024 | 3.0183 | 8400 | 0.3837 | 0.3388 |
| 0.251 | 3.1621 | 8800 | 0.3424 | 0.3248 |
| 0.2396 | 3.3058 | 9200 | 0.3103 | 0.2980 |
| 0.2391 | 3.4495 | 9600 | 0.3104 | 0.2896 |
| 0.2429 | 3.5933 | 10000 | 0.3211 | 0.2920 |
| 0.2335 | 3.7370 | 10400 | 0.3054 | 0.2894 |
| 0.2297 | 3.8807 | 10800 | 0.2952 | 0.2649 |
| 0.2237 | 4.0244 | 11200 | 0.2696 | 0.2426 |
| 0.1737 | 4.1682 | 11600 | 0.2733 | 0.2466 |
| 0.1798 | 4.3119 | 12000 | 0.2799 | 0.2516 |
| 0.1864 | 4.4556 | 12400 | 0.2762 | 0.2665 |
| 0.1789 | 4.5994 | 12800 | 0.2823 | 0.2873 |
| 0.1909 | 4.7431 | 13200 | 0.2597 | 0.2628 |
| 0.1814 | 4.8869 | 13600 | 0.2499 | 0.2325 |
| 0.1749 | 5.0305 | 14000 | 0.2639 | 0.2329 |
| 0.1528 | 5.1743 | 14400 | 0.2668 | 0.2326 |
| 0.1505 | 5.3180 | 14800 | 0.2555 | 0.2296 |
| 0.1495 | 5.4618 | 15200 | 0.2348 | 0.2113 |
| 0.1534 | 5.6055 | 15600 | 0.2542 | 0.2525 |
| 0.1451 | 5.7492 | 16000 | 0.2318 | 0.2462 |
| 0.1468 | 5.8930 | 16400 | 0.2419 | 0.2564 |
| 0.1407 | 6.0367 | 16800 | 0.2428 | 0.2144 |
| 0.1284 | 6.1804 | 17200 | 0.2523 | 0.2573 |
| 0.1347 | 6.3241 | 17600 | 0.2531 | 0.2361 |
| 0.1308 | 6.4679 | 18000 | 0.2301 | 0.2459 |
| 0.1228 | 6.6116 | 18400 | 0.2237 | 0.2250 |
| 0.1271 | 6.7553 | 18800 | 0.2307 | 0.2117 |
| 0.1231 | 6.8991 | 19200 | 0.2350 | 0.2230 |
| 0.1268 | 7.0428 | 19600 | 0.2342 | 0.2236 |
| 0.1138 | 7.1865 | 20000 | 0.2347 | 0.2250 |
| 0.1173 | 7.3302 | 20400 | 0.2350 | 0.2227 |
| 0.1097 | 7.4740 | 20800 | 0.2156 | 0.2217 |
| 0.1148 | 7.6177 | 21200 | 0.2245 | 0.2241 |
| 0.1228 | 7.7614 | 21600 | 0.2156 | 0.2248 |
| 0.1108 | 7.9052 | 22000 | 0.2064 | 0.1796 |
| 0.1044 | 8.0489 | 22400 | 0.2170 | 0.2182 |
| 0.0937 | 8.1926 | 22800 | 0.2112 | 0.2110 |
| 0.0959 | 8.3363 | 23200 | 0.2134 | 0.2174 |
| 0.1014 | 8.4801 | 23600 | 0.2141 | 0.2009 |
| 0.1029 | 8.6238 | 24000 | 0.2142 | 0.2117 |
| 0.0998 | 8.7676 | 24400 | 0.2172 | 0.1945 |
| 0.1033 | 8.9113 | 24800 | 0.2000 | 0.2055 |
| 0.0999 | 9.0550 | 25200 | 0.2393 | 0.2161 |
| 0.0975 | 9.1987 | 25600 | 0.2305 | 0.2096 |
| 0.0964 | 9.3425 | 26000 | 0.2093 | 0.1635 |
| 0.0854 | 9.4862 | 26400 | 0.2226 | 0.1821 |
| 0.0883 | 9.6299 | 26800 | 0.2008 | 0.1628 |
| 0.0926 | 9.7737 | 27200 | 0.2182 | 0.1828 |
| 0.0917 | 9.9174 | 27600 | 0.1988 | 0.1863 |
| 0.0834 | 10.0611 | 28000 | 0.2200 | 0.1589 |
| 0.0782 | 10.2048 | 28400 | 0.2125 | 0.1643 |
| 0.0759 | 10.3486 | 28800 | 0.2142 | 0.1616 |
| 0.0797 | 10.4923 | 29200 | 0.2077 | 0.1605 |
| 0.0809 | 10.6360 | 29600 | 0.2026 | 0.1599 |
| 0.0822 | 10.7798 | 30000 | 0.1940 | 0.1539 |
| 0.0789 | 10.9235 | 30400 | 0.1938 | 0.1534 |
| 0.0744 | 11.0672 | 30800 | 0.2014 | 0.1578 |
| 0.0698 | 11.2109 | 31200 | 0.2045 | 0.1477 |
| 0.0733 | 11.3547 | 31600 | 0.1870 | 0.1391 |
| 0.0657 | 11.4984 | 32000 | 0.1928 | 0.1452 |
| 0.0723 | 11.6421 | 32400 | 0.2054 | 0.1598 |
| 0.0716 | 11.7859 | 32800 | 0.1930 | 0.1581 |
| 0.0735 | 11.9296 | 33200 | 0.2016 | 0.1724 |
| 0.0705 | 12.0733 | 33600 | 0.1917 | 0.1518 |
| 0.0624 | 12.2170 | 34000 | 0.1987 | 0.1512 |
| 0.0689 | 12.3608 | 34400 | 0.2064 | 0.1955 |
| 0.0673 | 12.5045 | 34800 | 0.1977 | 0.1824 |
| 0.0673 | 12.6483 | 35200 | 0.1984 | 0.1807 |
| 0.0626 | 12.7920 | 35600 | 0.1983 | 0.1944 |
| 0.0655 | 12.9357 | 36000 | 0.1943 | 0.1614 |
| 0.0619 | 13.0794 | 36400 | 0.1904 | 0.1510 |
| 0.0573 | 13.2232 | 36800 | 0.1966 | 0.1891 |
| 0.0579 | 13.3669 | 37200 | 0.1874 | 0.1426 |
| 0.0567 | 13.5106 | 37600 | 0.1980 | 0.1575 |
| 0.0599 | 13.6544 | 38000 | 0.1850 | 0.1589 |
| 0.0591 | 13.7981 | 38400 | 0.1812 | 0.1551 |
| 0.0575 | 13.9418 | 38800 | 0.1745 | 0.1440 |
| 0.0562 | 14.0855 | 39200 | 0.1864 | 0.1563 |
| 0.0532 | 14.2293 | 39600 | 0.1856 | 0.1750 |
| 0.0592 | 14.3730 | 40000 | 0.1911 | 0.1735 |
| 0.0587 | 14.5167 | 40400 | 0.1899 | 0.1574 |
| 0.0521 | 14.6605 | 40800 | 0.1887 | 0.1373 |
| 0.0528 | 14.8042 | 41200 | 0.1765 | 0.1340 |
| 0.0526 | 14.9479 | 41600 | 0.1791 | 0.1336 |
| 0.0479 | 15.0916 | 42000 | 0.1831 | 0.1427 |
| 0.0506 | 15.2354 | 42400 | 0.1929 | 0.1607 |
| 0.05 | 15.3791 | 42800 | 0.1844 | 0.1306 |
| 0.0512 | 15.5228 | 43200 | 0.1747 | 0.1295 |
| 0.045 | 15.6666 | 43600 | 0.1790 | 0.1301 |
| 0.0504 | 15.8103 | 44000 | 0.1815 | 0.1286 |
| 0.0517 | 15.9540 | 44400 | 0.1689 | 0.1212 |
| 0.0492 | 16.0977 | 44800 | 0.1674 | 0.1316 |
| 0.0442 | 16.2415 | 45200 | 0.1857 | 0.1510 |
| 0.0425 | 16.3852 | 45600 | 0.1776 | 0.1245 |
| 0.0441 | 16.5289 | 46000 | 0.1772 | 0.1223 |
| 0.0465 | 16.6727 | 46400 | 0.1734 | 0.1431 |
| 0.0434 | 16.8164 | 46800 | 0.1811 | 0.1548 |
| 0.0425 | 16.9602 | 47200 | 0.1691 | 0.1250 |
| 0.0395 | 17.1038 | 47600 | 0.1737 | 0.1168 |
| 0.0398 | 17.2476 | 48000 | 0.1776 | 0.1206 |
| 0.0386 | 17.3913 | 48400 | 0.1722 | 0.1236 |
| 0.0399 | 17.5351 | 48800 | 0.1792 | 0.1224 |
| 0.0414 | 17.6788 | 49200 | 0.1810 | 0.1220 |
| 0.0436 | 17.8225 | 49600 | 0.1650 | 0.1122 |
| 0.0431 | 17.9663 | 50000 | 0.1684 | 0.1087 |
| 0.0392 | 18.1100 | 50400 | 0.1739 | 0.1156 |
| 0.0389 | 18.2537 | 50800 | 0.1643 | 0.1101 |
| 0.0343 | 18.3974 | 51200 | 0.1658 | 0.1080 |
| 0.0377 | 18.5412 | 51600 | 0.1732 | 0.1126 |
| 0.0387 | 18.6849 | 52000 | 0.1781 | 0.1077 |
| 0.0364 | 18.8286 | 52400 | 0.1641 | 0.1123 |
| 0.0362 | 18.9724 | 52800 | 0.1550 | 0.1053 |
| 0.0365 | 19.1161 | 53200 | 0.1548 | 0.0991 |
| 0.0322 | 19.2598 | 53600 | 0.1654 | 0.1074 |
| 0.0338 | 19.4035 | 54000 | 0.1532 | 0.1080 |
| 0.0323 | 19.5473 | 54400 | 0.1594 | 0.1048 |
| 0.0334 | 19.6910 | 54800 | 0.1584 | 0.0985 |
| 0.0329 | 19.8347 | 55200 | 0.1569 | 0.1021 |
| 0.032 | 19.9785 | 55600 | 0.1533 | 0.0929 |
| 0.0317 | 20.1222 | 56000 | 0.1628 | 0.0997 |
| 0.0324 | 20.2659 | 56400 | 0.1546 | 0.0985 |
| 0.0326 | 20.4096 | 56800 | 0.1605 | 0.0985 |
| 0.0294 | 20.5534 | 57200 | 0.1604 | 0.0953 |
| 0.0295 | 20.6971 | 57600 | 0.1559 | 0.0923 |
| 0.0292 | 20.8409 | 58000 | 0.1571 | 0.0952 |
| 0.0292 | 20.9846 | 58400 | 0.1543 | 0.0890 |
| 0.0273 | 21.1283 | 58800 | 0.1664 | 0.0971 |
| 0.0261 | 21.2720 | 59200 | 0.1610 | 0.0962 |
| 0.0287 | 21.4158 | 59600 | 0.1538 | 0.0973 |
| 0.0291 | 21.5595 | 60000 | 0.1573 | 0.0910 |
| 0.0271 | 21.7032 | 60400 | 0.1521 | 0.0919 |
| 0.0267 | 21.8470 | 60800 | 0.1546 | 0.0937 |
| 0.0284 | 21.9907 | 61200 | 0.1565 | 0.0875 |
| 0.0245 | 22.1344 | 61600 | 0.1546 | 0.0908 |
| 0.0257 | 22.2781 | 62000 | 0.1627 | 0.0965 |
| 0.0255 | 22.4219 | 62400 | 0.1473 | 0.0992 |
| 0.0241 | 22.5656 | 62800 | 0.1540 | 0.1033 |
| 0.0237 | 22.7093 | 63200 | 0.1586 | 0.1018 |
| 0.0253 | 22.8531 | 63600 | 0.1571 | 0.1000 |
| 0.024 | 22.9968 | 64000 | 0.1561 | 0.0974 |
| 0.0232 | 23.1405 | 64400 | 0.1572 | 0.0931 |
| 0.0232 | 23.2842 | 64800 | 0.1647 | 0.0956 |
| 0.0225 | 23.4280 | 65200 | 0.1543 | 0.0970 |
| 0.0223 | 23.5717 | 65600 | 0.1543 | 0.0922 |
| 0.0226 | 23.7154 | 66000 | 0.1421 | 0.0860 |
| 0.0217 | 23.8592 | 66400 | 0.1510 | 0.0858 |
| 0.0224 | 24.0029 | 66800 | 0.1469 | 0.0902 |
| 0.0204 | 24.1466 | 67200 | 0.1465 | 0.0836 |
| 0.0208 | 24.2903 | 67600 | 0.1414 | 0.0872 |
| 0.022 | 24.4341 | 68000 | 0.1440 | 0.0884 |
| 0.0209 | 24.5778 | 68400 | 0.1435 | 0.0861 |
| 0.0218 | 24.7216 | 68800 | 0.1434 | 0.0876 |
| 0.0202 | 24.8653 | 69200 | 0.1465 | 0.0872 |
| 0.0202 | 25.0090 | 69600 | 0.1445 | 0.0840 |
| 0.0197 | 25.1527 | 70000 | 0.1463 | 0.0911 |
| 0.0174 | 25.2965 | 70400 | 0.1446 | 0.0834 |
| 0.0175 | 25.4402 | 70800 | 0.1431 | 0.0830 |
| 0.0197 | 25.5839 | 71200 | 0.1451 | 0.0794 |
| 0.0182 | 25.7277 | 71600 | 0.1404 | 0.0824 |
| 0.0184 | 25.8714 | 72000 | 0.1402 | 0.0788 |
| 0.018 | 26.0151 | 72400 | 0.1396 | 0.0798 |
| 0.0185 | 26.1588 | 72800 | 0.1374 | 0.0780 |
| 0.0149 | 26.3026 | 73200 | 0.1422 | 0.0786 |
| 0.017 | 26.4463 | 73600 | 0.1403 | 0.0768 |
| 0.017 | 26.5900 | 74000 | 0.1403 | 0.0780 |
| 0.0156 | 26.7338 | 74400 | 0.1379 | 0.0751 |
| 0.0158 | 26.8775 | 74800 | 0.1456 | 0.0756 |
| 0.0156 | 27.0212 | 75200 | 0.1409 | 0.0769 |
| 0.0142 | 27.1649 | 75600 | 0.1395 | 0.0778 |
| 0.0134 | 27.3087 | 76000 | 0.1407 | 0.0753 |
| 0.0141 | 27.4524 | 76400 | 0.1405 | 0.0732 |
| 0.0144 | 27.5961 | 76800 | 0.1379 | 0.0765 |
| 0.0153 | 27.7399 | 77200 | 0.1356 | 0.0744 |
| 0.014 | 27.8836 | 77600 | 0.1326 | 0.0724 |
| 0.0136 | 28.0273 | 78000 | 0.1313 | 0.0729 |
| 0.013 | 28.1710 | 78400 | 0.1344 | 0.0736 |
| 0.0134 | 28.3148 | 78800 | 0.1303 | 0.0717 |
| 0.0127 | 28.4585 | 79200 | 0.1327 | 0.0705 |
| 0.0122 | 28.6023 | 79600 | 0.1334 | 0.0709 |
| 0.0121 | 28.7460 | 80000 | 0.1356 | 0.0685 |
| 0.0137 | 28.8897 | 80400 | 0.1345 | 0.0676 |
| 0.0131 | 29.0334 | 80800 | 0.1293 | 0.0664 |
| 0.0114 | 29.1772 | 81200 | 0.1321 | 0.0666 |
| 0.0123 | 29.3209 | 81600 | 0.1322 | 0.0681 |
| 0.0117 | 29.4646 | 82000 | 0.1328 | 0.0681 |
| 0.0109 | 29.6084 | 82400 | 0.1322 | 0.0673 |
| 0.0109 | 29.7521 | 82800 | 0.1321 | 0.0672 |
| 0.0118 | 29.8958 | 83200 | 0.1320 | 0.0678 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
개발자
- [손영훈, [email protected]]
참고 문헌
- Downloads last month
- 14
Model tree for huni0304/XLS-R-300m-korean
Base model
facebook/wav2vec2-xls-r-300m