tfs-mt
This project implements the Transformer architecture from scratch considering Machine Translation as the usecase. It's mainly intended as an educational resource and a functional implementation of the architecture and the training/inference logic.
Here you can find the weights of the trained small size Transformer and the pretrained tokenizers.
Quick Start
pip install tfs-mt
import torch
from tfs_mt.architecture import build_model
from tfs_mt.data_utils import WordTokenizer
from tfs_mt.decoding_utils import greedy_decoding
base_url = "https://huggingface.co/giovo17/tfs-mt/resolve/main/"
src_tokenizer = WordTokenizer.from_pretrained(base_url + "src_tokenizer_word.json")
tgt_tokenizer = WordTokenizer.from_pretrained(base_url + "tgt_tokenizer_word.json")
model = build_model(
config="https://huggingface.co/giovo17/tfs-mt/resolve/main/config-lock.yaml",
from_pretrained=True,
model_path="https://huggingface.co/giovo17/tfs-mt/resolve/main/model.safetensors",
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
input_tokens, input_mask = src_tokenizer.encode("Hi, how are you?")
output = greedy_decoding(model, tgt_tokenizer, input_tokens, input_mask)[0]
print(output)
Model Architecture
Model Size: small
- Encoder Layers: 6
- Decoder Layers: 6
- Model Dimension: 100
- Attention Heads: 6
- FFN Dimension: 400
- Normalization Type: postnorm
- Dropout: 0.1
- Pretrained Embeddings: GloVe
- Positional Embeddings: sinusoidal
- GloVe Version: glove.2024.wikigiga.100d
Tokenizer
- Type: word
- Max Sequence Length: 131
- Max Vocabulary Size: 70000
- Minimum Frequency: 2
Dataset
- Task: machine-translation
- Dataset ID:
Helsinki-NLP/europarl - Dataset Name:
en-it - Source Language: en
- Target Language: it
- Train Split: 0.95
Full training configuration
Click to expand complete config-lock.yaml
seed: 42
log_every_iters: 1000
save_every_iters: 10000
eval_every_iters: 10000
update_pbar_every_iters: 100
time_limit_sec: -1
checkpoints_retain_n: 5
model_base_name: tfs_mt
model_parameters:
dropout: 0.1
model_configs:
pretrained_word_embeddings: GloVe
positional_embeddings: sinusoidal
nano:
num_encoder_layers: 4
num_decoder_layers: 4
d_model: 50
num_heads: 4
d_ff: 200
norm_type: postnorm
glove_version: glove.2024.wikigiga.50d
glove_filename: wiki_giga_2024_50_MFT20_vectors_seed_123_alpha_0.75_eta_0.075_combined
small:
num_encoder_layers: 6
num_decoder_layers: 6
d_model: 100
num_heads: 6
d_ff: 400
norm_type: postnorm
glove_version: glove.2024.wikigiga.100d
glove_filename: wiki_giga_2024_100_MFT20_vectors_seed_2024_alpha_0.75_eta_0.05.050_combined
base:
num_encoder_layers: 8
num_decoder_layers: 8
d_model: 300
num_heads: 8
d_ff: 800
norm_type: postnorm
glove_version: glove.2024.wikigiga.300d
glove_filename: wiki_giga_2024_300_MFT20_vectors_seed_2024_alpha_0.75_eta_0.05_combined
original:
num_encoder_layers: 6
num_decoder_layers: 6
d_model: 512
num_heads: 8
d_ff: 2048
norm_type: postnorm
training_hp:
num_epochs: 5
distributed_training: false
use_amp: true
amp_dtype: bfloat16
torch_compile_mode: max-autotune
loss:
type: KLdiv-labelsmoothing
label_smoothing: 0.1
optimizer:
type: AdamW
weight_decay: 0.0001
beta1: 0.9
beta2: 0.999
eps: 1.0e-08
lr_scheduler:
type: original
min_lr: 0.0003
max_lr: 0.001
warmup_iters: 25000
stable_iters_prop: 0.7
max_gradient_norm: 5.0
early_stopping:
enabled: false
patience: 40000
min_delta: 1.0e-05
tokenizer:
type: word
sos_token: <s>
eos_token: </s>
pad_token: <PAD>
unk_token: <UNK>
max_seq_len: 131
max_vocab_size: 70000
vocab_min_freq: 2
dataset:
dataset_task: machine-translation
dataset_id: Helsinki-NLP/europarl
dataset_name: en-it
train_split: 0.95
src_lang: en
tgt_lang: it
max_len: -1
train_dataloader:
batch_size: 64
num_workers: 8
shuffle: true
drop_last: true
prefetch_factor: 2
pad_all_to_max_len: true
test_dataloader:
batch_size: 128
num_workers: 8
shuffle: false
drop_last: false
prefetch_factor: 2
pad_all_to_max_len: true
backend: none
chosen_model_size: small
model_name: tfs_mt_small_251104-1748
exec_mode: dev
src_tokenizer_vocab_size: 70000
tgt_tokenizer_vocab_size: 70000
num_train_iters_per_epoch: 28889
num_test_iters_per_epoch: 761
Citation
If you use tfs-mt in your research or project, please cite:
@software{Spadaro_tfs-mt,
author = {Spadaro, Giovanni},
license = {MIT},
title = {{tfs-mt}},
url = {https://github.com/Giovo17/tfs-mt}
}