Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
1f0a052 verified
metadata
annotations_creators:
  - human-annotated
language:
  - asm
  - ben
  - brx
  - guj
  - hin
  - kan
  - mal
  - mar
  - ory
  - pan
  - tam
  - tel
  - urd
license: cc0-1.0
multilinguality: translated
task_categories:
  - text-classification
task_ids: []
dataset_info:
  - config_name: as
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 361018
        num_examples: 5
    download_size: 153175
    dataset_size: 361018
  - config_name: bd
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 377587
        num_examples: 5
    download_size: 145381
    dataset_size: 377587
  - config_name: bn
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 359251
        num_examples: 5
    download_size: 148296
    dataset_size: 359251
  - config_name: gu
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 354710
        num_examples: 5
    download_size: 150391
    dataset_size: 354710
  - config_name: hi
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 363834
        num_examples: 5
    download_size: 148774
    dataset_size: 363834
  - config_name: kn
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 415090
        num_examples: 5
    download_size: 161087
    dataset_size: 415090
  - config_name: ml
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 438786
        num_examples: 5
    download_size: 170004
    dataset_size: 438786
  - config_name: mr
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 372308
        num_examples: 5
    download_size: 154295
    dataset_size: 372308
  - config_name: or
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 370349
        num_examples: 5
    download_size: 149985
    dataset_size: 370349
  - config_name: pa
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 363489
        num_examples: 5
    download_size: 148145
    dataset_size: 363489
  - config_name: ta
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 443229
        num_examples: 5
    download_size: 166704
    dataset_size: 443229
  - config_name: te
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 406483
        num_examples: 5
    download_size: 163088
    dataset_size: 406483
  - config_name: ur
    features:
      - name: sentences
        sequence: string
      - name: labels
        sequence: string
    splits:
      - name: test
        num_bytes: 256002
        num_examples: 5
    download_size: 125970
    dataset_size: 256002
configs:
  - config_name: as
    data_files:
      - split: test
        path: as/test-*
  - config_name: bd
    data_files:
      - split: test
        path: bd/test-*
  - config_name: bn
    data_files:
      - split: test
        path: bn/test-*
  - config_name: gu
    data_files:
      - split: test
        path: gu/test-*
  - config_name: hi
    data_files:
      - split: test
        path: hi/test-*
  - config_name: kn
    data_files:
      - split: test
        path: kn/test-*
  - config_name: ml
    data_files:
      - split: test
        path: ml/test-*
  - config_name: mr
    data_files:
      - split: test
        path: mr/test-*
  - config_name: or
    data_files:
      - split: test
        path: or/test-*
  - config_name: pa
    data_files:
      - split: test
        path: pa/test-*
  - config_name: ta
    data_files:
      - split: test
        path: ta/test-*
  - config_name: te
    data_files:
      - split: test
        path: te/test-*
  - config_name: ur
    data_files:
      - split: test
        path: ur/test-*
tags:
  - mteb
  - text

IndicReviewsClusteringP2P

An MTEB dataset
Massive Text Embedding Benchmark

Clustering of reviews from IndicSentiment dataset. Clustering of 14 sets on the generic categories label.

Task category t2c
Domains Reviews, Written
Reference https://arxiv.org/abs/2212.05409

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["IndicReviewsClusteringP2P"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{doddapaneni2022towards,
  author = {Sumanth Doddapaneni and Rahul Aralikatte and Gowtham Ramesh and Shreyansh Goyal and Mitesh M. Khapra and Anoop Kunchukuttan and Pratyush Kumar},
  doi = {10.18653/v1/2023.acl-long.693},
  journal = {Annual Meeting of the Association for Computational Linguistics},
  title = {Towards Leaving No Indic Language Behind: Building Monolingual Corpora, Benchmark and Models for Indic Languages},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("IndicReviewsClusteringP2P")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 65,
        "number_of_characters": 13000,
        "min_text_length": 200,
        "average_text_length": 200.0,
        "max_text_length": 200,
        "unique_texts": 12972,
        "min_labels_per_text": 117,
        "average_labels_per_text": 200.0,
        "max_labels_per_text": 2834,
        "unique_labels": 15,
        "labels": {
            "Entertainment": {
                "count": 2834
            },
            "Health/Wellness": {
                "count": 1066
            },
            "Office": {
                "count": 182
            },
            "Hobbies": {
                "count": 1716
            },
            "Building Material": {
                "count": 117
            },
            "Food": {
                "count": 221
            },
            "SPORTS/GAMES": {
                "count": 208
            },
            "Education": {
                "count": 1196
            },
            "Pets": {
                "count": 1664
            },
            "Home": {
                "count": 1872
            },
            "Travel": {
                "count": 130
            },
            "Transportation": {
                "count": 637
            },
            "Baby Products": {
                "count": 507
            },
            "Vehicles": {
                "count": 117
            },
            "Fashion": {
                "count": 533
            }
        }
    }
}

This dataset card was automatically generated using MTEB